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1 INTRODUCTION
Nearly all of the software we use today is part of a distributed

system. Apps on your phone participate with hosted services in

the cloud; together they form a distributed system. Hosted services

themselves are massively distributed systems, often running on

machines spread across the globe. “Big data” systems and enterprise

databases are distributed across many machines. Most scientific

computing and machine learning systems work in parallel across

multiple processors. Even legacy desktop operating systems and

applications like spreadsheets and word processors are tightly inte-

grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry

us. Multiple unreliable machines are running in parallel, sending

messages to each other across network links with arbitrary delays.

How can we be confident that our programs do what we want

despite this chaos?

This problem is urgent, but it is not new. The traditional an-

swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-

ables, database keys, etc) occur in a controlled fashion. However,

the mechanisms used to enforce these guarantees—coordination
protocols—are often criticized as barriers to high performance, scale

and availability of distributed systems.

1.1 The High Cost of Coordination
Coordination protocols enable autonomous, loosely coupled ma-

chines to jointly decide how to control basic behaviors, including

the order of access to shared memory. These protocols are among

the most clever and widely cited ideas in distributed computing.

Some well-known techniques include the Paxos and Two-Phase

Commit protocols, and global barriers underlying computational

models like Bulk Synchronous Processing.

Unfortunately, the expense of coordination protocols can make

them “forbidden fruit” for programmers. James Hamilton from

Amazon Web Services made this point forcefully, using the phrase

“consistency mechanisms” where we use coordination:

The first principle of successful scalability is to

batter the consistency mechanisms down to a min-

imum, move them off the critical path, hide them

in a rarely visited corner of the system, and then

make it as hard as possible for application devel-

opers to get permission to use them [27].

The issue is not that coordination is tricky to implement, though

that is true. The main problem is that coordination can dramatically

slow down computation, or stop it altogether. Recent work showed

that state-of-the-art multiprocessor key-value stores can spend

90% of their time waiting for coordination; a coordination-free

implementation called Anna ran over two orders of magnitude

faster by eliminating that coordination [47]. Key-value stores are

simple systems with narrow APIs. Can we avoid coordination more

generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems

until relatively recently, due to a narrow focus on storage semantics.

We can do better by moving up the stack, setting aside incidental

storage details and considering program semantics more holistically.

Before we delve into details, we begin with intuition on what is

desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway
As an analogy, consider driving on a highway during rush hour. If

each car would drive forward independently in its lane at the speed

limit, everything would be fine: the capacity of the highway could

be fully exploited. Unfortunately, there always seem to be drivers

who have other places to go than forward! To prevent two cars

from being in the same place at the same time, we drivers engage

in various forms of coordination when entering traffic, changing

lanes, coming to intersections, etc. We adhere to formal protocols,

including traffic lights and stop signs. We also frequently engage in

ad hoc forms of coordination with neighboring cars by using turn

signals, eye contact, and the familar but subtle dance of driving

our vehicles more or less aggressively. With all these mechanisms,

one thing is common: they slow us down when traffic is crowded.

Worse, these slowdowns propagate back to the drivers behind us,

and queuing effects amplify the problems. In the end, rush hour on

the highway is a nightmare—wildly less efficient than the highway’s

capacity
1
.

The analogy to distributed systems is fairly direct. In principle,

each machine or process in a system could proceed forward au-

tonomously with its ordered list of instructions, and make progress

as quickly as possible. But to avoid conflicts on shared state (akin

to two cars being in the same place at the same time), distributed

software employs coordination protocols to stay “safe”. The effect

of these protocols is to cause one or more processes to idly wait

until some other process successfully sends a signal saying it is

done.

In many cases, however, coordination is not a necessary evil, it

is an incidental requirement of a design decision. To return to our

traffic analogy, consider stop lights: they allow drivers to mediate

access to a shared intersection by following a waiting protocol. Stop

light delays can be easily avoided by taking advantage of another

dimension in space: an overpass or tunnel removes the intersection

entirely. There is no endemic need to employ coordination in two

dimensions via stop lights; they are just one engineering solution

to a problem, with a particular tradeoff between cost of initial

implementation and resulting throughput.

1
As it happens, humans are not very good at simply driving forward at a fixed speed

in their lane; but machines are [43]!
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Machine	1 Machine	2 Machine	3

T1

T2 T3 T1 T3

T5 T6
T4 T1

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T2}), and one that spans Ma-
chines 1 and 2 ({T1,T3}).

Machine	1 Machine	2 Machine	3
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Root
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O5 O6
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Figure 2: A distributed object reference graph with re-
mote references (dotted arrows). The fact that object O3

is reachable fromRoot can be establishedwithout any in-
formation fromMachine 3. ObjectsO5 andO6 are garbage,
which can only be established by knowing the entire
graph.

1.3 Cruising and Stalling on Graphs
The Perfect Freeway is an idealistic analogy. We return our atten-

tion to examples from distributed computing, to illustrate when

we can and cannot achieve the ideal of coordination-freeness. We

consider two nearly identical classical distributed systems problems

involving graph reachability—one coordination-free, one not.

1.3.1 Distributed Deadlock Detection. Distributed databases iden-
tify cycles in a distributed graph in order to detect and remediate

deadlocks. In a traditional database system, a transaction Ti may

be waiting for a lock held by another transaction Tj , which may in

turn be waiting for a second lock held byTi . The deadlock detector

identifies such “waits-for” cycles by analyzing a directed graph

in which nodes represent transactions, and edges represent one

transaction waiting for another on a lock queue.

In a distributed database, a “local” (single-machine) view of the

waits-for graph contains only a subset of the edges in the global

waits-for graph. In this scenario, how do local deadlock detectors

work together to identify global deadlocks?

Waits-for cycles may span machines, as in Figure 1. To identify

these distributed deadlocks, each machine can exchange copies

of its edges with other machines to accumulate more information

about the global graph. Any time a machine observes a cycle in the

information it has received so far, it can declare a deadlock among

the transactions on that cycle.

We might be concerned that there are “race conditions” in this

distributed computation. Do local detectors have to coordinate with

other nodes to be sure of a deadlock they have observed? In this

case, no coordination is required. To see this, note that decisions

based on incomplete information are stable. For example, once

Machine 1 and Machine 2 jointly identify a deadlock between T1
and T3, new information from Machine 3 will not change that fact.

Additional facts can only result in additional cycles being detected:

the output grows monotonically with the input. Finally, if all the

edges are eventually shared across all machines, the machines will

agree upon the outcome, which is based on the full graph.

1.3.2 Distributed Garbage Collection. Garbage collectors in dis-

tributed systems must identify unreachable objects in a distributed

graph of memory references. Garbage collection works by identify-

ing graph components that are disconnected from the “root” of a

system runtime.

In a distributed system, references to objects can span machines.

A local view of the reference graph contains only a subset of the

edges in the global graph. How canmultiple local garbage collectors

work together to identify objects that are truly unreachable?

Note that a machine may have a local object and no knowledge

whether the object is connected to the root—Machine 3 and object

O4 in Figure 2 form an example. Yet there still may be a path to

that object from the root that consists of edges distributed across

other machines. Hence machines should exchange copies of edges

to accumulate more information about the graph.

As before, we might be concerned that there are race condi-

tions here. Can local collectors autonomously declare and deallo-

cate garbage? Here, the answer is different: coordination is indeed

required! To see this, note that a decision based on incomplete

information—e.g., Machine 3 deciding that object O4 is unreach-

able in Figure 2—can be invalidated by the subsequent arrival of

new information that demonstrates reachability (e.g., the edges

Root → O1,O1 → O3,O3 → O4). The output does not grow
monotonically with the input: previous “answers” may need to

be retracted! To avoid this, a machine must ensure that it has heard

everything there is to hear before it declares an object unreachable.

The only way to know it has heard everything is to coordinate with

all the other machines to establish that fact.

1.4 The Crux of Consistency: Monotonicity
These examples bring us back to our fundamental question, which

applies to any concurrent computing framework:

Question:What is the family of problems that can be consistently
computed in a distributed fashion without coordination, and what
problems lie outside that family?

There is a difference between an incidental use of coordination

and an intrinsic need for coordination: the former is the result of an

implementation choice; the latter is a property of a computational

problem. Hence our Question is one of computability, like P vs. NP

or Decidability. It asks what is (im)possible for a clever programmer

to achieve.

Note that the question assumes some definition of “consistency”.

Where traditional work focused narrowly on memory consistency

(i.e., reads and writes produce agreed-upon values), we want to fo-

cus on program consistency: does the program produce the outcome

2



we expect (e.g., deadlocks detected, garbage collected), despite any

race conditions that might arise?

Our examples provide clues for answering our question. Both

depend on graph reachability, but they differ in one key aspect. A

deadlock is identified by the existence of a (cyclic) path. Garbage

is identified by the non-existence of a path. The set of satisfying
paths that exist is monotonic in the information received:

Definition 1. A program P is monotonic if for any input sets
S,T where S ⊆ T , P(S) ⊆ P(T ).

By contrast, the set of satisfying paths that do not exist is non-
monotonic: conclusions made on partial information may not hold

in eventuality.

Monotonicity is the key property underlying the need for coordi-

nation to establish consistency, as captured in the CALM Theorem:

Theorem 1. Consistency As Logical Monotonicity (CALM). A
program has a consistent, coordination-free distributed implementa-
tion if and only if it is monotonic.

Intuitively, monotonic programs are “safe” in the face of missing

information, and can proceedwithout coordination. Non-monotonic

programs, by contrast, must be concerned that truth of a property

could change in the face of new information. Therefore they cannot

proceed until they know all information has arrived, requiring them

to coordinate.

Additionally, because they “change their mind”, non-monotonic

programs are order-sensitive: the order in which they receive infor-

mation determines how they toggle state back and forth, which in

turn determines their final state. By contrast, monotonic programs

simply accumulate beliefs; their output depends only on the content

of their input, not the order in which is arrives.

Our discussion so far has remained at the level of intuition. The

next section provides a sketch of a proof of the CALM Theorem,

including further discussion of definitions for consistency and co-

ordination. Those seeking a formal proof are directed to the papers

by Ameloot, et al. [8, 9].

2 CALM: A PROOF SKETCH
Our first challenge in formalizing the CALM Theorem is to define

program consistency in a manner that allows us to reason about

program outcomes, rather than mutations to storage. Having done

that, we can move on to a proof that is more refined than those

based on traditional memory consistency.

2.1 Program Consistency: Confluence
Distributed systems introduce significant non-determinism to our

programs. Sources of non-determinism include unsynchronized par-

allelism, unreliable components, and networks with unpredictable

delays. As a result, a distributed program can exhibit a large space

of possible behaviors on a given input.

While we may not control all the behavior of a distributed pro-

gram, our true concern is with its observable behavior: the program
outcomes. To this end, we want to assess how distributed non-

determinism affects program outcomes. A practical consistency

question is this: “Does my program produce deterministic outcomes
despite non-determinism in the runtime system?”

This is a question of program confluence. In the context of non-

deterministic message delivery, an operation on a single machine

is confluent if it produces the same set of outputs for any non-

deterministic ordering and batching of a set of inputs. Following

our discussion of sets of information S and T above, a confluent

single-machine operation can be viewed as a deterministic func-
tion from sets to sets, abstracting away the nondeterministic order

in which its inputs happen to appear in a particular run of a dis-

tributed system. Confluent operations compose: if the outputs of

one confluent operation are consumed by another, the resulting

composite operation is confluent. Hence confluence can be applied

to individual operations, components in a dataflow, or even en-

tire distributed programs [2]. If we restrict ourselves to building

programs by composing confluent operations, our programs are

confluent by construction, despite orderings of messages or execu-

tion races within and across components.

Unlike traditional memory consistency properties from the sys-

tems literature such as linearizability [30] and serializability [21],

confluence makes no requirements or promises regarding notions

of recency (e.g., a read is not guaranteed to return the result of the

latest write request issued) or ordering of operations (e.g., writes

are not guaranteed to be applied in the same order at all repli-

cas). Nevertheless, if an application is confluent, we know that any

such anomalies at the memory or storage level do not affect the
application outcomes.

Confluence is a powerful yet permissive correctness criterion for

distributed applications. It rules out application-level inconsistency

due to races and non-deterministic delivery, while permitting non-

deterministic ordering and timings of lower-level operations that

may be costly (or sometimes impossible) to prevent in practice.

2.1.1 Confluent Shopping Carts. To illustrate the utility of rea-

soning about confluence, we consider an example of a higher-level

application. In their paper on the Dynamo key-value store [20],

researchers from Amazon describe a shopping cart application that

achieves confluence without coordination. In their scenario, a client

web browser requests items to add and delete from an online shop-

ping cart. For availability and performance, the state of the cart is

tracked by a distributed set of server replicas, which may receive

requests in different orders. In the Amazon implementation, shop-

ping performs no coordination, yet all server replicas eventually

reach the same final state. The shopping cart is precisely the class

of program that interests us: eventually consistent, even when im-

plemented atop a non-deterministic distributed substrate that does

no coordination.

Program consistency is possible in this case because the fun-

damental operations performed on the cart (e.g., adding items)

commute, so long as the contents of the cart are represented as a set

and the internal ordering of its elements is ignored. If two replicas

disagree about the contents of the cart, their differing views can be

reconciled simply by taking the union of their respective sets.

A complication in this context is that deletes are not monotonic

and seem to cause consistency trouble: if instructions to add item I
and delete item I arrive in different orders at different machines,

the machines may disagree on whether I should be in the cart. As

a traditional approach to avoid such “race conditions”, we might
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Figure 3: A simple four-machine relational transducer net-
work with one machine’s state and event loop shown in de-
tail.

bracket every non-monotonic delete operation with coordination.

Can we do better?

As a creative application-level use of monotonicity, a common

technique is for deletes to be handled separately from inserts as

another monotonically growing set of items [20, 42]. The sets of

inserted and deleted items are both insert-only, and the insertions

across the two commute. This would seem to solve our problem!

Unfortunately, while additions and deletions commute, neither

operation commutes with checkout—if a checkout message arrives

before some updates, those updates will be lost.

Even if we stop here, our lens provided a win: monotonicity

allows shopping to be coordination free, even though checkout still
requires coordination. This is the conclusion of the Dynamo design.

In later work [18], we go further to make checkout monotonic in

this setting as well. : the checkout operation is enhanced with a

manifest from the client of all its update message IDs that preceded

the checkout message: replicas can delay processing of the checkout

message until they have processed all updates in the manifest.

This design evolution illustrates the theme we seek to clarify.

Rather than micro-optimize protocols to protect race conditions

in procedural code, modern distributed systems creativity often

involves minimizing the use of such protocols.

2.2 A Sketch of The Proof
The CALM conjecture was presented in a keynote talk at PODS

2010 and written up shortly thereafter alongside a number of corol-

laries [29]. In a subsequent series of papers [8, 9, 48], Ameloot and

colleagues presented a formalization and proof of the CALM Theo-

rem which remains the reference formalism at this time. Here we

briefly review the structure of the argument from Ameloot, et al.

To capture the notion of a distributed system composed out of

monotonic (or non-monotonic) logic, Ameloot uses the formalism

of a relational transducer [1] running on each machine in a network.

Simply put, a relational transducer is an event-driven server with

a relational backing store and programs written as queries. Each

transducer runs a sequential event loop as follows:

(1) Ingest and apply an unordered batch of requests to insert

and delete records in local relations. Requests may come

from other machines or a distinguished input relation.

(2) Query the (now-updated) local relations to compute batches

of records that should be sent somewhere (possibly locally)

for handling in future.

(3) Send the results of the query phase to relevant machines in

the network as requests to be handled. Results sent locally

are ingested in the very next iteration of the event loop.

Results can also be “sent” to a distinguished output.

The Send phase knows where to send records based on their

data content: the records contain addresses of other machines in

the network. In essence, a programmer in this environment “issues

a request to send a message to machine n” by causing a record

containing the address of n to be Ingested, and writing a Query that

will read that record and generate the relevant output for the Send

phase
2
.

The next challenge is to define monotonicity carefully. In Re-

lational Transducers, “programs expressible in monotonic logic”

are easy to define: they are the transducer networks where every

machine’s queries are syntactically monotonic relational queries.

For instance, in the relational algebra, we can allow each machine

to employ selection, projection, intersection, join and transitive

closure (the monotonic operators of relational algebra), but not

set-difference (the sole non-monotonic operator). If we use rela-

tional logic, we disallow the use of universal quantifiers (∀) and
their negation-centric equivalent (¬∃)—precisely the construct that
tripped us up in the garbage collection example of Section 1.3.2

("everything there is to hear"). If we model our programs with mu-

table relations, insertions are allowable, but in general updates and

deletions are not [5, 35]. These informal descriptions elide a num-

ber of clever exceptions to these rules that still achieve semantic

monotonicity despite syntactic non-monotonicity [8, 18], but they

give a sense of how the formalism is defined.

Now that we have a formal execution model (relational trans-

ducers), a definition of consistency (confluence), and a definition

of monotonic programs, we are prepared to prove a version of the

CALM Theorem. The forward “if” direction of the CALM Theorem

is quite straightforward and similar to our previous discussion: it

is easy to show that any monotonic relational transducer in the

network will eventually Ingest and Send a deterministic set of mes-

sages, and generate a deterministic output.

The reverse “only if” direction is quite a bit trickier, as it requires

ruling out any possible scheme for avoiding coordination. The first

challenge is to formally define “coordination” messages, and distin-

guish them from other forms of message passing that satisfy data

dependencies needed to compute an output. To do this, Ameloot,

et al. consider all possible ways to partition data across machines

in the network at program start. From each of these starting points,

a messaging pattern is produced during execution of the program.

We say that a program contains coordination if it requires messages

to be sent under all possible partitionings—including partitionings
that co-locate all data at a single machine. Any message that is sent

2
This paradigm has been used in a number of languages for Declarative Networking

like Overlog and NDlog [37, 38], as well as in the Bloom language for distributed

programming [3]
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in every partitioning is a coordination message. As an example,

consider how a distributed garbage collector decides if a locally dis-

connected objectOд is garbage. Even if the all the data is placed at a

single machine, that machine needs to exchange messages with the

other machines to check that they have no more additional edges—

it needs to “coordinate”, not just communicate data dependencies.

The proof then proceeds to show that non-monotonic operations

require this kind of coordination.

This brief description elides many interesting aspects of the

original paper. In addition to the connections established between

monotonicity and coordination-freeness, connections are also made

between these properties and other distributed systems proper-

ties. Of particular note is the issue of distributed agreement on

network membership (represented by Ameloot, et al. as the All
relation). Network membership is a classic challenge in distributed

systems, and the complicating factor in many classic distributed

protocols. It is shown that the class of monotonic programs is the

same as the class of programs that do not require knowledge of

network membership—they do not query All . A similar connection

is shown with the property of a machine being aware of its own

identity/address (querying the Id relation).

3 CALM PERSPECTIVE ON THE STATE OF
THE ART

The CALM theorem describes what is and is not possible. But can

we use it practically? In this section, we address the implications

of CALM with respect to the state of the art in distributed systems

practice. It turns out that many patterns formaintaining consistency

follow directly from the theorem.

3.1 CAP and CALM: Going Positive
Brewer’s CAP Theorem [14] informally states that a system can

exhibit only two out of the three following properties: Consistency,

Availability, and Partition-tolerance. CAP is a negative result: it

captures consistency properties that cannot be achieved in general.

But Brewer frames this with constructive advice:

[The original] expression of CAP served its pur-

pose, which was to open the minds of designers

to a wider range of systems and tradeoffs ... The

modern CAP goal should be to maximize combi-

nations of consistency and availability that make

sense for the specific application. [14]

CALM is a positive result in this arena: it circumscribes the class of

programs for which all three of the CAP properties can indeed be

achieved simultaneously. To see this, note the following:

Observation 1. Coordination-freeness is equivalent to availabil-
ity under partition.

In the forward direction, a coordination-free program is by defi-

nition available under partition: all machines can proceed indepen-

dently. When and if the partition heals, state merger is monotonic

and consistent. In the reverse direction, a program that employs

coordination will stall (become unavailable) during coordination

protocols if the machines involved in the coordination span the

partition.

In that frame, CALM asks and answers the underlying question

of CAP: “which programs can be consistenly computed while re-

maining available under partition?”. CALM does not contradict

CAP. Instead, CALM approaches distributed consistency from a

wider frame of reference:

(1) First, CAP is a negative result over the space of all programs:
CALM confirms this coarse result, but delineates at a finer

grain the negative and positive cases. Monotone programs

can in fact satisfy all three of the CAP properties at once;

non-monotone programs are the ones that cannot.

(2) The key insight in CALM is to focus on consistency from

the viewpoint of program outcomes rather than the tradi-

tional histories of storage mutation. The emphasis on the

program being computed shifts focus from implementation

to specification: it allows us to ask questions about what

computations are possible.

The latter point is what motivated our outcome-oriented defini-

tion of program consistency. Where the CAP Theorem proofs of

Gilbert and Lynch [24] choose linearizability of updates to storage,

the CALMTheorem proofs choose confluence of program outcomes.

We note that confluence is both more permissive and closer to user-

observable properties. CALM provides the formal framework for

the widespread intuition that we can indeed “work around CAP”

in many cases, even if we violate traditional systems-level notions

of storage consistency.

3.2 Distributed Design Patterns
Our shift of focus from mutable storage to program semantics has

implications beyond proofs. It also informs the design of better

programming paradigms for distributed computing.

Traditional programming models the world as a collection of

named variableswhose values change over time. Bare assignment [10]
is a nonmonotonic programming construct: outputs based on a pre-

fix of assignments may have to be retracted when new assignments

come in. Similarly, assignments make final program states depen-

dent upon the arrival order of inputs. This makes it extremely hard

to take advantage of the CALM theorem to analyze systems written

in traditional imperative languages!

Functional programming has long promoted the use of immutable
variables, which are constrained to take on only a single value dur-

ing a computation. Viewed through the lens of CALM, an immutable

variable is a simple monotonic pattern: it transitions from being

undefined to its final value, and never goes back. Immutable vari-

ables generalize to immutable data structures; techniques such as

deforestation [45] make programming with immutable trees, lists

and graphs practical.

Monotonic programming patterns are common in the design of

distributed storage systems.We already discussed the Amazon shop-

ping cart for Dynamo, which models cart state as two growing sets.

A related pattern in storage systems is the use of tombstones: special
data values that mark a data item as deleted. Instead of explicitly

allowing deletion (a non-monotonic construct), tombstones masked

immutable values with corresponding immutable tombstone val-

ues. Taken together, a data item with tombstone monotonically

transitions from undefined, to a defined value, and ultimately to

tombstoned.

5



Conflict-free replicated data types (CRDTs) [42] provide an object-

oriented framework for monotonic programming patterns like

tombstones, typically for use in the context of replicated state.

A CRDT is an abstract data type whose internal state is a lattice

that evolves monotonically according to a partial order, such as the

partial order of set containment under ⊆ or of integers under ≤.
Two replicas of a CRDT converge to the same state regardless of the

order of their inputs. Equally importantly, the states of two CRDT

replicas that may have seen different inputs and orders can always

be deterministically merged into a new final state that incorporates

all of the inputs seen by both.

CRDTs are an OO lens on a long tradition of prior work that

exploits commutativity to achieve determinism under concurrency.

This goes back at least to long-running transactions [16, 23], con-

tinuing through recent work on the linux kernel [17]. The benefits

of commutativity have motivated not only abstract data types, but

also composable libraries or languages, enabling programmers to

reason about correctness of whole programs [3, 34, 39]. We turn to

an example of that idea next.

3.3 The Bloom Programming Language
One way to encourage good distributed design patterns is to use a

language specifically centered around those patterns. Bloom is a

programming language we designed in that vein.

The main goal of Bloom is to make distributed systems easier

to reason about and program. We felt that a good language for

a domain is one that obscures irrelevant details and brings into

sharp focus those that matter. Given that data consistency is a

core challenge in distributed computing, we designed Bloom to

be data-centric: both system state and events are represented as

named data, and computation is expressed as queries over that data.

The programming model of Bloom closely resembles that of the

relational transducers described in Section 2.2
3
. From the program-

mer’s perspective, Bloom resembles event-driven or actor-oriented

programming—Bloom programs use reorderable query-like han-

dler statements to describe how an agent responds to messages

(represented as data) by reading and modifying local state and by

sending messages.

Because Bloom programs are written in a relational-style query

language, monotonicity is easy to spot just as it was in relational

transducers. The relatively uncommon non-monotonic operations

such as anti-join and set minus stand out in the language’s syntax.

In addition, Bloom’s types include CRDT-like lattices that provide

object-level commutativity, associativity and idempotence.

The advantages of the Bloom design are twofold. First, Bloom

makes set-oriented, monotonic (and hence confluent) program-

ming the easiest constructs for programmers to work with in the
language. Contrast this with imperative languages, in which assign-

ment and explicit sequencing of instructions—two non-monotone

constructs!—are the most natural and familiar building blocks for

programs. Second, Bloom can leverage static analysis based on

CALM to certify when programs provide the state-based conver-

gence properties provided by CRDTs, and when those properties

are preserved across compositions of modules. This is the power

3
This is no coincidence: both Bloom and Ameloot’s transducer work are based on a

relational logic for distributed systems called Dedalus [5].

of a language-based approach to monotonic programming: local,

state-centric guarantees can be automatically composed into global,

outcome-oriented, program-level guarantees.

With Bloom as a base, we have developed tools including declar-

ative testing frameworks [4], verification tools [6], and program

transformation libraries that add coordination to programs that

cannot be statically proven to be confluent [2].

3.4 Coordination In Its Place
Pragmatically, it can be difficult to find a monotonic implementa-

tion of a full-featured application. Instead, a good strategy is to keep

coordination off of the critical path. In the shopping cart example,

coordination was limited to checkout, when user performance ex-

pectations are lower. In the garbage collection example (assuming

adequate resources) the task can run in the background without

affecting users.

It can take creativity to move coordination off of the critical

path and into a background task. The most telling example from

Section 3.2 is the use of tombstoning for low-latency deletion. In

practice, memory for tombstoned items must be reclaimed, so even-

tually all machines need to agree to delete some items. Like GC, this

distributed deletion can be coordinated lazily in the background on

a rolling basis. In this case, monotonic design does not stamp out

coordination entirely, it moves it off the critical path.

Another non-obvious use of CALM analysis is to identify when

to compensate (“apologize” [28]) for inconsistency, rather than pre-

vent it via coordination. For example, when a retail site allows you

to purchase an item, it should decrement the count of items in

inventory. This non-monotonic action suggests that coordination

is required, e.g., to ensure that the supply is not depleted before

an item is allocated to you. In practice, this requires too much

integration between systems for inventory, supply chain, and shop-

ping. In the absence of such coordination, your purchase may fail

non-deterministically after checkout. To account for this possibil-

ity, additional compensation code must be written to detect the

out-of-stock exception, and handle it by—for example—sending

you an apologetic email with a loyalty coupon. Note that a coupon

is not a clear mathematical inverse of any action in the original

program; domain-aware compensation often goes beyond typical

type system logic.

In short, we do not advocate pure monotonic programming as

the only way to build efficient distributed systems. Monotonic-

ity also has utility as an analysis framework for identifying non-

determinism so that programmers can address it creatively.

4 QUESTIONS
The CALM Theorem provides a “bright line” between problems

that require coordination and those that do not. In addition to the

constructive directions sketched above, CALM also raises a number

of questions at the heart of distributed systems theory and pratice.

4.1 Expressiveness
Typically, when we define a family of computations, we expect a

characterization of the expressive power of that family. What is the

expressive power of the monotone distributed programs from the

CALM Theorem?
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This is a question of descriptive complexity, and one landmark

result in that space is the Immerman-Vardi Theorem [31, 44]. In a

nutshell, Immerman-Vardi states that if you take a suitably defined

class of monotone logic programs (where negation is allowed only

on pre-defined, stored relations) and provide some successor rela-
tion that provides a total order, the resulting language can express

all of PTIME.

So one natural question is this: can we implement all of PTIME in

a coordination-free manner? Do the conditions of the Immerman-

Vardi Theorem align with the conditions of the CALM Theorem?

Intuitively, the answer would appear to be “no”. One concern

is that Immerman-Vardi’s requirement for a successor relation is

an unreasonable assumption for a distributed system. Indeed, coor-

dination protocols like Paxos were designed precisely to achieve

such a totally ordered sequence in a distributed system. But what

if we made different, pragmatic assumptions about what can be

assumed in a distributed systems: e.g. a successor relation per node,

and causal ordering across nodes? How large a complexity class

could we achieve? The specifics of the definitions of the computing

model and desired guarantees are critical to the question of what is

achievable.

The state of the art in this direction is captured by Ameloot

and Van den Bussche [7]. For example, if all machines know the

rules for partitioning data across the system, certain syntactically

non-monotone programs can be treated as monotone and run

coordination-free. It would seem plausible that the class of programs

that can be practically made coordination-free could be expanded

even further with other common system assumptions.

4.2 Monotonic Program Synthesis
The CALMTheorem is not a constructive result: it provides no assis-

tance in finding monotonic implementations of programs. Perhaps

such programs are difficult for developers to discover?

In this setting, it is interesting to consider program synthesis

techniques. Monotone relational languages seem well-suited, be-

cause they are small yet expressive. There is encouraging work in

this regard. Cheung and colleagues [15] have had success lifting

imperative code fragments in traditional programming languages

into declarative, monotonic SQL code. Going further, Itzhaky and

colleagues show how to synthesize more complex logic programs

that correspond to more expressive complexity classes [32]. With

such techiques, perhaps most programmers could stick with tra-

ditional languages, and have their code translated into something

like Bloom to get the attendant benefits.

Cheung’s group has also had success at synthesizing SQL queries

from input/output examples [46]. As we look forward to a world

where machine learning replaces some of the trickiness and tedium

of programming, perhaps logic languages with a focus on mono-

tonicity should be a key target for efficient distributed systems.

4.3 Analyzing Non-Monotonic Code
In logic languages like Bloom, it is easy to (conservatively) certify

programs as deterministic if they only use monotonic syntax. A

programmer or compiler can “repair” non-monotonic statements

by wrapping them with coordination logic. But the resulting re-

paired code still contains non-monotonic statements. Can we write

program checks that will verify the consistency of such code?

One underlying challenge here is that coordination does not

remove non-determinism, it controls non-determinism across the

system. For example, Paxos is often used to impose an order for

concurrent events in a distributed system; this ensures uniform

decisions across machines in one run of the system, but another

run might produce a different outcome. Hence our definition of

consistency as confluence does not precisely capture the effect of co-

ordination in non-monotonic programs. Declarative constructs like

Saccà and Zaniolo’s choice operator [41] may be useful to provide

both a semantics and a syntax for capturing the idea of controlled

non-determinism without resorting to operational reasoning.

As discussed in Section 3.4, sometimes the desired solution to

non-monotonic code is to implement compensation rather than

coordination. Again, the repaired code still contains the original

non-monotonic logic, and the program specification is enhanced

to achieve some notion of acceptable non-determinism: every cus-

tomer’s outcome non-deterministically satisfies an exclusive choice

among acceptable properties. This bears some resemblance to the

previous discussion of choice being made by coordination; it would

be interesting if coordination and compensation could be up-leveled

to a singlemore general semantic concept of eventual non-deterministic

agreement. With such a concept explicitly identified, perhaps it

could be represented linguistically in such a way that repaired

programs could be checked for correctness.

4.4 Stochastic CALM
Distributed systems research traditionally deals in deterministic

guarantees, often founded in a basis of logic. Recent excitement

about machine learning at scale has brought statistical program-

ming concerns to distributed systems. One celebrated result in this

space is Hogwild! [40], in which the authors observed empirically—

and subsequently proved formally—that a coordination-free paral-

lel implementation of the stochastic gradient descent algorithm is

guaranteed to converge to an optimum in the same scenarios as a

bulk-synchronous implementation. The proof of this result rests

on arguments that do not translate broadly to other programming

problems. What is the connection between the specific results of

Hogwild! and the general result of the CALM Theorem? Can we

broaden our CALM definition of consistency to encompass statisti-

cal equivalences like convergence to a near-optimum?

An intriguing result that points in this direction comes from de

Sa, et al. [19]. They generalized the idea of Hogwild! and cast their

proofs in the frame of super-martingales, in which the current value

of a stochastic process is an upper bound on the expected next

value: in short, the expectations monotonically shrink. The paper

comes up with a stochastic model for algorithms like Hogwild!

where the expectations are super-martingales. Perhaps there is a

connection between this notion of monotonicity and the logical

monotonicity of the CALM Theorem, or the two ideas need to be

extended to be brought together.
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5 ADDITIONAL RESULTS
The PODS keynote talk that introduced the CALM conjecture in-

cluded a number of related conjectures regarding coordination,

consistency and declarative semantics [29]. Following the CALM

Theorem result [9], the database theory community continued to

explore these relationships, as summarized by Ameloot [7]. For ex-

ample, in the batch processing domain, Koutris and Suciu [33], and

Beame, et al. [12] examine massively parallel computations with

rounds of global coordination, considering not only the number of

rounds needed for different algorithms, but also communication

costs and skew.

In a different direction, a number of papers tolerate memory in-

consistency while maintaining program invariants. Bailis et al. [11]

define a notion of Invariant Confluence for replicated transactional

databases, given a set of database invariants. Many of the invariants

they propose aremonotonic in flavor and echo intuition fromCALM.

Gotsman et al. [25] present program analyses that identify which

pairs of potentially concurrent operations must be synchronized to

avoid invariant violations. Li, et al. define RedBlue Consistency [36],

requiring that users “color” operations based on their ordering re-

quirements; given a coloring they choose a synchronization regime

that satisfies the requirements.

Blazes [2] similarly elicits programmer-provided labels to more

efficiently avoid coordination, but with the goal of guaranteeing

full program consistency as in CALM.

6 CONCLUSION
Distributed systems theory is dominated by fearsome negative re-
sults, such as the Fischer/Lynch/Patterson impossibility proof [22],

the CAP Theorem [24], and the two generals problem [26]. These

results identify things that are not possible to achieve in any dis-

tributed system. As system builders, of course, we are interested

in the complement of this space: what can be achieved, and, im-

portantly, how can we achieve it while minimizing complexity and

cost?

The CALM Theorem presents a positive result that delineates the

frontier of the possible. CALM shows that monotonicity, a property

of a program, implies consistency, a property of the output of any

execution of that program. The inverse is also established: non-

monotonic programs require runtime enforcement (coordination) to

ensure consistent execution. As a program property, CALM enables

reasoning via static program analysis, and limits or eliminates the

use of runtime checks. This is in contrast to storage consistency like

linearizability or serializablity, which required expensive runtime

enforcement.

CALM falls short of being a constructive result—it does not actu-
ally tell us how to write consistent, coordination-free distributed

systems. Even armed with the CALM theorem, a system builder

must answer two key questions. First, and most difficult, is whether

the problem they are trying to solve has a monotonic specification.

Most programmers begin with pseudo-code of some implementa-

tion in mind, and the theory behind CALMwould appear to provide

no guidance on how to extract a monotone specification from a can-

didate implementation. The second question is equally important:

given a monotonic specification for a problem, how can I imple-

ment it in practice? Languages such as Bloom point the way to

new paradigms for programming distributed systems that favor and

(conservatively) test for monotonic specification. There is remain-

ing work to do making these languages attractive to developers,

and efficient at runtime.
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