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(c-)And: A new graph model
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Abstract. In this document, we study the scope of the following graph
model: each vertex is assigned to a box in a metric space and to a repre-
sentative element that belongs to that box. Two vertices are connected
by an edge if and only if its respective boxes contain the opposite rep-
resentative element. We focus our study on the case where boxes (and
therefore representative elements) associated to vertices are spread in
the Euclidean line. We give both, a combinatorial and an intersection
characterization of the model. Based on these characterizations, we de-
termine graph families that contain the model (e. g., boxicity 2 graphs)
and others that the new model contains (e. g., rooted directed path). We
also study the particular case where each representative element is the
center of its respective box. In this particular case, we provide construc-
tive representations for interval, block and outerplanar graphs. Finally,
we show that the general and the particular model are not equivalent by
constructing a graph family that separates the two cases.

1 Introduction

A disk graph is a graph where the set of vertices corresponds to a collection
of points that belong to a metric space and an edge connects two vertices if
and only if their corresponding points are at a distance of at most a parameter
r. An important application of disk graphs is in the area of sensor networks.
Sensor networks are networks formed by sensor nodes, little devices deployed in a
geographic area with monitor purposes. Sensors communicate with each other via
a radio channel. Every sensor covers with its radio signal a communication area
around it and two sensors communicate with each other when they are placed
within each other communication area. In an ideal model, the communication
area of a sensor is a circle. Therefore, in the same ideal model, if every sensor
covers equally sized communication areas, the network formed by sensors is a disk
graph. That explains why researchers have used disk graphs to represent sensor
networks, particularly unit disk graphs [FCFM09] or some variations [KWZ08].
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Nevertheless, it is difficult to find such an ideal situation in a real deploy-
ment, mainly due to physical or geographical restrictions. For instance, when
the deployment area is irregular, the communication area of a sensor might be
shrunken in one direction due to an obstacle, while, in the opposite direction,
the area is free of any obstacle. On the other hand, some sensors may have di-
rectional antennas which produce communication areas that are far from being
a circle, or that place the sensor location far from the center of its communica-
tion area. Therefore, the existence of a communication link between two sensors
is not determined by the distance between them, neither by the intersection of
their communication areas. In fact, one has to be sure that the communication
areas cover the opposite sensor.

Consequently, we propose a new graph family that aims to include the dif-
ferent topologies that may be created due to those restrictions. Consider a set
S and an element p ∈ S as a representative element of S. Consider now a graph
where each vertex corresponds to a pair (S, p) and an edge between two vertices
exists if and only if the set associated with a vertex contains the representa-
tive element of its fellow and vice versa. According to this definition, nonempty
intersection between two sets is not enough to guarantee the existence of their
corresponding edge. Moreover, when the sets belong to a metric space, there is
no positive distance between two representative elements that guarantees the
existence of their corresponding edge. Therefore, this definition differs from disk
graphs, as well as from intersection graphs.

In this document, we consider the family induced by the above definition
when sets are boxes in an Euclidean metric space. We aim to understand the
properties of such a graph family. We focus our study on the case where boxes
and representative elements associated to vertices are spread in the Euclidean
line. We study the extent of this definition as a graph family. We provide an
intersection model and a combinatorial characterization of the model. Addition-
ally, we tackle the subfamily of graphs where all representative elements are the
center of its respective boxes.

2 Definitions

We consider graphs that are finite, connected, undirected, loopless and without
parallel edges. For a graph G = (V,E), we denote by V (G) and E(G) the set of
vertices and edges, respectively. When the graph under consideration is clear, we
use only V and E. The edge {u, v} is denoted by uv. If uv ∈ E(G) we say that v
is a neighbor of u and vice versa. The set of neighbors of u is denoted by N (u).
Additionally, the closed neighborhood of u is defined as N [u] := N (u) ∪ {u}.

A box in the d-dimensional Euclidean space is the Cartesian product of d
closed intervals. A box B is described as the set B = {(x1, x2, . . . , xd) ∈ R

d :
Li ≤ xi ≤ Ri}, where Li and Ri denote the extreme points of the interval in the
i-th dimension. The center of a box is the Cartesian product of the centers of
the intervals in each dimension of the box. Namely, the center of the box B as
defined above is the point ((L1 +R1)/2, (L2 +R2)/2, . . . , (Ld +Rd)/2).



Definition 1 (And-realization). An And-realization of a graph G in the d-
dimensional Euclidean space is a collection of pairs {(Bv, pv) : v ∈ V (G)} where
each vertex v is associated to a d-dimensional box Bv and to a representative
element pv ∈ Bv, such that:

uv ∈ E(G) ⇔ (pv ∈ Bu) ∧ (pu ∈ Bv).

A central And-realization or c-And-realization of a graph is an And-realization
in which each representative element pv is the center of its box Bv.

We denote by And(d) the set of graphs that admit an And-realization in the
d-dimensional Euclidean space. The subset of And(d) that contains the graphs
that admit a c-And-realization in the d-dimensional Euclidean space is denoted
by c-And(d). For simplicity, all along this document, we use notation (c-)And

when we say something that concerns to both classes c-And and And.
We mainly study sets And(1) and c-And(1). In this context, a box Bu be-

comes an interval in the Euclidean line that we denote by its extreme points
[L(u), R(u)]. Any (c-)And(1)-realization can be modified so that it maintains
the graph it represents. For a given realization R = {([L(u), R(u)], pu)}u∈V (G),
we define δ-translation and σ-scaling of R as the realizations {([L(u)+δ, R(u)+
δ], pu + δ)}u∈V (G) and {([σ · L(u), σ · R(u)], σ · pu)}u∈V (G), respectively.

Any (c-)And(1)-realization of a graph induces a natural ordering of its ver-
tices following its representative elements, i.e, v < u according to a (c-)And(1)-
realization if and only if pv < pu in that (c-)And(1)-realization. In order to
properly define this order, each representative element must differ from each
other. Nevertheless, it is easy to see that any (c-)And(1)-realization can be
modified to fulfill this property.

Given an ordering π of the vertices of a graph G, we denote by <π the total
order induced by π. That is, u <π v if u appears before v in π. The extreme
vertices of an order <π are the vertices placed at the first and last position
according to <π. Given a vertex u, we denote by ℓπ(u) and ρπ(u) the leftmost
and rightmost neighbors of u in the order, i.e., ℓπ(u) = {v ∈ N [u] : v <π w∀w ∈
N [u], w 6= v} and ρπ(u) = {v ∈ N [u] : w <π v ∀ w ∈ N [u], w 6= v}.

3 Related work and our contributions

We compare the introduced And family of graphs with other graph classes.
Therefore, we refer the reader to an excellent survey authored by Brandstädt et
al. [BLS99] that contains a description of almost all graph families involved in
this document. This survey also presents containment relations between classes,
graphs that separate one class form another, and priceless information in this
area. A second excellent book that we refer to the reader is authored by J.
Spinrad [Spi03]. This book deals with efficient graph representation. For several
graph classes, this book considers such questions as existence of good represen-
tations, algorithms for finding representations, questions of characterization in
terms of representation, and how the representation affects the complexity of
optimization problems.



There exists a vast amount of interesting literature related with the graph
families that we mention in this document [MM99,Gol04,Rob69a,GT04]: geo-
metric, outerplanar, interval, max-tolerance and boxicity 2 graphs. The study of
intersection graphs dates back a long way. For instance, the fact that all graph
can be represented as an intersection graph was proved by Marczewski and Sur
in [SMS45] and by Erdös et al. in [EGP64]. Related with particular graph fam-
ilies, the notion of boxicity of a graph is introduced in [Rob69b]. On the other
hand, the notion of book embedding of a graph is introduced in [BK79] where
the authors present some first properties and relations with other invariants
such as thickness, genus, and chromatic number. An intersection model for max-
tolerance is introduced in [KKLS06]. Such a model was of great utility at the mo-
ment of determining the NP-Hardness of recognition problem for max-tolerance
graphs. Finally, the book [GT04] surveys results related with (max -)tolerance
graphs.

The And(1) family has been addressed very recently in parallel to our work
via totally independent way. T. Hixon in his Master thesis [Hix13] studies the
family of cyclic segment graphs. This family corresponds to the intersection
graphs of segments that lie on lines tangent to a parabola and no two segments
are parallel. In his thesis, Hixon also works on the subclass called hook graphs, in
which all segment in the representation need to be tangent to the parabola. The
author proves that a graph is a hook graph if and only if it is the intersection
graph of a set of axis aligned rectangles in the plane such that the top left corner
of each rectangle lies on a unique point on the diagonal. Such result is equivalent
to the particular case d = 1 of Theorem 1 in this document. The author also
proves a combinatorial characterization for hook graphs which is is equivalent
to Theorem 2 in our work. This result has been also obtained independently by
Feuilloley [Feu] in the study of the gap between Minimum Hitting Size prob-
lem and Maximum Independent Set problem for the And(1) family. Based on
this characterization Hixon proves that interval, outerplanar, and 2-directional
orthogonal ray graphs (2DORG) are all hook graphs. We extend these results
by proving that interval and outerplanar graphs are not only And(1) but also
c-And(1) graphs. On the other hand, we extend the fact that interval graphs
belong to And(1) by proving that a larger family, rooted directed path graphs,
belongs to And(1). Moreover, T. Hixon proves that in a hook graph two non-
adjacent vertices cannot be connected by three induced disjoint paths of length
larger than 4. We prove indeed that such paths, in the case of c-And(1), can-
not be all longer than 3. The author gives also polynomial algorithms for the
Weighted Maximum Clique problem and Weighted Maximum Independent Set
problem; and approximations for the Chromatic Number and Clique Covering
Number. Finally, according to Hixon, the And(1) family is addressed by Can-
tanzaro et al. [CCH+] in the context of DNA sequences. Nevertheless, as far as
we know, their work has not been published. Hence, it has been impossible for
us compare our results with theirs.



3.1 Our contributions

The main contribution of this document is the study of the two graph families:
And(d) and c-And(d). We study the one-dimensional version (c-)And(1) of the
families in which the position of the representative elements induce an order of
the vertices.

– We give a characterization of both And(d) and c-And(d) families via an
intersection model in Subsection 4.1.

– We give a characterization of the And(1) family via a combinatorial charac-
terization of the possible orders of its vertices in any And(1)-realization in
Subsection 4.2.

– We give a construction of And(1)-realizations for Interval bigraphs and
Rooted directed path graphs, and c-And(1)-realizations for Interval,
Block and Outerplanar graphs in Subsection 4.2 and Section 5, respec-
tively.

– Finally, in Section 6, we show differences between families And(1) and c-
And(1), proving that in the first case two non-adjacent vertices cannot be
connected via three disjoint paths with edge-length strictly larger than 3.
While, in the second case, two non-adjacent vertices cannot be connected
via three disjoint paths with edge-length strictly larger than 2.

4 Characterizations for And graphs

In this section, we show that And(d) graphs can be represented by an inter-
section model. Besides, we give a combinatorial characterization for the set of
graphs that admit an And(1)-realization. From these characterizations, we ob-
tain containment relations with other non trivial graph classes.

4.1 Intersection graph characterization for And graphs

We show in this subsection that graphs in the And(d) class can be represented
as the intersection graph of boxes in the 2 · d-dimensional Euclidean space.

Theorem 1. A graph G belongs to And(d) if and only if G is the intersection
graph of boxes in the 2 · d Euclidean space, and each box can be described as
×d

i=1([pi, Ri]× [−pi,−Li]) with pi, Ri, Li > 0 for all i ∈ {1, .., d}.

Proof. LetG be a graph that belongs toAnd(d). Consider a realization {(Bv, pv)}v∈V

of G, where Bv = ×d
i=1[Li(v), Ri(v)] and pv = ×d

i=1 p(v,i). W.l.o.g, assume
Li(v) > 0 for all v ∈ V and i ∈ {1, .., d}. For each v ∈ V , we define the
box B′

(v,i) in the Euclidean plane as [p(v,i), Ri(v)]× [−p(v,i),−Li(v)]. Finally, let

Sv be the 2 · d-dimensional box defined as the cartesian product of boxes B′
(v,i),

that is Sv = ×d
i=1([p(v,i), Ri(v)]× [−p(v,i),−Li(v)]).

Consider two vertices u, v ∈ V , then uv ∈ E if and only if p(u,i) ∈ [Li(v), Ri(v)]
and p(v,i) ∈ [Li(u), Ri(u)] for all i ∈ {1, .., d}. For a fixed i, let us assume
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Fig. 1. An example of a graph in And(1) (left) with its intersection model with boxes
(center) and triangles (right hand side).

p(u,i) < p(v,i). Thus, p(v,i) − p(u,i) ≤ min{Ri(u)− p(u,i), p(v,i) − Li(v)} or equiv-
alently B′

(u,i) ∩ B′
(v,i) 6= ∅. Hence, vertices u and v are adjacent if and only if

Su ∩ Sv 6= ∅.

For the one-dimensional case (d = 1), Theorem 1 states that And(1) graphs
correspond exactly to the intersection graphs of boxes in the Euclidean plane
with its left-lower corner lying on the diagonal L : x + y = 0 (an example is
shown in Figure 1).

Kaufmann et al. in [KKLS06] proved that max-tolerance graphs correspond
to the class of intersection of isosceles, axis parallel, right triangles (or lower
halves of a square). A different representation of And(1) graphs can be obtained
by keeping the left lower half of the boxes in the intersection model (an example
is shown in Figure 1). Particularly, when this intersection model is applied to
c-And(1) graphs, we obtain an intersection model of isosceles, axis parallel, right
triangles (or lower halves of a square). Therefore, the following corollary holds.

Corollary 1. c-And(1) ⊂ Max-tolerance.

4.2 A combinatorial characterization for the And(1) graphs

We recall that any And(1)-realization of a graph induces a natural ordering of
its vertices by considering their respective representative elements. This ordering
needs to have different representative elements in order to be totally defined.
Nevertheless, it is easy to see that any (c-)And(1)-realization can be modified
to fulfill this property.

Definition 2. (R-order) Given a graph G that belongs to And(1) and an And(1)-
realization R of G such that all representative elements are different. The R-
order of the set V , denoted by <R, is the total order induced by the representative
elements. That is, for any pair of vertices u and v: u <R v ⇔ pu < pv.
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Fig. 2. Graphic representation of the four point condition for And(1).

Consider an R-order of a graph G and two vertices u <R v in V . If vertex
u has a neighbor y after v (v <R y) and v has a neighbor x before u (x <R u).
Then, vertices u and v are mutually contained in its corresponding intervals.
Thus, vertices u and v must be connected. Indeed, this property characterizes
graphs that belong to the set And(1). Therefore, we introduce the following
definition for any ordering of the set of vertices of a graph.

Definition 3. Given a graph G = (V,E) and an order <π of its set of vertices.
We say that <π satisfies the four point condition for And(1) if and only if for
every quadruplet of vertices x, u, v, y, it holds:

If x <π u <π v <π y and xv, uy ∈ E ⇒ uv ∈ E.

Figure 2 shows a graphic representation of the four point condition for And(1).

We prove that for any graph G the existence of an ordering of its set of vertices
that satisfies the four point condition for And(1) is necessary and sufficient to
decide if G belongs to And(1).

Theorem 2. A graph G belongs to And(1) if and only if there exists an ordering
of its set of vertices that satisfies the four point condition for And(1).

Proof. As we have seen previously, the four point condition is necessary for any
And(1)-realization of G. For the converse, let <π be any ordering of the vertices
of G which satisfies the four point condition.

Let Rπ be a realization constructed in the following way: representative ele-
ments pv are embedded in the Euclidean line arbitrarily but respecting the order
<π. For each v ∈ V , we define Bv as the interval covering from the leftmost to
the rightmost neighbors of v according to <π, that is Bv = [ℓπ(v), ρπ(v)].

In order to verify that Rπ is an And(1)-realization of G, consider an edge
uv ∈ E with u <π v. By definition of Rπ , it holds that u ∈ Bv and v ∈ Bu. On
the other hand, if u ∈ Bv and v ∈ Bu, then there exist vertices y ∈ N (u) and
x ∈ N (v) such that x <π u <π v <π y. Thus, vertices u and v are neighbors by
the four point condition.

Remark 1. Note that the above construction allows us to place the representative
elements of the vertices in the integers ranging from 1 to n. Hence, any And(1)
graph can be represented as the collection of Bv = {[ℓπ(v), ρπ(v)], pv} for all
v ∈ V , where ℓπ(v), ρπ(v) and pv are integers ranging from 1 to n. On the other
hand, in any And(1)-realization, adjacency between two vertices u and v can
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Fig. 3. At the right hand side, this figure shows an example of a rooted directed path
graph. At the left hand side, this figure shows a rooted directed path representation
of the graph. An inverse DFS on that tree is (j i h g f e d c b a) inducing the following
order of the vertices of the graph: (t z y w v xu).

be tested by performing four operations in order to check pu ∈ [ℓπ(v), ρπ(v)]
and pv ∈ [ℓπ(u), ρπ(u)]. Therefore, we can conclude that the family of graphs
And(1) admits an implicit representation as defined in [Spi03], which is: an
implicit representation of a graph G is defined as a representation of G that
assigns O(log n) bits to each vertex, such that there is an adjacency testing
algorithm that decides adjacency between two vertices u and v based only on
the bits stored at vertices u and v.

The four point condition is a useful tool to recognize graph families that
belong to the set And(1) as well as families that do not belong to it. We now
present three graph families that belong to And(1), for which we show the
existence of an ordering that satisfies the four point condition.

A graph is a rooted directed path graph (also known as directed path graphs)
if it has an intersection model consisting of directed paths in a rooted directed
tree, where every arc is oriented from the root to the leaves. Figure 3 shows an
example of a rooted path tree and its corresponding intersection model.

Corollary 2. Rooted directed path graphs belong to the set And(1).

Proof. In order to prove the Corollary, we give an ordering of the vertices of any
rooted directed path graph G such that the four point condition for And(1) is
satisfied. Let G = (V,E) be a rooted directed path graph and T = (K,F ) be
a tree with an intersection model of G consisting of directed paths in T . For
each v in V , let us denote by Kv the directed path in T corresponding to vertex
v ∈ V . Note that for every v, Kv is a subset of K. We order K, the vertex set
of T , using an inverse DFS ordering, i.e., first order K according to a DFS (cf.
[Gol04]), and then inverse the ordering. Let us denote by π : K → {1, 2, . . . , |K|}
the permutation given by the ordering of K, i.e., π(k) = i when k is the i-th
vertex in the inverse DFS ordering. We define as well the following notation:
π(Kv) = {π(k) : k ∈ Kv}. Since K has an inverse DFS ordering and the fact that



G is a rooted directed path graph, for every vertex v ∈ V , π(Kv) is increasing
when Kv is traversed bottom-up in the tree.

Now, vertex set V is ordered according to the minimum value of π(Kv). If
required, break ties randomly. In order to conclude the proof of the Corollary, we
show now that the ordering of V satisfies the four point condition for And(1).
The proof is by contradiction. Assume that there exist four vertices in V such
that they violate the condition. I.e., consider four vertices x < u < v < y in V
such that {xv, uy} ⊆ E but uv /∈ E. Since x < u < v < y in the ordering of V ,
it holds min π(Kx) ≤ min π(Ku) ≤ minπ(Kv) ≤ minπ(Ky) in the ordering of
K.

Given that xv ∈ E, it holds that π(Kx) ∩ π(Kv) 6= ∅. Since x < u < v,
minπ(Ku) ≤ min{π(Kx) ∩ π(Kv)}. Furthermore, due to uv /∈ E, for every
j ∈ π(Ku) it holds that j < minπ(Kv). Now, since uy ∈ E, hence minπ(Ky) <
minπ(Kv). Therefore, we obtain y < v, which is a contradiction.

Corollary 3. Outerplanar graphs belong to And (1).

Proof. In order to prove that outerplanar graphs belong to And(1), let us recall
the definition of page embedding of a graph (cf. [BK79]). A k-page embedding,
or book embedding, of a graph G consists in an linear ordering of the vertices
of G which are drawn on a line (the spine of the book) together with a partition
of the edges into k pages such that two edges in the same page do not cross.
The pagenumber of a graph is the smallest k for which the graph has a k-page
embedding. In [Bil92], Bilski proved that outerplanar graphs are exactly the
graphs with pagenumber one. Therefore, for any outerplanar graph there exists
an ordering of its vertices in which the edges do not cross. Such an ordering
satisfies the four point condition for And(1).

In contrast to the previous corollary, the four point condition helps as well
to discard a graph from the And(1) set.

Corollary 4. Let G be a graph such that all pairs of vertices u, v ∈ V have at
least two non adjacent common neighbors. Then G does not belong to And(1).

Proof. The proof is by contradiction. Let us assume that there exists a graph
G that belongs to And(1) such that all pairs of vertices u, v ∈ V have at least
two non adjacent common neighbors. In order to reach the contradiction, we
give four vertices in V that do not satisfy the four point condition for And(1).
Let R be an And(1)-realization for G. Consider the two extreme vertices of R,
say vertices x and y. There exist two vertices u and v such that uv /∈ E and
{xu, xv, uy, vy} ⊆ E. Now, for any order of vertices u and v, it holds that the
quadruplet x, u, v, y does not satisfy the four point condition for And(1).

5 Subclasses of c-And(1)

In this section, we establish the relation between the c-And(1) family and other
well-known graph families. Particularly, we enhance the result by Hixon [Hix13]



by showing that interval and outerplanar graphs belong not only to And(1) but
also to c-And(1).

Theorem 3. The set of Interval graphs is a subset of c-And(1).

Proof. Let G be an interval graph. In [Ola91] Olariu proves that for any interval
graph there exists an ordering <π of its vertex set V such that for all triplet
u, v, w ∈ V with u <π v <π w and uw ∈ E then uv ∈ E. Moreover, this order
can be obtained in linear time. Consider such an ordering for the vertex set V .
For the sake of simplicity, we relabel vertices in V from 1 to n according to the
ordering <π.

We construct a c-And(1)-realization of G greedily. At the i-th step, we in-
clude the vertex i in the c-And(1)-realization. The inclusion is performed in such
a way that, at the end of the step i, it holds, for all j, k, w in {1, . . . , i}, that:

1. pk−1 < pk
2. ρ(j) <π ρ(k) ⇒ R(j) < R(k).

3. L(j) < pℓ(j)
4. ρ(k) <π j ⇔ R(k) < pj .

Condition 1 ensures that representative elements are placed according to
order <π. Condition 2 ensures that right extremes of intervals are in the same
order than the values of ρ(·). Finally, conditions 3 and 4 guarantee that the
partial realization at the end of step i corresponds to the subgraph induced by
vertices 1, 2, . . . , i. Thus, at the end of the construction a c-And(1)-realization
of G is obtained.

At the first step, vertex 1 is included so that p1 = 0 and [L(1), R(1)] = [−1, 1].
At the end of the first step all conditions are satisfied. Let us suppose that all
conditions hold at the end of the step i−1. We include vertex i in the c-And(1)-
realization in two phases:

– First, we set the position of representative element pi respecting conditions
1 and 4. That is, the representative element is placed after pi−1 and it is
contained only by intervals associated to its previous neighbors.

– Second, we set the interval associated to i such that it contains all its previous
neighbors, according to condition 3. Finally, we modify, if necessary, the
interval of previous vertices in order to satisfy conditions 2.

For the first phase we remark that if two vertices j, k have labels smaller than
i and j /∈ N (i) ∧ k ∈ N (i) then ρ(j) < i ≤ ρ(k). Therefore, by condition 2,
we have that R(j) < R(k). Thus, by defining L = max{R(j) : j /∈ N (i)}
and R = min{R(k) : k ∈ N (i)}, it holds L < R. Notice that in between L
and R there might exist some representatives elements. Hence, by setting pi as
(max{pi−1, L}+R)/2, conditions 1 and 4 hold and first phase is concluded.

In order to set the extremes of interval Bi, let define Pi = {j < i : ρ(j) <
ρ(i)}, the set of all vertices having its last neighbor before i. We recall that
condition 2 imposes that R(j) < R(i) for all vertex j in Pi. If R

′ denotes the
max{R(j) : j ∈ Pi} then it must holds that R′ < R(i). On the other hand, the
interval Bi must contain pℓ(i) so that condition 3 is satisfied. Then, let define
ri as max{pi − pℓ(i), R

′ − pi} + 1. We set L(i) = pi − ri and R(i) = pi + ri
so all conditions are satisfied for vertices in Pi. However, condition 2, does not



necessary hold for vertices that do not belong to Pi ∪ {i}. To overcome this
problem, we extend the intervals of those vertices by 2ri. That is, we re-define
Bj as [L(j)−ri, R(j)+ri] for all j /∈ Pi∪{i}. Thus, since R(i) = pi+ri < R(j)+ri
condition 2 is satisfied for all vertices in V .

The rest of the section aims to prove that Outerplanar graphs belong to
c-And(1). We first show that cycles belong to c-And(1). Moreover, we show
that any realization of a cycle has a specific structure. Secondly, we construct
a procedure to combine biconnected components and show how to “glue” two
different cycles by an edge.

Lemma 1. Let Cn be a cycle of length n, then Cn belongs to c-And(1). Fur-
thermore, let R be an And(1)-realization of Cn and π be the permutation in-
duced by <R. Then, there exists a clockwise (or anticlockwise) labeling l : V →
{1, 2, . . . , n} such that:
1. Extreme vertices are adjacent and π(l−1(1)) = 1 ∧ π(l−1(n)) = n.
2. For all u ∈ V, |l(u)− π(u)| ≤ 1
3. If R is a c-And(1)-realization then for all u ∈ V, l(u) = π(u).

Proof. Let Cn be a cycle. We prove that Cn belongs to c-And(1) by constructing
a realization. Let us label the vertex set V clockwise starting in an arbitrary
vertex. Given 0 < ǫ < 1, we associate to each vertex i ∈ {2, . . . , n − 1} the
interval ([i− (1 + ǫ), i+ (1 + ǫ)] and the representative element pi = i. Extreme
vertices are assigned to pars (interval, representative element) ([2−n−ǫ, n+ǫ], 1)
and ([1−ǫ, 2n−1+ǫ], n), respectively. It is easy to check that the previous defined
realization is actually a c-And(1)-realization for Cn.

Consider anAnd(1)-realizationR of the cycle Cn. If n = 3 the representative
elements are always in a (anti-)clockwise order. Assume then that n > 3. We
define a clockwise (or anticlockwise) labeling l of V as follows: (1) the vertex
with label 1 has the minimum value of pu, i.e., (π ◦ l−1(1) = 1) and, (2) the
vertex with label 2 is the neighbor of 1 with the smaller position in the order:
π ◦ l−1(2) < π ◦ l−1(n).

Condition 1 is proved by contradiction. Note that by definition l−1(1) is an
extreme vertex. Hence, assume that l−1(n) is not a extreme vertex. Define w
as follows: pl−1(n) < pw and l(w) ≤ l(w′) for all w′ such that pl−1(n) < pw′ .
By the definition of the labeling, it holds that l(w) > 2, moreover w has a
neighbor placed between the vertices with labels 1 and n, which we denote by v.
We conclude that quadruplet l−1(1) <R v <R l−1(n) <R w violates four point
condition, which is a contradiction. Hence, vertex l−1(n) is an extreme vertex.

We prove 1 and 1 greedily. First, let us introduce some definitions. We say
that a vertex u satisfies the pre-condition if for all v such that pv < pu it holds
l(v) < π(u). Clearly, extreme vertices satisfy the pre-condition. Let w be a vertex
that satisfies the pre-condition but such that l(w) 6= π(w), then it must hold that
l(w) > π(w). Let us denote by v the vertex such that pv < Pw and l(v′) ≤ l(v)
for all v′ such that pv′ < Pw. By the definition of w, it holds that l(v) < n− 1.
We denote by x the neighbor of v with label l(v)+1, thus w <R x. Let w′ be the
vertex in between v and x with the maximum label. Since l(v) < l(x) < n then



w′ must have a neighbor y (with label l(w′) + 1) such that px < py. Thus, by
the four point condition in the quadruplet v <R w′ <R x <R y, vertices w′ and
x must be neighbors. We conclude that w = w′ and l(w) = l(x) + 1 = l(v) + 2.
Additionally, the vertex immediately after x, that is, in the position π(x) + 1,
satisfies the pre-condition.

As we state before, extreme vertices satisfy the pre-condition. Let w be the
first vertex according to <R such that l(w) 6= π(w). By definition, w satisfies the
pre-condition. Thus, by the previous discussion, we have that l(w) = π(w) + 1.
Furthermore, the next vertex in the ordering, say x, has label l(w)− 1 and then
l(w)−π(w) = 1∧ l(x)−π(x) = −1. Furthermore, the next vertex in the ordering
must satisfy the pre-condition. By iterating over vertices according to the order
<R, we verify that Condition 1 holds. Finally, consider the case when R is a
c-And(1)-realization. Let v <R w <R x <R y be the quadruplet previously
constructed, where l(y) = l(w) + 1. If px is placed in the left half of the interval
[pv, py] then vw ∈ E, otherwise xy ∈ E which yields a contradiction. Thus, for
all vertices in the c-And(1)-realization l(w) = π(w).

Definition 4 (Safe vertex). Let G be a graph in (c-)And(1). We say that
a vertex v ∈ V is safe in G if there exists a (c-)And(1)-realization R =
{(Bu, pu)}u∈V (G) such that v ∈ Bw if and only if v = w ∨ vw ∈ E(G).

A safe vertex allows the union of two different biconnected components. This
important property comes from the fact that in a realization where a vertex v
is safe, the interval Bv can be extended as much as required without modifying
the original graph.

Lemma 2. Consider two graphs G1, G2 ∈ (c-)And(1) and two vertices w1 ∈
V (G1) and w2 ∈ V (G2). Let G be the graph obtained by identifying w1 and w2.
If w2 is safe in G2, then it holds that G ∈ (c-)And(1).

Proof. Let G be a graph obtained by the identification of vertices w1 and w2

of two different graphs G1 and G2. Consider two (c-)And(1)-realizations R1 =
{(Bu, pu)}u∈V (G1) and R2 = {(Bu, pu)}u∈V (G2) of G1 and G2, respectively, such
that w2 is safe in R2. We denote by ∆ the minimum distance between pw1

and
the representative elements of its neighbors, that is ∆ = minu∈N (w1){|pw1

−pu|}.
Let B be an interval such that ∪v∈V (G2){Bv} ⊆ B and denote by L its length.
We construct the realization R′

2 = {(B′
v, p

′
v)}v∈V (G2) from R2 by the following

procedure:

– apply a (−pw2
)-translation in order to place the representative element of

w2 in the origin,
– scale the realization by a factor ∆/(2L),
– perform a (pw1

)-translation in order to equals the position of representatives
elements of w1 and w2.

Let Bw be the interval with center in pw1
and of length equal to the maximum be-

tween Bw1
and B′

w2
. Then, let us define R = R1∪R′

2r{(Bw1
, pw1

), (B′
w2

, p′w2
)}∪

(Bw, pw). We see that R is a (c-)And (1) realization for G. In fact, all edges



Fig. 4. This figure shows a graph (left hand side) and its block tree (right hand side).
In the block tree representation, white vertices represent maximal biconnected compo-
nents, while black vertices represent cut-vertices.

uv ∈ E(G1)∪E(G2) are induced by R. Furthermore by the definition of R′
2 and

the fact that w2 is safe, no new edges are generated by R.

Given a graph G, the block tree of G is the graph having two types of ver-
tices: blocks and cut-vertices (cf. [BM07]). A block vertex represents a maximal
biconnected component of G while cut-vertices are the articulation points be-
tween blocks. The edges of the block tree join blocks with cut-vertices. A block
is adjacent to a cut-vertex if the block contains the cut-vertex. Figure 4 shows
an example of a graph and its block tree.

Theorem 4. Let G be a connected graph and T be its block tree. If all maximal
biconnected components of G belong to (c-)And(1) and T can be rooted such that
every cut-vertex is safe in its descendants, then G belongs to (c-)And(1).

Proof. The proof follows directly from Lemma 2 by adding biconnected compo-
nents of G in a breadth-first traversal BFS (cf. [Gol04]) order of T .

The previous result allows us to constructively obtain a realization of a graph
by gluing the realization of its biconnected components. As a consequence, we
obtain the following corollary.

Corollary 5. Block graphs, graphs in which all biconnected components induce
a clique, belong to c-And(1).

An analogous result to Lemma 2 can be obtained to identify edges in two
different cycles:

Lemma 3. Given two cycles Cn, C
′
m and two edges uv ∈ E(Cn) and u′v′ ∈

E(C′
m), let G be the graph obtained by identifying uv and u′v′. Then, G ∈ c-

And(1).

Proof. For 0 < ǫ < 1 we construct two c-And(1)-realizationsR andR′ of Cn and
C′

m respectively according to the procedure described in the proof of Theorem 1.
Furthermore, we suppose that u and v are the extreme vertices of realization R
but u′and v′ are not the extreme vertices of R′. We perform a 1/(m− 1)-scaling
and a translation of R so that the positions of representative elements of u and
v equal those of u′ and v′ in R′. The realization R∪R′

r {(Bu′ , u′), (Bv′ , v′)} is
a c-And(1)-realization for the graph G. Notice that this realization can be done
with any vertex as an extreme (safe) vertex.



•a •

x1

•

xlx−1

• b

•

y1
•

yly−1

•

z1
•

zlz−1

H lx,ly ,lz

•a •

x1

• b

•

y1
•

yly−1

•

z1
•

zlz−1

H2,ly ,lz

•a •

x1

•

x2

• b

•

y1
•

yly−1

•

z1
•

zlz−1

H3,ly ,lz

Fig. 5. This figure shows, from left to right, a graphic representation of (a general)
H lx,ly,lz , and the particular cases of H2,ly ,lz and H3,ly ,lz .

Theorem 5. The set of Outerplanar graphs is a subset of c-And(1).

Proof. Maximal biconnected components of an outerplanar graph are dissections
of a convex polygon, which belong to c-And(1) by Lemma 3. The proof follows
by gluing biconnected components according to Theorem 4.

6 Differences between And(1) and c-And(1)

In this section, we show the difference between And(1) and c-And(1) via graphs
that belong to And(1) but which does not belong to c-And(1). We start with
a remark upon the fact that the property of being part of And(1) or c-And(1)
is hereditary, i.e., if a graph G belongs to (c-)And(1) then every induced sub-
graph of G also belongs to (c-)And(1). Indeed, if a graph G has a (c-)And(1)-
realization then the same realization is also a (c-)And(1)-realization for every
induced subgraph of G when the corresponding vertices are deleted. From the
hereditary property, we define a graph G that does not belong to (c-)And(1)
as minimal with respect to (c-)And(1) if and only if every proper induced sub-
graph of G does belong to (c-)And(1). All graphs introduced here that separate
And(1) and c-And(1) are minimal with respect to c-And(1) and they are based
in the following two definitions.

Definition 5. Let H lx,ly,lz be a finite graph that consists of two not neighbor-
ing vertices, say vertices a and b, together with three vertex disjoint paths that
connect vertex a with vertex b. The three paths that connect vertex a with ver-
tex b follow: path X = {a = x0, x1, x2, . . . , xlx−1, xlx = b}, path Y = {a =
y0, y1, y2, . . . , yly−1, yly = b} and path Z = {a = z0, z1, z2, . . . , zlz−1, zlz = b},
where the edge-length of the paths, denoted by lx, ly, and lz, are larger or equal
than 2. A graphic representation of H lx,ly,lz is shown in Figure 5.

Lemma 4. Any H lx,ly,lz graph such that lz ≥ ly ≥ lx > 3 does not belong to
And(1).

Proof. The proof is by contradiction. LetR be anAnd(1)-realization ofH lx,ly,lz .
By Lemma 1, Condition 1, the extreme vertices of the realization must be neigh-
bors. Then, both extremes belong to the same path. Without loss of general-
ity, we assume that vertex a is placed before than vertex b in the realization
(a <R b) and that both extremes belong to path X , say xk and xk+1 with



k ∈ {0, . . . , lx − 1}. Therefore, according to Lemma 1, the induced cycles X ∪ Y
and X ∪ Z must be oriented clockwise

(xk, . . . , x0, y1, . . . , yly−1, b, . . . , xlx−1, . . . , xk−1)

and anti-clockwise

(xk, . . . , x0, z1, . . . , zly−1, b, . . . , xlx−1, . . . , xk−1),

respectively.
On the other hand, from Condition 1 of Lemma 1, it holds that a labeling

l of an induced cycle satisfies the following property: if for two vertices u, v it
holds l(u) < l(v − 1) then π(u) < π(v), i.e., u <R v. Thus, in the cycle X ∪ Y ,
y2 <R and a <R yj for all j > 2. Symmetrically, for the cycle X ∪ Z , a <R zj
for all j > 2 and z2 <R b.

Finally, in the induced realization of cycle Y ∪ Z, the only possible pairs
of extreme vertices are (a, y1), (y1, y2) and (a, z1), (z1, z2). If the extremes are
(a, y1) or (y1, y2), the cycle Y ∪ Z is oriented anti-clockwise and b <R y2 which
is a contradiction. Otherwise, if (a, z1) or (z1, z2) are the extremes, cycle Y ∪ Z
is oriented clockwise and b <R z2 which is also a contradiction.

We shall see now that, indeed, the smaller cases H2,ly,lz and H3,ly,lz are
minimal graphs that separate And(1) from c-And(1).

Lemma 5. Any H lx,ly,lz graph such that lz ≥ ly ≥ lx > 2 does not belong to
c-And(1).

The proof of this lemma follows the same ideas of the proof of Lemma 4.

Proof. The proof is by contradiction. LetR be an c-And(1)-realization ofH lx,ly,lz .
PathsX , Y and Z are defined as the previous proof. Since the extreme vertices of
the realization must be neighbors (Lemma 1, Condition 1), then both extremes
belong to the same path. W.l.o.g., we assume that vertex a is placed before than
vertex b in the realization (a <R b) and that both extremes belong to X , says
xk and xk+1 with k ∈ {0, . . . , lx − 1}. Therefore, according to Lemma 1, the
induced cycles X ∪ Y and X ∪Z must be oriented clockwise and anti-clockwise,
respectively. That is:

xk, . . . , x0, y1, . . . , yly−1, b, . . . , xlx−1, . . . , xk−1

and

xk, . . . , x0, z1, . . . , zly−1, b, . . . , xlx−1, . . . , xk−1,

respectively. Thus, y1 <R b and z1 <R b.
Consider the induced realization of cycle Y ∪ Z. By the previous discussion,

we conclude that a is the left extreme vertex of the induced realization. Thus,
right extreme have to be y1 or z1. Then, either b <R y1 or b <R z1 which both
are contradictions.
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Fig. 6. This figure shows a graphic representation ofH2,ly ,lz andH3,ly ,lz where vertices
are ordered according to the ordering given in the proof of Lemma 6.

With the previous Lemma we have presented an infinite family of graphs
that do not belong c-And(1). Nevertheless, some of these graphs do belong to
And(1).

Lemma 6. Graphs H2,ly,lz and H3,ly,lz belong to And(1) for any ly and lz ≥ 2
and ly and lz ≥ 3, respectively.

The proof of this lemma follows by giving orderings of the set of vertices of
H2,ly,lz and H3,ly,lz that satisfy the four point condition for And(1). Figure 6
shows graphically such orders.

Proof. Consider any H2,ly,lz graph. In this case, the first path has length 2,
therefore, we denote its vertex by x without subindex. In order to prove the
Lemma, we give an ordering of the vertices of H2,ly,lz that satisfies the four
point condition for And(1). Consider the following ordering for V (H2,ly,lz):

a, z1, z2, . . . , zlz−1, b, x, yly−1, yly−2 . . . , y1.

For the ith vertex, we define pi to be equal to i. The intervals are defined
as follow: Ia = [pa, py1

]; Izi = [pzi − 1, pzi + 1]; Ib = [pb, ply ]; Ix = [pa, px];
Iy1

= [pb, py1
]; Iyi

= [pyi
− 1, pyi

+ 1]; Iy1
= [pa, py1

].
As it can be seen in Figure 6, according to this ordering of the vertices the

only pair of edges that crosses one to another are edges ax and byly−1. Since
vertices b and x are connected by an edge in H2,ly,lz , the four point condition is
satisfied. Therefore, the graph H2,ly,lz belongs to And(1).

Consider any H3,ly,lz graph, we give an ordering of V (H3,ly,lz) that satisfies
the four point condition for And(1). Consider the following order for V (H3,ly,lz ):

y1, x1, a, z1, z2, . . . , zlz−1, b, x2, yly−1, yly−2, . . . , y2.

For the ith vertex, we define pi to be equal to i. The intervals are defined as
follow: Iy1

= [py1
, py2

]; Ix1
= [px1

, px2
]; Ia = [py1

, pa + 1]; Izi = [pzi − 1, pzi + 1];
Ib = [pb − 1, pyly

]; Iyi
= [pyi

− 1, pyi
+ 1]; Iy2

= [py1
, py2

].
In order to finish the proof, we have to check that this ordering satisfies the

four point condition for And(1). As it can be seen in Figure 6, there are two pair
of edges that crosses one to each other. One pair is composed by edges y1a and
x1x2. Since vertices a and x1 are neighbors, the condition holds. The second pair
is composed by edges x1x2 and byly−1. Since vertices x2 and b are neighbors, the
condition holds. Therefore, any graph H3,ly,lz belongs to And(1).
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Fig. 7. Relation between the graph classes in the document. Arrows point from the su-
perclass to the subclass. Dotted lines represent previous results and solid lines represent
results proved in this document.

We consider important to stress the complete bipartite graph K2,3 as a par-
ticular case of Lemma 5 and Lemma 6, i.e., K2,3 belongs to And(1) but it does
not belong to c-And(1). Such an importance comes from the fact that K2,3 is
the smallest complete bipartite graph that does not belong to c-And(1). As a
consequence of Lemma 5 and the fact that the property of belonging to c-And(1)
is hereditary, we can say that any graph that contains a H lx,ly,lz as an induced
subgraph does not belong to c-And(1). On the other hand, from Lemma 6 we
know that some of these graphs do belong to And(1).

7 Future work

Our results are graphical expressed in Figure 7. On the other hand, our work
suggests several directions for future research. In our opinion, the most natural
question is to find a combinatorial characterization for the c-And(1) family.
Another interesting open problem concerns to determine the complexity of the
recognition problem for both And(1) and c-And(1) families. The study of higher
dimensions of the families is an alternative way to continue this research. Another
interesting question is the study of the family of graphs generated when points
are embedded in a different metric space, for instance the d-dimensional torus.
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