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A projected gradient method for

αℓ1 − βℓ2 sparsity regularization

Liang Ding1 and Weimin Han2

Abstract. The non-convex α‖ · ‖ℓ1 − β‖ · ‖ℓ2 (α ≥ β ≥ 0) regularization has attracted

attention in the field of sparse recovery. One way to obtain a minimizer of this reg-

ularization is the ST-(αℓ1 − βℓ2) algorithm which is similar to the classical iterative

soft thresholding algorithm (ISTA). It is known that ISTA converges quite slowly, and

a faster alternative to ISTA is the projected gradient (PG) method. However, the

conventional PG method is limited to the classical ℓ1 sparsity regularization. In this

paper, we present two accelerated alternatives to the ST-(αℓ1 − βℓ2) algorithm by ex-

tending the PG method to the non-convex αℓ1−βℓ2 sparsity regularization. Moreover,

we discuss a strategy to determine the radius R of the ℓ1-ball constraint by Morozov’s

discrepancy principle. Numerical results are reported to illustrate the efficiency of the

proposed approach.

Keywords. projected gradient method, αℓ1 − βℓ2 sparsity regularization, non-convex sparsity

regularization, Morozov’s discrepancy principle

1 Introduction

In this paper, we are interested in solving an ill-posed operator equation of the form

Ax = y, (1.1)

where x is sparse, A : ℓ2 → Y is a linear and bounded operator mapping between the ℓ2 space

and a Banach space Y with norms ‖ · ‖ℓ2 and ‖ · ‖Y , respectively. In practice, the right-hand

side y is known only approximately with an error up to a level δ ≥ 0. Therefore, we assume

that we know δ ≥ 0 and yδ ∈ Y with ‖yδ − y‖Y ≤ δ. The most commonly adopted technique

to solve problem (1.1) is the ℓp-norm sparsity regularization with 1 ≤ p < 2, see the monographs

[18, 39] and the special issues [4, 13, 24, 25] for many developments on regularizing properties

and minimization schemes. Since the ℓp-norm regularization with 1 ≤ p < 2 does not always

provide the sparsest solution, the non-convex ℓp-norm sparsity regularization with 0 ≤ p < 1 was
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proposed as alternatives. For the ℓ0 sparsity regularization, see [6, 7, 9, 20] for the iterative hard

thresholding algorithm. We refer the reader to [23, 26, 31] for some other types of alternatives to

the ℓ0-norm.

The investigation of the non-convex α‖ · ‖ℓ1 − β‖ · ‖ℓ2 (α ≥ β ≥ 0) regularization has attracted

attention in the field of sparse recovery over the last five years, see [15, 27, 30, 46, 47] and

references therein. In [15], we investigated the well-posedness and convergence rate of the non-

convex α‖ · ‖ℓ1 − β‖ · ‖ℓ2 (α ≥ β ≥ 0) sparsity regularization of the form

minJ δ
α,β(x) =

1

q
‖Ax− yδ‖qY +Rα,β(x) (1.2)

in the ℓ2 space, where

Rα,β(x) := α‖x‖ℓ1 − β‖x‖ℓ2, α ≥ β ≥ 0, q ≥ 1.

Denoting η = β/α, we can equivalently express the function J δ
α,β(x) in (1.2) as

1

q
‖Ax− yδ‖qY + αRη(x),

where

Rη(x) := ‖x‖ℓ1 − η‖x‖ℓ2 , α > 0, 1 ≥ η ≥ 0.

For the particular case q = 2, we provided an ST-(αℓ1 − βℓ2) algorithm of the form

zk = Sα
λ

((
β

λ‖xk‖ℓ2
+ 1

)

xk −
1

λ
A∗(Axk − yδ)

)

, xk+1 = xk + sk(zk − xk) (1.3)

for (1.2), where sk is the step size and λ > 0. Obviously, the ST-(αℓ1 − βℓ2) algorithm is similar

to the classical ISTA when the step size sk = 1. In [12], an ISTA of the form

xk+1 = Sα

(
xk − A∗(Axk − yδ)

)
(1.4)

was first proposed to solve the classical ℓ1 sparsity regularization of the form

minJ δ
α(x) =

1

2
‖Ax− yδ‖2Y + α‖x‖ℓ1 . (1.5)

As an alternative of the ℓp-norm with 0 ≤ p < 1, the function α‖ · ‖ℓ1 −β‖ · ‖ℓ2 (α ≥ β ≥ 0) has

the desired property that it is a good approximation of a multiple of the ℓ0-norm. The function

has a simpler structure than the ℓ0-norm from the perspective of computation. The ST-(αℓ1−βℓ2)

algorithm can easily be implemented, see [15, 21, 47] for several other algorithms for ‖ · ‖ℓ1 −‖ · ‖ℓ2
sparsity regularization. However, the ST-(αℓ1 − βℓ2) algorithm, in general, can be arbitrarily

slow and it is computationally intensive. So it is desirable to develop accelerated versions of the

ST-(αℓ1 − βℓ2) algorithm, especially for large-scale ill-posed inverse problems.
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1.1 Some accelerated algorithms for ISTA

Searching for accelerated algorithms of the ISTA has become popular and some faster algo-

rithms have been proposed. In [5, 14, 17, 45], several accelerated projected gradient methods have

been provided. A comparison among several accelerated algorithms is provided in [28], includ-

ing “fast ISTA” ([2]). Applying a smoothing technique from Nesterov ([32]), a fast and accurate

first-order method is proposed for solving large-scale compressed sensing problems ([3]). In [11],

a simple heuristic adaptive restart technique is introduced, which can dramatically improve the

convergence rate of accelerated gradient schemes. In [10], convergence of the iterates of the Fast

Iterative Shrinkage/Thresholding Algorithm is established. In [33], a new iterative regularization

procedure for inverse problems based on the use of Bregman distances is studied. Numerical re-

sults show that the proposed method gives significant improvement over the standard method.

An explicit algorithm based on a primal-dual approach for the minimization of an ℓ1-penalized

least-squares function, with a non-separable ℓ1 term, is proposed in [29]. An iteratively reweighted

least squares algorithm and the corresponding convergence analysis for the regularization of lin-

ear inverse problems with sparsity constraints are investigated in [19]. For a projected gradient

method of nonlinear ill-posed problems, see [40].

Unfortunately, the algorithms stated above are only limited to the classical ℓ1-norm sparsity

regularization. Though there is great potential for accelerated algorithms in sparsity regularization

with a non-convex penalty term, to the best of our knowledge, little work can be found in the

literature. In [35], the authors treat the problem of minimizing a general continuously differentiable

function subject to ‖x‖0 ≤ s, where s > 0 is an integer, and ‖x‖0 is the ℓ0-norm of x, which counts

the number of nonzero components in x. In this paper, we extend the projected gradient method

to the non-convex αℓ1 − βℓ2 sparsity regularization. There are two reasons why we choose PG

method. First, its formulation is simple and it can easily be implemented. Another reason is that

it converges quite fast. So it is adequate for solving large-scale ill-posed problems.

The PG method was introduced in [14] to accelerate the ISTA. It is shown that the ISTA

converges initially relatively fast, then it overshoots the ℓ1-norm penalty, and it takes many steps

to re-correct back. It means that the algorithm generates a path {xn | n ∈ N} that is initially

fully contained in the ℓ1-ball BR := {x ∈ ℓ2 | ‖x‖ℓ1 ≤ R}. Then it gets out of the ball to slowly

inch back to it in the limit. To avoid this long external detour, the authors of [14] proposed

an accelerated algorithm by substituting the soft thresholding operation Sα by the projection PR

which is defined in Definition 2.5. This leads to a projected gradient method of the form

xk+1 = PR

(
xk − γkA∗(Axk − yδ)

)
. (1.6)

1.2 Contribution and organization

Since the ST-(αℓ1 − βℓ2) algorithm (1.3) is similar to ISTA (1.4), inspired by [14], we propose

two accelerated alternatives to (1.3) by extending the PG method to solve (1.2).

The first accelerated algorithm is based on the generalized conditional gradient method (GCGM).
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In [15], baed on GCGM, we proposed the ST-(αℓ1 − βℓ2) algorithm where the crucial issue is to

determine zk by the optimization problem of the form

min
z
〈A∗(Axk − yδ)− λxk −

βxk

‖xk‖ℓ2
, z〉+

λ

2
‖z‖2ℓ2 + α‖z‖ℓ1 . (1.7)

In this paper, we show that the problem (1.7) can be solved by a PG method of the form

zk = PR

(

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

. (1.8)

With zk at our disposal, we compute xk+1 by xk+1 = xk + sk(zk − xk), where sk is the step size.

Theoretically, the radius R of ℓ1-ball should be chosen by R = ‖xδ
α,β‖ℓ1 ([14]), where xδ

α,β is a

minimizer of (1.2). However, in general, one can not obtain the value of ‖xδ
α,β‖ℓ1 before starting

the iteration (1.8). In this paper, we utilize Morozov’s discrepancy principle to determine R. This

method only requires knowledge of the noise level δ and the observed data yδ. Moreover, we

investigate the well-posedness of (1.2) under Morozov’s discrepancy principle.

The second accelerated algorithm is based on the surrogate function approach. We investigate

this algorithm in the finite dimensional space Rn. For the case q = 2, (1.2) takes the form

minJ δ
α,β(x) =

1

2
‖Ax− yδ‖2ℓ2 + α‖x‖ℓ1 − β‖x‖ℓ2 , (1.9)

where A : Rn → Rm is a linear and bounded operator mapping between the Rn and Rm space with

‖ · ‖ℓ2 norms. In the following, we remove the ℓ1 constraint in (1.9) and to consider a constrained

optimization problem for a certain radius R of ℓ1-ball constraint. So, in analogy to the techniques

about projection in [14, 41], a natural strategy is to consider the constrained optimization problem

of the form

min
1

2
‖Ax− yδ‖2ℓ2 subject to x ∈ B′

R := {x ∈ R
n | ‖x‖ℓ1 − η‖x‖ℓ2 ≤ R}, 1 ≥ η ≥ 0. (1.10)

However, since B′
R is non-convex, it is challenge to analyze and solve this constrained optimization

problem. To utilize the theory of convex constraints, we remove the ℓ1 constraint in (1.9) and to

consider instead the following optimization problem of the form

minDδ
β(x) =

1

2
‖Ax− yδ‖2ℓ2 − β‖x‖ℓ2 subject to x ∈ BR := {x ∈ R

n | ‖x‖ℓ1 ≤ R} (1.11)

for a suitable R. We propose a projected gradient method of the form

xk+1 = PR

(

xk +
βxk+1

λ‖xk+1‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

(1.12)

for (1.11), where λ > 0 satisfies some conditions, see Assumption 4.6.

An outline of the rest of this paper is as follows. In the next section we introduce the notation

and review results of the Tikhonov regularization and the PG method. In Section 3, we investigate

an accelerated algorithm via GCGM. Furthermore, we give a strategy to determine the radius R

of ℓ1-ball constraint. In Section 4, we propose another accelerated algorithm via the surrogate

function approach. Finally, we present results from numerical experiments on compressive sensing

and image deblurring problems in Section 5.
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2 Preliminaries

Before starting the discussion on the accelerated algorithms, we briefly introduce some notation

and results of the Tikhonov regularization and the PG method. Let

xδ
α,β = argmin

x
{
1

2
‖Ax− yδ‖2Y +Rα,β(x)} (2.1)

be a minimizer of the regularization function J δ
α,β(x) in (1.2) with q = 2 for every α ≥ β ≥ 0.

We denote by Lδ
α,β the set of all minimizers xδ

α,β , and by xδ
R,β a solution of (1.11). We use the

following definition of Rη-minimum solution ([15]).

Definition 2.1 An element x† ∈ ℓ2 is called an Rη-minimum solution of the linear problem

Ax = y if

Ax† = y and Rη(x
†) = min

x
{Rη(x) | Ax = y}.

We recall the definition of sparsity ([12]).

Definition 2.2 An element x ∈ ℓ2 is called sparse if supp(x) := {i ∈ N | xi 6= 0} is finite, where

xi is the ith component of x. ‖x‖0 := supp(x) is the cardinality of supp(x). If ‖x‖0 = s for some

s ∈ N, then x ∈ ℓ2 is called s-sparse.

Definition 2.3 (Morozov’s discrepancy principle) For 1 < τ1 ≤ τ2, we choose α = α(δ, yδ) > 0

such that

τ1δ ≤ ‖Axδ
α,β − yδ‖Y ≤ τ2δ (2.2)

holds for some xδ
α,β.

Next we recall definitions of the soft thresholding and the projection operators ([5, 12]).

Definition 2.4 For a given α > 0, the soft thresholding operator is defined as

Sα(x) =
∑

i

Sα(xi)ei,

where ei = (0, · · · , 0, 1
︸ ︷︷ ︸

i

, 0, · · · ), xi is the ith component of x and

Sα(t) =







t− α if t ≥ α,

0 if |t| < α,

t+ α if t ≤ −α.
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Definition 2.5 The projection onto the ℓ1-ball is defined by

PR(x̂) := {argmin
x

‖x− x̂‖ℓ2 subject to ‖x‖ℓ1 ≤ R},

which gives the projection of an element x̂ onto the ℓ1-norm ball with radius R > 0.

Then we review two results from [14] on relations between the soft thresholding operator and

the projection operator. For relations between the parameters α and R, see [14, Fig. 2].

Lemma 2.6 For some countable index set Λ, denote ℓp = ℓp(Λ), 1 ≤ p < ∞. For any fixed

a ∈ ℓ2(Λ) and for α > 0, ‖Sα(a)‖ℓ1 is a piecewise linear, continuous, decreasing function of α.

Moreover, if a ∈ ℓ1(Λ) then ‖S0(a)‖ℓ1 = ‖a‖ℓ1 and ‖S0(a)‖ℓ1 = 0 for α ≥ maxi |ai|.

Lemma 2.7 If ‖a‖ℓ1 > R, then the ℓ2 projection of a on the ℓ1-ball with radius R is given by

PR(a) = Sα(a), where α (depending on a and R) is chosen such that ‖Sα(a)‖ℓ1 = R. If ‖a‖ℓ1 ≤ R

then PR(a) = S0(a) = a.

Finally, recall the following properties of PR(x) ([14]).

Lemma 2.8 Let H be a Hilbert space with the inner product 〈·, ·〉 and norm ‖·‖H. For any x ∈ H,

PR(x) is characterized as the unique vector in H such that

〈w − PR(x), x− PR(x)〉 ≤ 0 ∀w ∈ BR.

Moreover, the projection PR is non-expansive:

‖PR(x
′)− PR(x

′′)‖H ≤ ‖x′ − x′′‖H ∀ x′, x′′ ∈ H.

3 The projected gradient method via GCGM

In [15], we proposed an ST-(αℓ1−βℓ2) algorithm for (1.2) based on GCGM. We rewrite J δ
α,β(x)

in (1.2) as

J δ
α,β(x) = F (x) + Φ(x),

where

F (x) =
1

2
‖Ax− yδ‖2Y −Θ(x),

Φ(x) = Θ(x) + α‖x‖ℓ1 − β‖x‖ℓ2 ,

Θ(x) =
λ

2
‖x‖2ℓ2 + β‖x‖ℓ2, λ > 0.

The ST-(αℓ1 − βℓ2) algorithm is stated in the form of Algorithm 1. Convergence of Algorithm 1

is given in Theorem 3.1; see [15, Theorem 3.5] for its proof.

6



Algorithm 1 ST-(αℓ1 − βℓ2) algorithm for problem (1.2) with q = 2

Set k = 0, x0 ∈ ℓ2 such that Φ(x0) < +∞,

for k = 0, 1, 2, · · · , do

if xk = 0 then

xk+1 = argmin
1

2
‖Ax− yδ‖2Y + α‖x‖ℓ1

else

determine a descent direction zk as a solution of

min
z
〈A∗(Axk − yδ)− λxk −

βxk

‖xk‖ℓ2
, z〉+

λ

2
‖z‖2ℓ2 + α‖z‖ℓ1

determine a step size sk as a solution of

min
s∈[0,1]

F (xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)

end if

k = k + 1

end for

Theorem 3.1 Let {xk} denote the sequence generated by Algorithm 1. Then {xk} contains a

convergent subsequence and every convergent subsequence of {xk} converges to a stationary point

of the function J δ
α,β(x) in (1.2) with q = 2.

A crucial step in Algorithm 1 is the determination of zk as a solution of

min Cδ
α,β,λ(z, x

k) = 〈A∗(Axk − yδ)− λxk −
βxk

‖xk‖ℓ2
, z〉 +

λ

2
‖z‖2ℓ2 + α‖z‖ℓ1 . (3.1)

In [15], we solve (3.1) by

zk = Sα/λ

((
β

λ‖xk‖ℓ2
+ 1

)

xk −
1

λ
A∗(Axk − yδ)

)

. (3.2)

However, (3.2) is known to converge quite slowly. To accelerate the ST-(αℓ1 − βℓ2) algorithm, we

transform (3.1) to an ℓ1-ball constraint optimization problem of the form







minDδ
β,λ(z, x

k) = 〈A∗(Axk − yδ)− λxk −
βxk

‖xk‖ℓ2
, z〉 +

λ

2
‖z‖2ℓ2 , β ≥ 0,

subject to ℓ1 ball BR := {z ∈ ℓ2 | ‖z‖ℓ1 ≤ R}.
(3.3)

Since Cδ
α,β,λ(z, x

k), Dδ
β,λ(z, x

k) and BR are convex with respect to the variable z, problem (3.3) is

equivalent to (3.1) for a certain R ([36, Theorem 27.4], [48, Theorem 47.E]). In Lemma 3.2, we
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show that the problem (3.3) can be solved by a PG method of the form

zk = PR

(

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

. (3.4)

Lemma 3.2 An element ẑ ∈ BR is a minimizer of (3.3) if and only if

ẑ = PR

(

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

(3.5)

for any λ > 0, which is equivalent to

〈

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)− ẑ, z − ẑ

〉

≤ 0 ∀ z ∈ BR. (3.6)

Proof. Note that ẑ ∈ BR is a solution of (3.3) if and only if for any z ∈ BR, the function

f(t) = Dδ
β,λ((1 − t)ẑ + tz, xk) of t ∈ [0, 1] attains its minimum at t = 0. Since f(t) is quadratic

and convex, a necessary and sufficient condition for f(0) = min0≤t≤1 f(t) is f
′(0+) ≥ 0. Easily,

f ′(0+) = 〈A∗(Axk − yδ)− λ xk −
βxk

‖xk‖ℓ2
+ λ ẑ, z − ẑ〉,

and f ′(0+) ≥ 0 is equivalent to (3.6).

The PG algorithm for (1.2) based on GCGM is stated in the form of Algorithm 2.

3.1 Determination of the radius R

From the previous discussion, we know that (3.1) is equivalent to (3.3) for a certain R. Before

starting iteration (3.4), we need to choose an appropriate value of R which is crucial for the

computation, especially in practical application. In this section, we give a strategy to determine

the radius R of the ℓ1-ball constraint by Morozov’s discrepancy principle.

By Lemma 2.7, for a given α in (3.1), R in (3.3) should be chosen such that R = ‖xδ
α,β‖ℓ1.

However, one does not know the value of ‖xδ
α,β‖ℓ1 before starting (3.4). Of course, we can find an

approximation of xδ
α,β by the ST-(αℓ1 − βℓ2) algorithm (1.3). Nevertheless, this implies that an

additional soft thresholding iteration (1.3) is needed in Algorithm 2. Then the resulting algorithm

is no longer an accelerated one.

So a crucial issue is how to check whether a value of R is appropriate for (3.3). Recall that

there exists a regularization parameter α depending on R such that (3.1) is equivalent to (3.3).

So to determine an appropriate R, we need to check whether the corresponding regularization

parameter α is appropriate. One criterion is to check whether δ2 = O(α). If δ2 = O(α), then xδ
α,β

is a regularized solution ([15, Theorem 2.13]). However, by Lemmas 2.6 and 2.7, we only know

that α is a piecewise linear, continuous, decreasing function of R (see [14, Fig. 2]), and there is

8



Algorithm 2 PG algorithm for problem (1.2) based on GCGM

Choose x0 ∈ ℓ2, β = O(δ), Φ(x0) < +∞,

for k = 0, 1, 2, · · · , do

if xk = 0 then

xk+1 = argmin 1
2
‖Ax− yδ‖2Y + α‖x‖ℓ1

else

determine zk by

zk = PR

(

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

determine a step size sk as a solution of

min
s∈[0,1]

F (xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)

end if

k = k + 1

end for

no explicit formula relating α and R. We can not determine the value of α from the value of R

directly. So we can not ensure whether the R is appropriate.

Another criterion is Morozov’s discrepancy principle. For any given R, we should check whether

the regularization parameter α satisfies Morozov’s discrepancy principle (2.2), i.e.

τ1δ ≤ ‖Axδ
α,β − yδ‖Y ≤ τ2δ, 1 < τ1 ≤ τ2.

For any fixed R, we need to compute xδ
α,β by Algorithm 2 where zk is determined by the PG

method (3.4). Subsequently, we check whether xδ
α,β satisfies (2.2). For this strategy, we only need

to know the observed data yδ and the noise level δ. By Lemma 3.5, the discrepancy ‖Axδ
α,β −yδ‖Y

is an increasing function of α. A commonly adopted technique is to try αj = α 2−j, j = 1, 2, · · · .

With j increasing, one calculates xδ
α,β until one finds α = inf{α > 0 | τ1δ ≤ ‖Axδ

α,β − yδ‖Y ≤ τ2δ}

([42]). Since α is a decreasing function of R, the discrepancy ‖Axδ
α,β − yδ‖Y is a decreasing

function of R, see Lemma 2.6 and Fig. 1. Hence R := sup{R > 0 | τ1δ ≤ ‖Axδ
α,β − yδ‖Y ≤ τ2δ}

is a reasonable choice. We begin with a small R such that xδ
α,β satisfies Morozov’s discrepancy

principle (2.2). Subsequently, we increase the value of R to R + c, c ∈ Z+, until xδ
α,β fails to

satisfy Morozov’s discrepancy principle. Then we can find a maximal R which satisfies Morozov’s

discrepancy principle (2.2). Of course, we can also begin with a large R and gradually reduce the

value of R until R satisfies Morozov’s discrepancy principle (2.2). Under Morozov’s discrepancy

principle, the PG algorithm for (1.2) based on GCGM is stated in the form of Algorithm 3.

A natural question is whether (1.2) combined with Morozov’s discrepancy principle is a reg-
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Algorithm 3 The PG algorithm for problem (1.2) based on GCGM

Choose x0 ∈ ℓ2, R0 ∈ R+, β = O(δ), Φ(x0) < +∞,

for j = 0, 1, 2, · · · do

for k = 0, 1, 2, · · · , do

if xk = 0 then

xk+1 = argmin 1
2
‖Ax− yδ‖2Y + α‖x‖ℓ1

else

determine zk by

zk = PRj

(

xk +
βxk

λ‖xk‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

determine a step size sk as a solution of

min
s∈[0,1]

F (xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)

end if

k = k + 1

end for

if (2.2) is satisfied, set Rj+1 = Rj + c, c > 1

otherwise stop iteration

end if

j = j + 1

end for

10



ularization method. As we know, Tikhonv type functions combined with Morozov’s discrepancy

principle is a regularization method. However, this result is usually shown only when the regular-

ized term is convex ([1, 8, 34, 38, 42, 43]). If the regularized term is non-convex, some results can

be found in [15, 44] where Morozov’s discrepancy principle is applied to derive the convergence

rate. However, these results are obtained under additional source conditions on the true solution

x†. To the best of our knowledge, no results are available on whether Morozov’s discrepancy

principle combined with (1.2) is a regularization method. In this paper, we prove that if the non-

convex regularized term satisfies some properties, e.g. coercivity, weakly lower semi-continuity

and Radon-Riesz property, the well-posedness of the regularization still holds.

3.2 Well-posedness of regularization

In this section, we discuss the well-posedness of (1.2) under Morozov’s discrepancy principle.

First, we show that there exists at least one regularization parameter α in (1.2) such that Morozov’s

discrepancy principle (2.2) holds. We recall some properties of Rα,β(x) ([15]), needed in analyzing

the well-posedness of (1.2).

Lemma 3.3 If α > β, the function Rα,β(x) in (1.2) has the following properties:

(i) (Coercivity) For x ∈ ℓ2, ‖x‖ℓ2 → ∞ implies Rα,β(x) → ∞.

(ii) (Weak lower semi-continuity) If xn ⇀ x in ℓ2 and {Rα,β(xn)} is bounded, then

lim inf
n

Rα,β(xn) ≥ Rα,β(x).

(iii) (Radon-Riesz property) If xn ⇀ x in ℓ2 and Rα,β(xn) → Rα,β(x), then ‖xn − x‖ℓ2 → 0.

Definition 3.4 For fixed δ and η ∈ [0, 1], define

F (xδ
α,β) =

1

2
‖Axδ

α,β − yδ‖2Y ,

Rη(x
δ
α,β) = ‖xδ

α,β‖ℓ1 − η‖xδ
α,β‖ℓ2,

m(α) = J δ
α,β(x

δ
α,β) = minJ δ

α,β(x),

where α ∈ (0,∞) and β = αη.

In the following we give some properties of m(α), F (xδ
α,β) and Rη(x

δ
α,β) in Lemmas 3.5 and

3.6. Since Rη(x
δ
α,β) is weakly lower semi-continuous, the proofs are similar to that in [42, Section

2.6]. Note that η ∈ [0, 1] is fixed, and for given α1, α2 ∈ (0,∞), we write β1 = α1η and β2 = α2η.
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Lemma 3.5 The function m(α) is continuous and non-increasing, i.e., α1 > α2 implies m(α1) ≤

m(α2). Moreover, for α1 > α2,

sup
xδ
α1,β1

∈Lδ
α1,β1

F (xδ
α1,β1

) ≤ inf
xδ
α2,β2

∈Lδ
α2,β2

F (xδ
α2,β2

),

sup
xδ
α1,β1

∈Lδ
α1,β1

Rη(x
δ
α1,β1

) ≥ inf
xδ
α2,β2

∈Lδ
α2,β2

Rη(x
δ
α2,β2

).

Lemma 3.6 For each ᾱ > 0 there exist x′, x′′ ∈ Lδ
ᾱ,β̄

such that

lim
α→ᾱ−

(

sup
xδ
α,β

∈Lδ
α,β

F (xδ
α,β)

)

= F (x′) = inf
x∈Lδ

ᾱ,β̄

F (x) and lim
α→ᾱ+

(

inf
xδ
α,β

∈Lδ
α,β

F (xδ
α,β)

)

= F (x′′) = sup
x∈Lδ

ᾱ,β̄

F (x).

In the following we provide an existence result on the regularization parameter α. The proof

is along the line of Morozov’s discrepancy principle for nonlinear ill-posed problems ([1, 34]).

Lemma 3.7 Assume 0 < c2δ < ‖yδ‖Y . Then there exist α1, α2 ∈ R+ such that

sup
xδ
α1,β1

∈Lδ
α1,β1

F (xδ
α1,β1

) < τ1δ ≤ τ2δ < inf
xδ
α2,β2

∈Lδ
α2,β2

F (xδ
α2,β2

).

Proof. First, let αn → 0 and consider a sequence of corresponding minimizers xn := xδ
αn,βn

∈

Lδn
αn,βn

. By the definition of xδ
α,β and x†, we have

F (xn)
q ≤ m(αn) ≤ Jαn

(x†) ≤ δq + αnRη(x
†) → δq < τ q1 δ

q.

This implies that there exists a small enough α1 such that supxδ
α1,β1

∈Lδ
α1,β1

F (xδ
α1,β1

) < τ1δ.

Next, let αn → ∞. Then

Rη(xn) ≤
1

αn
m(αn) ≤

1

αn
‖A0− yδ‖Y → 0. (3.7)

From the definition of Rη(x),

Rη(x) = (1− η) ‖x‖ℓ1 + η (‖x‖ℓ1 − ‖x‖ℓ2). (3.8)

Then a combination of (3.7) and (3.8) implies that {‖xn‖ℓ2} is bounded. Consequently, {xn} has

a convergent subsequence, again denoted by {xn}, such that xn ⇀ x∗ for some x∗ ∈ ℓ2. By Lemma

3.3 (ii), it follows from (3.7) that

0 ≤ Rη(x
∗) ≤ lim infRη(xn) = limRη(xn) = 0.

By (3.8), this implies x∗ = 0. Since xn ⇀ 0 and Rη(xn) → Rη(0), Lemma 3.3 (iii) implies that

xn → 0. Then

‖Axn − yδ‖Y → ‖A0− yδ‖Y = ‖yδ‖Y > c2δ.

12



This implies that there exists a large enough α2 such that infxδ
α2,β2

∈Lδ
α2,β2

F (xδ
α2,β2

) > τ2δ.

Note that we require ‖yδ‖Y > c2δ in Lemma 3.7, which is a reasonable assumption. Indeed, in

applications, it is almost impossible to recover a solution from observed data of a size in the same

order as the noise.

We state an existence result on the regularized parameter, similar to Theorems 3.10 in [1]. The

proof makes use of the properties stated in Lemmas 3.6 and 3.7.

Theorem 3.8 Assume ‖yδ‖Y > c2δ > 0 and there is no α > 0 with minimizers x′, x′′ ∈ Lδ
α,β such

that

‖Ax′ − yδ‖Y < τ1δ ≤ τ2δ < ‖Ax′′ − yδ‖Y .

Then there exist α = α(δ, yδ) > 0 and xδ
α,β ∈ Lδ

α,β such that (2.2) holds.

Next, we give the convergence of (1.2) under Morozov’s discrepancy principle.

Theorem 3.9 (Convergence) Let xδn
αn,βn

be a minimizer of J δn
αn,βn

(x) defined by (2.1) with the data

yδn satisfying ‖y− yδn‖ ≤ δn, where δn → 0 if n → +∞ and yδn belongs to the range of A. Let αn

be determined by Morozov’s discrepancy principle,

τ1δn ≤ ‖A(xδn
αn,βn

)− yδn‖Y ≤ τ2δn, 1 < τ1 ≤ τ2.

Moreover, assume that η = lim
n→∞

ηn ∈ [0, 1) exists, where ηn = βn/αn. Then there exists a

subsequence of {xδn
αn,βn

}, denoted by {x
δnk

αnk
,βnk

}, that converges to an Rη-minimizing solution x† in

ℓ2. If, in addition, the Rη-minimizing solution x† is unique, then

lim
n→+∞

‖xδn
αn,βn

− x†‖ℓ2 = 0.

Proof. Denote yn := yδn, xn := xδn
αn,βn

, ηn := ηδn. By the definition of xn, we obtain

1

q
‖Axn − yn‖

q
Y + αn‖xn‖ℓ1 − βn‖xn‖ℓ2 ≤

1

q
‖Ax† − yn‖

q
Y + αn‖x

†‖ℓ1 − βn‖x
†‖ℓ2

≤
1

q
δqn + αn‖x

†‖ℓ1 − βn‖x
†‖ℓ2. (3.9)

Since τ1δn ≤ ‖Axn − yn‖Y , it follows from (3.9) that

αn‖xn‖ℓ1 − βn‖xn‖ℓ2 ≤ αn‖x
†‖ℓ1 − βn‖x

†‖ℓ2 .

Then we have

lim sup
n→+∞

(‖xn‖ℓ1 − ηn‖xn‖ℓ2) ≤ ‖x†‖ℓ1 − η‖x†‖ℓ2. (3.10)
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Since ‖xn‖ℓ2 is bounded, there exist an x∗ ∈ ℓ2 and a subsequence of {xnk
} such that xnk

⇀ x∗ in

ℓ2. By Morozov’s discrepancy principle, we obtain

‖Axnk
− y‖Y ≤ ‖Axnk

− ynk
‖Y + ‖y − ynk

‖Y ≤ (τ2 + 1)δnk
.

Therefore, weak lower semicontinuity of the norm gives

‖Ax∗ − y‖ ≤ lim inf
k→∞

‖Axnk
− y‖Y = 0. (3.11)

Meanwhile, by (3.10) and Lemma 3.3 (ii), we have

‖x∗‖ℓ1 − η‖x∗‖ℓ2 ≤ lim inf
k

(‖xnk
‖ℓ1 − ηnk

‖xnk
‖ℓ2) ≤ lim sup

k
(‖xnk

‖ℓ1 − ηnk
‖xnk

‖ℓ2)

≤ lim sup
n

(‖xn‖ℓ1 − ηn‖xn‖ℓ2) ≤ ‖x†‖ℓ1 − η‖x†‖ℓ2 . (3.12)

By the definition of x†, a combination of (3.11) and (3.12) implies that x∗ is an Rη-minimizing

solution. Hence, lim
k→∞

Rη(xnk
) → Rη(x

∗). By Lemma 3.3 (iii), we have xnk
→ x∗. If the Rη-

minimizing solution is unique, then x∗ = x†. This implies that, for every subsequence {xnk
}, xnk

converges to x†, then we have lim
n→+∞

‖xn − x†‖ℓ2 = 0.

The numerical experiments in [15] show that we can obtain satisfactory results even when

α = β. Indeed, Rα,β(x) behaves more and more like the ℓ0-norm as β/α → 1. Nevertheless, note

that if α = β, Rα,α(x) fails to satisfy the coercivity and the Radon-Riesz property, and we can not

ensure the convergence in ℓ2-norm. Without the Radon-Riesz property, we may expect to have

only weak convergence for the regularized solution. If we assume the operator A is coercive in ℓ2,

i.e. ‖x‖ℓ2 → ∞ implies ‖Ax‖Y → ∞, then the proof of the weak convergence is similar to that of

Theorem 3.9.

4 The projected gradient method via the surrogate func-

tion approach

In this section, we propose another projected gradient algorithm for (1.2) in the finite dimen-

sional space Rn based on the surrogate function approach. By the discussion in Subsection 1.2, we

consider the optimization problem (1.11). The following result provides a first order optimality

condition for (1.11).

Lemma 4.1 Let 0 6= ŵ ∈ Rn be a minimizer of (1.11). Then

PR

(

ŵ +
βŵ

λ‖ŵ‖ℓ2
−

1

λ
A∗(Aŵ − yδ)

)

= ŵ (4.1)

for any λ > 0, equivalently,
〈

βŵ

‖ŵ‖ℓ2
−A∗(Aŵ − yδ), w − ŵ

〉

≤ 0, (4.2)

for all w ∈ BR.
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Proof. By the definition of ŵ, for any w ∈ BR, the function

f(t) =
1

2
‖A((1− t)ŵ + tw)− yδ‖2ℓ2 − β‖(1− t)ŵ + tw‖ℓ2, t ∈ [0, 1]

has its minimum at t = 0. Thus,

f ′(0+) = 〈Aŵ − yδ, A(w − ŵ)〉 − β‖ŵ‖−1
ℓ2
〈ŵ, w − ŵ〉 ≥ 0,

i.e., (4.2) holds.

Due to the non-convexity of Dδ
β(x), (4.2) is only a necessary condition of (1.11).

Lemma 4.2 For any fixed β ≥ 0, define

Φλ(w, x) :=
1

2
‖Aw − yδ‖2ℓ2 − β‖w‖ℓ2 −

1

2
‖A(w − x)‖2ℓ2 +

λ

2
‖w − x‖2ℓ2 , w, x ∈ BR. (4.3)

Then for any fixed x ∈ BR, there exists a minimizer ŵ of Φλ(w, x) on BR.

Proof. Being continuous, the function Φλ(·, x) has a minimum on the compact set BR.

Note that a minimizer ŵ of Φλ(w, x) depends on x in Φλ(w, x). For w 6= 0, we denote

ai,j(w) =
∂2‖w‖ℓ2
∂wi∂wj

, 1 ≤ i, j ≤ n.

Then,

ai,j(w) =
δij

‖w‖ℓ2
−

wiwj

‖w‖3ℓ2
, 1 ≤ i, j ≤ n. (4.4)

Since ‖w‖ℓ2 is convex, the matrix (ai,j(w))n×n is positive semi-definite. Thus, eig(w) ≥ 0,

where eig(w) denotes the eigenvalues of (ai,j(w))n×n. Moreover, max{eig(w)} is an increasing

function of ‖w‖ℓ2.

Lemma 4.3 Let ŵ be a minimizer of Φλ(w, x). For a fixed β ≥ 0 and a fixed nonzero x ∈ BR,

there exists λ > 0 such that λ > max{eig(ŵ)}.

Proof. As λ → +∞ in (4.3), all minimizers ŵ of Φλ(w, x) converge to x. Then eig(ŵ) → eig(x).

Since 0 6= x ∈ BR is fixed, there exists a large enough λ such that λ ≥ maxn{eig(ŵ)}.

Lemma 4.4 For a nonzero minimizer ŵ of Φλ(w, x) and a fixed β ≥ 0, if λ ≥ βmax{eig(ŵ)},

then Φλ(w, x) is locally convex.
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Proof. By the definition of Φλ(w, x),

∂2Φλ(w, x)

∂wi∂wj
= λ δij − β ai,j(w), 1 ≤ i, j ≤ n.

By the assumption λ ≥ βmax{eig(ŵ)}, the Hessian matrix (∂
2Φλ(w,x)
∂wi∂wj

∣
∣
w=ŵ

) is positive semi-definite.

This proves the lemma.

In Lemma 4.4, we assume λ ≥ βmax{eig(ŵ)}. This condition is weaker than λ ≥ max{eig(ŵ)}.

In general, the regularization parameter α ≪ 1 in the Tihkonov regularization. Since β = αη and

0 ≤ η ≤ 1, we also have β ≪ 1.

Lemma 4.5 Let 0 6= ŵ ∈ BR and λ ≥ βmax{eig(ŵ)}. Then ŵ is a minimizer of Φλ(w, x) on BR

if and only if

ŵ = PR

(

x+
βŵ

λ‖ŵ‖ℓ2
−

1

λ
A∗(Ax− yδ)

)

. (4.5)

Proof. By the definition of ŵ, for any w ∈ BR, the function

f(t) =
1

2
‖A((1− t)ŵ + tw)− yδ‖2ℓ2 − β‖(1− t)ŵ + tw‖ℓ2

−
1

2
‖A((1− t)ŵ + tw − x)‖2ℓ2 +

λ

2
‖(1− t)ŵ + tw − x‖2ℓ2 , t ∈ [0, 1]

has its minimum at t = 0. Thus,

f ′(0+) = 〈Aŵ − yδ, A(w − ŵ)〉 − β‖ŵ‖−1
ℓ2
〈ŵ, w − ŵ〉 − 〈Aŵ − Ax,A(w − ŵ)〉+ λ〈ŵ − x, w − ŵ〉

≥ 0,

i.e., 〈
1

λ
A∗(Ax− y) + ŵ − x−

β

λ

ŵ

‖ŵ‖ℓ2
, w − ŵ

〉

≥ 0.

By Lemma 2.8, this implies (4.5).

On the other hand, let now ŵ ∈ BR be such that (4.5) holds. By Lemma 2.8, we have

〈

x+
βŵ

λ‖ŵ‖ℓ2
−

1

λ
A∗(Ax− y)− ŵ, w − ŵ

〉

≤ 0.

Define

J(w) := Φλ(w, x) =
1

2
‖Aw − y‖2ℓ2 − β‖w‖ℓ2 −

1

2
‖A(w − x)‖2ℓ2 +

λ

2
‖w − x‖2ℓ2 . (4.6)

If w 6= 0, we have

J ′(w) = A∗(Ax− y) + λ(w − x)− β
w

‖w‖ℓ2
. (4.7)
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By (4.7), this implies that

0 ≤ 〈J ′(ŵ), w − ŵ〉 = lim
t→0+

J(ŵ + t(w − ŵ))− J(ŵ)

t
. (4.8)

By assumption and Lemma 4.4, Φλ(w, x) is locally convex at ŵ. This implies that

0 ≤ 〈J ′(ŵ), w − ŵ〉 = lim
t→0+

J(ŵ + t(w − ŵ))− J(ŵ)

t

≤ lim
t→0+

tJ(w) + (1− t)J(ŵ)− J(ŵ)

t
= J(w)− J(ŵ)

for all w ∈ BR. This proves the lemma.

Denoting by xk+1 the sequence generated by the formula

xk+1 = PR

(

xk +
βxk+1

λ‖xk+1‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

. (4.9)

The projected gradient algorithm based on the surrogate function is stated in the form of Algorithm

4.

Algorithm 4 PG algorithm for (1.11) based on the surrogate function approach

Choose x0 ∈ Rn, R0 ∈ R+, β = O(δ) and λ such that λ > βmax{(eig(x0), eig(x†)}

for j = 0, 1, 2, · · · do

for k = 0, 1, 2, · · · do

xk+1 = PRj

(

xk + βxk+1

λ‖xk+1‖ℓ2
− 1

λ
A∗(Axk − yδ)

)

(by fixed point iteration)

k = k + 1

end for

if (2.2) is satisfied, set Rj+1 = Rj + c, c > 1

otherwise stop iteration

end if

j = j + 1

end for

To prove the convergence of Algorithm 4, we impose some restrictions on the operator A and

λ.

Assumption 4.6 Let r := ‖A∗A‖L(Rn,Rn) < 1. Assume that

(A1) ‖Ax‖2ℓ2 ≤
λ r
2
‖x‖2ℓ2 for all x ∈ ℓ2

(A2) λ ≥ βmax{eig(xk)} for all k.

In Assumption 4.6, we let r := ‖A∗A‖L(Rn,Rn) < 1. In the classical theory of sparsity regulariza-

tion, the value of ‖Am×n‖2 is assumed to be less than 1 ([12]), where m denotes the number of rows
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in the operator A. This requirement is still needed in this paper. If r > 1, we need to re-scale the

original ill-posed problem by Am×nxn = ym →
(
1
c
Am×n

)
xn = 1

c
ym so that 1

c2
‖A∗A‖L(Rn,Rn) < 1,

where c > 1. If r < 1, we let λ > 2; then (A1) holds. As for (A2), it seems that we need

to compute eigenvalues for every (aij(x
k))n×n. However, we can give an approximation for the

eigenvalues of (aij(x
k))n×n. In this paper, we first estimate the value of ‖x†‖ℓ2 and ‖x0‖ℓ2 , then

we can give an approximation for the order of the maximal eigenvalues of ‖x†‖ℓ2 and ‖x0‖ℓ2 . Sub-

sequently, we choose λ such that λ is greater than the order of the maximal eigenvalues of ‖x†‖ℓ2
and ‖x0‖ℓ2 . If the value of ‖x†‖ℓ2 is too small, we can re-scale the original ill-posed problem by

Am×nxn = ym →
(
1
c
Am×n

)
(cxn) = ym to increase the value of ‖x†‖ℓ2 , where c > 1. Meanwhile,

this strategy can reduce the value of ‖Am×n‖2, see Section 5 for details.

Lemma 4.7 Let Assumption 4.6 hold with {xk+1} generated by (4.9). Then,

Dδ
β(x

k+1) ≤ Dδ
β(x

k)

and

lim
k→∞

‖xk+1 − xk‖ℓ2 = 0.

Proof. By Lemma 4.5 and the definition of xk+1, we see that xk+1 is a minimizer of Φλ(w, x
k).

Then we have

Dδ
β(x

k+1) ≤ Dδ
β(x

k+1) +
2− r

2r
‖A(xk+1 − xk)‖2Y

≤
1

2
‖Axk+1 − y‖2Y − β‖xk+1‖ℓ2 +

1

r
‖A(xk+1 − xk)‖2Y −

1

2
‖A(xk+1 − xk)‖2Y

≤
1

2
‖Axk+1 − y‖2Y − β‖xk+1‖ℓ2 −

1

2
‖A(xk+1 − xk)‖2Y +

λ

2
‖xk+1 − xk‖2ℓ2

= Φλ(x
k+1, xk) ≤ Φλ(x

k, xk) = Dδ
β(x

k).

Furthermore,

Φλ(x
k+1, xk)− Φλ(x

k+1, xk+1) =
λ

2
‖xk+1 − xk‖2ℓ2 −

1

2
‖A(xk+1 − xk)‖2Y

≥
λ(2− r)

4
‖xk+1 − xk‖2ℓ2.

This implies

N∑

k=0

‖xk+1 − xk‖2ℓ2 ≤
4

λ(2− r)

N∑

k=0

(
Φλ(x

k+1, xk)− Φλ(x
k+1, xk+1)

)

≤
4

λ(2− r)

N∑

k=0

(
Φλ(x

k, xk)− Φλ(x
k+1, xk+1)

)

=
4

λ(2− r)

(
Φλ(x

0, x0)− Φλ(x
N+1, xN+1)

)

≤
4

λ(2− r)
(Φλ(x

0, x0) + βR).
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Since
N∑

k=0

‖xk+1 − xk‖2ℓ2 is uniformly bounded with respect to N , the series
∑∞

k=0 ‖x
k+1 − xk‖2ℓ2

converges. This proves the lemma.

Remark 4.8 To prove the convergence, we need to analyze the relation between xk and 0. If

0 = x0 = x1, then we stop the iteration and 0 is the iterative solution. Otherwise, by Lemma 4.7,

Dδ
β(x

k) decreases, which implies that xk 6= 0 for k ≥ 1. So in the following we let xk 6= 0 whenever

k ≥ 1.

Lemma 4.9 Denote Ψ(ŵ) := PR

(

x+ βŵ
λ‖ŵ‖ℓ2

− 1
λ
A∗(Ax− yδ)

)

. Then the fixed point iteration

ŵl+1 = Ψ(ŵl) has a subsequence which converges to an element ŵ. If ŵ 6= 0, then ŵ is a fixed

point of Ψ(ŵ).

Proof. By Lemma 2.8, PR(x) is non-expansive,

‖Ψ(ŵ1)−Ψ(ŵ2)‖ℓ2 ≤

∥
∥
∥
∥

βŵ1

λ‖ŵ1‖ℓ2
−

βŵ2

λ‖ŵ2‖ℓ2

∥
∥
∥
∥
ℓ2

,

which implies Ψ(ŵ) is continuous at any nonzero element w. Since {ŵl} is bounded, it has a

subsequence {ŵlk} which converges to an element ŵ ∈ BR. Since ŵlk+1 = Ψ(ŵlk),

lim
k

ŵlk+1 = lim
k

Ψ(ŵlk). (4.10)

If ŵ 6= 0, it follows from (4.10) that ŵ = Ψ(ŵ).

Even though PR(x) is non-expansive, the map Ψ(ŵ) is not necessarily non-expansive. So

we only have the existence of a fixed point. We can not ensure uniqueness of the fixed point.

Indeed, due to the non-convexity of Φλ(w, x) in (4.3), the minimizer of (4.3) may be non-unique.

Nevertheless, the convergence still holds and the limit depends on the choice of the initial vector

x0.

Theorem 4.10 (Convergence) Let {xk} be the sequence generated by

xk+1 = PR

(

xk +
βxk+1

λ‖xk+1‖ℓ2
−

1

λ
A∗(Axk − yδ)

)

.

Then {xk} has a subsequence which converges to a nonzero stationary point x∗ of (1.11), i.e. x∗

satisfies 〈
βx∗

‖x∗‖ℓ2
− A∗(Ax∗ − yδ), w − x∗

〉

≤ 0 ∀w ∈ BR.
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Proof. Since {xk} ⊂ BR is bounded, {xk} has a subsequence {xkj} converging to an element x∗

in BR, i.e. x
kj → x∗ in BR. Since A is linear and bounded, A(xkj ) → A(x∗). By Lemma 2.8 and

the definition of xk+1, we see that, for all w ∈ BR,
〈

xk +
βxk+1

λ‖xk+1‖ℓ2
−

1

λ
A∗(Axk − yδ)− xk+1, w − xk+1

〉

≤ 0.

This implies that
〈

xkj +
βxkj+1

λ‖xkj+1‖ℓ2
−

1

λ
A∗(Axkj − yδ)− xkj+1, w − xkj+1

〉

≤ 0. (4.11)

Taking the limit in (4.11) as j → ∞, we have

lim
j→∞

〈

xkj +
βxkj+1

λ‖xkj+1‖ℓ2
−

1

λ
A∗(Axkj − yδ)− xkj+1, w − xkj+1

〉

≤ 0. (4.12)

Since ‖xkj − xkj+1‖ℓ2 → 0 as j → ∞ and {w − xkj+1} is uniformly bounded, we have

lim
j→∞

|〈xkj − xkj+1, w − xkj+1〉| = 0. (4.13)

A combination of (4.12) and (4.13) shows that

lim
j→∞

〈
βxkj+1

λ‖xkj+1‖ℓ2
−

1

λ
A∗(Axkj − yδ), w − xkj+1

〉

≤ 0. (4.14)

Since xkj → x∗, it follows from (4.14) that
〈

βx∗

‖x∗‖ℓ2
− A∗(Ax∗ − yδ), w − x∗

〉

≤ 0.

by Lemma 4.1, x∗ is a stationary point of Dδ
β(x) on BR.

Remark 4.11 In this section, we restrict the analysis of the projected algorithm based on the

surrogate function approach in the finite dimensional space Rn. Actually, all results except Lemma

4.9 and Theorem 4.10 can be extended to ℓ2 space. In Theorem 4.10, if {xk} is defined in ℓ2 space,

then {xk} has a weak convergence subsequence {xkj} ⇀ x∗. However, the challenge of the proof is

that xkj ⇀ x∗ can not ensure xkj+1/‖xkj+1‖ℓ2 ⇀ x∗/‖x∗‖ℓ2. For example, let xn = x̄ + en, where

en = (0, · · · , 0, 1
︸ ︷︷ ︸

n

, 0, · · · ). Since en ⇀ 0 in ℓ2, xn ⇀ x in ℓ2. However, ‖xn‖ℓ2 9 ‖x‖ℓ2. Hence,

xn/‖xn‖ℓ2 does not converge to x∗/‖x∗‖ℓ2. If we impose an additional condition on {xn}, e.g.

‖xn‖ℓ2 → ‖x‖ℓ2, then we have xn/‖xn‖ℓ2 ⇀ ηx∗/‖x∗‖ℓ2. However, this condition is too restrictive,

since a combination of ‖xn‖ℓ2 → ‖x‖ℓ2 and xn ⇀ x∗ in ℓ2 implies that xn → x∗. Moreover,

the iterative algorithm in this paper has an implicit formulation, and we need to compute the

iterative solution. However, in ℓ2 space, we do not know whether the operator Φ(ŵ) is weak-strong

continuity. So we can not ensure that the fixed point iteration is convergent.
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5 Numerical experiments

In this section, we present results from two numerical experiments to demonstrate the efficiency

of the proposed algorithms. Comparisons between ST-(αℓ1 − βℓ2) and the two projected gradient

algorithms are provided. For convenience, we write PG-GCGM algorithm to refer to the first

projected gradient algorithm which is based on GCGM, and PG-SF algorithm for the second

projected gradient algorithm which is based on the surrogate function approach. The relative

error (Rerror) is utilized to measure the performance of the reconstruction x∗:

Rerror :=
‖x∗ − x†‖ℓ2

‖x†‖ℓ2
,

where x† is a true solution.

We utilize the algorithm in [5, Section 4.2] to compute the projection defined in Definition

2.5. The MATLAB code oneProjector.m regarding the ℓ1-ball projection can be obtained at

http://www.cs.ubc.ca/labs/scl/spgl1. The first example deals with a well-conditioned compressive

sensing problem. The second example deals with an ill-conditioned image deblurring problem. All

numerical experiments were tested in MATLAB R2010 on an i7-6500U 2.50GHz workstation with

8Gb RAM.

5.1 Example 1: Compressive sensing

In the first example, we test compressive sensing with the commonly used random Gaussian

matrix. The compressive sensing problem is defined as Am×nxn = ym, where Am×n is a well

conditioned random Gaussian matrix by calling A = randn(m, n) in MATLAB. Exact data y† is

generated by y† = Ax†. The exact solution x† is an s-sparse signal supported on a random index

set. White Gaussian noise is added to the exact data y† by calling yδ = awgn(Ax†, σ) in MATLAB,

where σ (measured in dB) measures the ratio between the true (noise free) data y† or Ax† and

Gaussian noise. A larger value of σ corresponds to a smaller value of the noise level δ, where the

noise level δ is defined by δ = ‖yδ−y†‖2. x
∗ denotes the reconstruction computed by the proposed

algorithms. For compressive sensing, if the value of ‖(A∗A)n×n‖2 is greater than 1, we rescale the

matrix Am×n by Am×n → c ∗ Am×n, where c < 1. Then the original compressive sensing problem

Am×nxn = ym can be rewritten as (c ∗ Am×n)xn = c ∗ ym. Note that the condition number does

not change under the matrix rescaling. To compare the performance of ST-(αℓ1− βℓ2) algorithm,

PG-GCGM algorithm and PG-SF algorithm, we choose the same initial setting, i.e. λ, β and

the initial vector x0. Moreover, for each fixed point iteration in PG-SF algorithm, we choose

x0 = ones(n, 1) as the initial vector.

We choose n = 200, m = 0.4n, s = 0.2m, then ‖x†‖0 = 16. A noise δ is added to exact

data y† by calling yδ = awgn(Ax†, σ), where σ = 50dB, δ is around 0.02. We let λ = 1, η = 1,

α = O(δ) = 0.2, β = αη = 0.2 and the initial vector x0 is generated by calling x0 = 0.01ones(n, 1).

We utilize discrepancy principle (2.2) to determine the radius R of the ℓ1-ball constraint such that
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R = sup{R > 0 | δ ≤ ‖Ax∗ − yδ‖2}. It is shown that when a good estimate for the noise level

δ is known, this method yields a good radius R. According to the priori information of x†, we

choose an initial value of R and compute x∗. If δ < ‖Ax∗ − yδ‖2, we try Rj = R + j, j = 1, 2, · · ·

until ‖Ax∗ − yδ‖2 ≤ δ. With j increasing, we can find R = sup{R > 0 | δ ≤ ‖Ax∗ − yδ‖2}.

On the contrary, for any initial R, if ‖Ax∗ − yδ‖2 ≤ δ, we try Rj = R − j, j = 1, 2, · · · until

δ < ‖Ax∗ − yδ‖2. Fig. 1 shows Morozov’s discrepancy principle for determining the radius R.

We see that the discrepancy ‖Ax∗ − yδ‖2 is a decreasing function of the radius R. According the

strategy stated above, R should be chosen such that R = sup{R > 0 | δ < ‖Ax∗ − yδ‖2}. It

is obvious that R should be chosen as 16. Indeed, by ST-(αℓ1 − βℓ2) algorithm, we can obtain

‖x∗‖1 = 16.0153. Thus the experimental results confirm that the strategy proposed in this paper

is feasible and they match the theoretical results stated in Subsection 3.1, i.e. R should be chosen

by R = ‖x∗‖1.
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Figure 1: The discrepancy ‖Ax∗ − yδ‖2 vs. R.

To test the stability of the PG Algorithms with respect to R, we choose several values of R

in Fig. 2. It is shown that the two PG algorithms have good performance with the appropriate

radius R. We see that the two PG algorithms are stable with respect to R. Furthermore, the

results of reconstruction get better if R close to 16.

When 0 < η ≤ 1, Rη(x) is non-convex. To analyze the influence of η, we choose different values

for the parameter η. From each row in Table 1, we see that, Rerror of reconstruction gets better

with η increasing which implies the non-convex regularization (case η > 0) has better performance

compared to the classical ℓ1 regularization (case η = 0).

We test the convergence rate of the two PG algorithms and the ST-(αℓ1 − βℓ2) algorithm.

We are primarily interested in the time of computation corresponding to Rerror. The results are

shown in Fig. 3. To get within a distance of the true minimizer corresponding to a 7e-3 relative

error, PG-GCGM algorithm takes 0.62 second, PG-SF algorithm 1.08 seconds, and ST-(αℓ1−βℓ2)

algorithm 18.40 seconds. The ST-(αℓ1 − βℓ2) algorithm procedure is significantly slower than the
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Figure 2: The relative error of reconstruction x∗ by the two PG algorithms with different R.

Table 1: Rerror of reconstruction x∗ with different values of η.
η 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.0

ST-(αℓ1 − βℓ2) 0.0250 0.0246 0.0147 0.0098 0.0086 0.0081 0.0073 0.0067 0.0064

PG-GCGM 0.0180 0.0126 0.0102 0.0089 0.0081 0.0074 0.0067 0.0061 0.0059

PG-SF 0.0356 0.0285 0.0197 0.0145 0.0121 0.0111 0.0096 0.0091 0.0089

two PG algorithms.

Theoretically, for the PG-SF algorithm, we require that Assumption 4.6 (A2) holds, i.e.

λ ≥ βmax{eig(xk)}. Next, we test whether λ satisfies this assumption. Fig. 4 (a) shows Rerror

corresponding to the different reconstruction xk, 1 ≤ k ≤ 1500 and Fig. 4 (b) shows the maximal

eigenvalues max{eig(xk)}. It is obvious that all max{eig(xk)} are less than 3.5. In this section,

we let λ = 1 and β = αη, where α = 0.02 and η = 1. Thus, λ ≥ 3.5β, which satisfies Assumption

4.6 (A2). Theoretically, we can let λ be any value greater than 3.5β. Nevertheless, a larger value

of λ corresponds to a smaller iteration step, and then we can not obtain a good convergence rate.

Finally, we let n = 1800, m = 0.4n and s = 0.2m. σ = 50dB. The coefficients λ and η remain

the same as in the first test. The noise level δ is around 0.09, hence we let β = 0.1. We test the

convergence rate of the two PG algorithms and ST-(αℓ1−βℓ2) algorithm regarding computational

time with several different values of Rerror. With the value of Rerror decreasing, when Rerror

gets within each value, we check the computational time of the three algorithms. In Table 2, we

see that the ST-(αℓ1−βℓ2) algorithm takes more than 100 minutes to get within a distance of the

true minimizer corresponding to a 2% relative error. The two PG algorithms only take around 8

and 41 seconds to reach the same level of relative error. The PG algorithms converge much faster

than the ST-(αℓ1 − βℓ2) algorithm.
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Figure 3: (a) Convergence rate of PG-GCGM algorithm and PG-SF algorithm; (b) Convergence

rate of ST-(αℓ1 − βℓ2) algorithm.
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Figure 4: (a) Rerror for xk, 1 ≤ k ≤ 1500; (b) max{eig(xk)} for 1 ≤ k ≤ 1500.

Table 2: Time of computation for the reconstruction x∗ with different values of Rerror.
Rerror ST-(αℓ1 − βℓ2) time PG-GCGM time PG-SF time

0.8 9.7463 m 0.0214 s 0.0208 s

0.6 12.7113 m 0.1926 s 0.8573 s

0.4 14.9283 m 0.6995 s 3.2097 s

0.2 24.8903 m 1.6924 s 7.5099 s

0.1 39.2569 m 2.8578 s 11.1562 s

0.05 60.5784 m 4.9201 s 22.2830 s

0.02 102.8623 m 8.2870 s 41.2480 s
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5.2 Example 2: Image deblurring

In the second example, we test an ill-conditioned image deblurring problem which is the process

of removing blurring artifacts from images, such as blur caused by defocus aberration or motion

blur. The blur is typically modeled by a Fredholm integral equation of the first kind

∫ b

a

K(s, t) f(t) dt = g(s),

where K(s, t) is the kernel function, g(s) is the observed image and f(t) is the true image.

We utilize the blur problem from MATLAB Regularization Tools ([22]) by calling [A, b, x†] =

blur(n, band, τ), where the Gaussian point-spread function is used as the kernel function

K(s, t) =
1

πτ 2
exp

(

−
s2 + t2

2τ 2

)

.

The matrix A is a symmetric n2 × n2 Toeplitz matrix and is given by A = (2πτ 2)−1T ⊗ T , where

T is an n× n symmetric banded Toeplitz matrix whose first row is obtained by calling

z = [exp(−([0 : band − 1].ˆ2)/(2τˆ2)); zeros(1, N − band)].

The parameter τ controls the shape of the Gaussian point spread function and thus the amount of

smoothing (the larger the value of τ , the wider the function, and the less ill-posed the problem).

We choose n = 64, band = 3, τ = 0.7. A noise δ is added to exact data y† by calling

yδ = awgn(Ax†, σ), where σ = 50dB, δ is around 0.2. We let λ = 5, η = 0.7, α = O(δ) = 0.2,

β = αη = 0.14 and generate the initial vector x0 by calling x0 = 0.01ones(n, 1). The value of ‖A‖2
is around 1 and the condition number is around 30. The initial value x0 is generated by calling

x0 = 0.01ones(n×n, 1). Fig. 5 shows Morozov’s discrepancy principle for determining the radius R.

We see that the value of the discrepancy ‖Ax∗−yδ‖2 decreases with increasing radius R. According

to the strategy stated previously, R should be chosen such that R = sup{R > 0 | δ < ‖Ax∗−yδ‖2}.

It is obvious that R should be chosen as 2107. Actually, the optimal R is 2108 (see Fig. 6), thus

the results of the experiment testify the theory, i.e. R should be chosen by R = ‖x∗‖1. Note that

‖x†‖1 = 2111. Fig. 6 shows the performance of the PG algorithms with respect to R. It is shown

that the two PG algorithms have good performance with appropriate radius R. Observe that for

a fixed parameter η, Rerror of reconstruction x∗ gets better if R close to 2107.

To analyze the influence of η, we choose different values for the parameter η. From each row in

Table 3, we see that the results of reconstruction get better with η increasing, implying that the

non-convex regularization (for η > 0) has better performance than the classical ℓ1 regularization

(for η = 0). However, if η increases to near 1, the accuracy of recovery decreases and η = 0.7 is

optimal.

We test the convergence rate of the two PG algorithms and the ST-(αℓ1 − βℓ2) algorithm,

focusing on the computation time corresponding to Rerror. The results are shown in Fig. 7. To

get within a distance of the true minimizer corresponding to a 1.2e-2 relative error, the PG-GCGM
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Figure 5: The value of the discrepancy ‖Ax∗ − yδ‖2 with different R.
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Figure 6: The relative error of reconstruction x∗ by the two PG algorithms with different R.

Table 3: Rerror of reconstruction x∗ with different values of η.
η 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.0

ST-(αℓ1 − βℓ2) 0.0265 0.0253 0.0231 0.0205 0.0163 0.0144 0.0125 0.0138 0.0198

PG-GCGM 0.0278 0.0263 0.0242 0.0225 0.0198 0.0162 0.0130 0.0152 0.0205

PG-SF 0.0296 0.0271 0.0237 0.0231 0.0204 0.0156 0.0126 0.0147 0.0203
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algorithm takes 10.12 seconds, PG-SF algorithm 36.26 seconds, and the ST-(αℓ1 − βℓ2) algorithm

58.54 minutes. The ST-(αℓ1 − βℓ2) algorithm procedure is significantly slower than the two PG

algorithms.
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Figure 7: (a) Convergence rate of PG-GCGM algorithm and PG-SF algorithm; (b) Convergence

rate of ST-(αℓ1 − βℓ2) algorithm.

Theoretically, for the PG-SF algorithm, we require that Assumption 4.6 (A2) holds, i.e. λ ≥

βmax{eig(xk)}. In Fig. 8, we test whether λ satisfies this assumption. Fig. 8 (a) shows Rerror

corresponding to the different reconstruction xk and Fig. 8 (b) shows the maximal eigenvalue

max{eig(xk)}. It is obvious that the maximal eigenvalue of all xk is less than 0.45. We let λ = 1

and β = αη = 0.14, where α = 0.2 and η = 0.7. Thus, λ ≥ 3.5β, and Assumption 4.6 (A2) is

satisfied.
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Figure 8: (a) Rerror for xk, 1 ≤ k ≤ 1000; (b) max{eig(xk)} for 1 ≤ k ≤ 1000.
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