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Abstract

Quantization is a widely used technique to compress
and accelerate deep neural networks. However, conven-
tional quantization methods use the same bit-width for all
(or most of) the layers, which often suffer significant ac-
curacy degradation in the ultra-low precision regime and
ignore the fact that emergent hardware accelerators be-
gin to support mixed-precision computation. Consequently,
we present a novel and principled framework to solve the
mixed-precision quantization problem in this paper. Briefly
speaking, we first formulate the mixed-precision quantiza-
tion as a discrete constrained optimization problem. Then,
to make the optimization tractable, we approximate the ob-
jective function with second-order Taylor expansion and
propose an efficient approach to compute its Hessian ma-
trix. Finally, based on the above simplification, we show
that the original problem can be reformulated as a Multiple-
Choice Knapsack Problem (MCKP) and propose a greedy
search algorithm to solve it efficiently. Compared with exist-
ing mixed-precision quantization works, our method is de-
rived in a principled way and much more computationally
efficient. Moreover, extensive experiments conducted on the
ImageNet dataset and various kinds of network architec-
tures also demonstrate its superiority over existing uniform
and mixed-precision quantization approaches.

1. Introduction

In the past few years, Convolutional Neural Networks
(CNNs) have been leading new state-of-the-art in almost
every computer vision tasks, ranging from image classifi-
cation [18, 31, 14], segmentation [25, 4, 1], and object de-
tection [28, 21, 23]. However, such performance boosts of-
ten come at the cost of increased computational complex-
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ity and storage overhead. In many real-time applications,
storage consumption and latency are crucial, which on the
other hand, have posed great challenges to the deployment
of these networks. Under this circumstance, a variety of
methods have been proposed, including low-rank decompo-
sition [39, 9], knowledge distillation [15, 29], low-precision
quantization [16, 3], filter pruning [20, 24], etc, to achieve
CNNs compression and acceleration.

Among these approaches, quantization becomes one of
the most hardware-friendly one by approximating real-
valued weights and activations with lower bit-width fixed-
point representations. Meanwhile, network inference can be
performed using cheaper fixed-point multiple-accumulation
(MAC) operations. As a result, we can significantly reduce
the storage overhead and inference latency of CNNs.

Most of the existing quantization methods [3, 41, 38,
7, 22, 19, 27, 42, 40] use the same bit-width for all (or
most of) the layers. Such a uniform bit-width assignment
can be suboptimal from two aspects. First, different layers
have different redundancy and contribute differently to the
final performance. Therefore, uniformly quantizing a net-
work to ultra-low precision often leads to significant accu-
racy degradation. Second, emergent hardware accelerators,
such as BISMO [34] and BitFusion [30], begin to support
mixed-precision computation for greater flexibility. Conse-
quently, to achieve a better trade-off between accuracy and
efficiency, there is a rising demand to apply mixed-precision
quantization by finding the optimal bit-width for each layer.

However, mixed-precision quantization is difficult for
two reasons. First, the search space of choosing bit-width
assignment is huge. For a network with N layers and M
candidate bit-widths in each layer, an exhaustive combina-
torial search has exponential time complexity (O(MN )).
Second, to evaluate the performance of each bit-width as-
signment truly, we need to finetune the quantized network
until it converges, which may take days for the large-scale
dataset. Therefore, a large bulk of mixed-precision quanti-
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zation methods [35, 11, 10, 36, 26, 33] have been proposed
recently to solve the problem approximately. Based on
different approximation strategies, we can categorize these
methods roughly into two groups as discussed below.

Search-Based: To reduce the computation complexity,
search-based methods aim to sample more efficiently and
obtain enough performance improvement with only a small
number of evaluations. Therefore, HAQ [35] leverages re-
inforcement learning to determine the quantization policy
layer-wise and take the hardware accelerator’s feedback in
the design. After that, AutoQ [26] proposes a hierarchical-
DRL-based technique to search for the bit-width kernel-
wise. Furthermore, EvoQ [37] alters to employ the evolu-
tionary algorithm with limited data. Generally speaking, as
the time cost of performance evaluation is still huge, search-
based methods limit the exploration of search space greatly
to make the algorithms computationally feasible.

Criterion-Based: Differently, criterion-based methods
instead aim to reduce the time cost of performance eval-
uation through kinds of criteria that are easy to compute.
Among them, HAWQ [11] utilizes the top Hessian eigen-
value as the measure of quantization sensitivity of each
layer. Although provided with relative sensitivity, it still
requires a manual selection of the bit-width assignment. To
solve the problem, HAWQ-V2 [10] proposes a Pareto fron-
tier based method to finish it automatically and alters to take
the trace of Hessian matrix as the criterion. Although effec-
tive in practice, most existing criteria are still ad-hoc and
lack of principled explanation for the optimality.

Overall, mixed-precision quantization remains an open
problem so far given its intrinsic difficulty. In this paper,
we present a novel and principled framework to solve it.
Specifically, we first formulate mixed-precision quantiza-
tion as a discrete constrained optimization problem with re-
gard to the bit-width assignment among layers, which pro-
vides a principled and holistic view for our further analysis.
As it is intractable to calculate the original objective func-
tion, we then approximate it with Taylor expansion and pro-
pose an efficient approach to compute the Hessian matrix
of each layer. Finally, based on the above simplification,
we show that the original problem can be reformulated as
a special variant of the Knapsack problem called Multiple-
Choice Knapsack Problem (MCKP) and propose a greedy
search algorithm to solve it efficiently.

Compared with existing works, our method is first
computationally efficient and even significantly faster than
criterion-based approaches. Take ResNet50 as an example,
it only takes less than 2 minutes to finish the whole bit-width
assignment procedure with a single RTX 2080Ti. Please
refer to the Efficiency Analysis in Section 4.1 for details.
Second, as our method is derived in a principled way, it
is more interpretable compared with other ad-hoc ones and
also accessible for further improvement such as a more so-

phisticated solving algorithm. Third, our method achieves
a better trade-off between search-based and criterion-based
methods. Compared with search-based ones (e.g. HAQ),
our method reduces the evaluation cost greatly to search for
the optimal bit-width assignment in a much larger space.
Compared with criterion-based ones (e.g. HAWQ), our
method is based on the whole Hessian matrix instead of the
eigenvalues only. Empirically, extensive experiments con-
ducted on the ImageNet dataset and various kinds of net-
works justify the superiorities of our method over them.

To summarize, our main contributions are three-fold:

• We first formulate the mixed-precision quantization as
a discrete constrained optimization problem to provide
a principled and holistic view for further analysis.

• To solve the optimization, we propose an efficient ap-
proach to compute the Hessian matrix and then re-
formulate it as Multiple-Choice Knapsack Problem
(MCKP) to be solved by greedy search efficiently

• Extensive experiments are conducted to demonstrate
the efficiency and effectiveness of our method over
other uniform/mixed-precision quantization ones.

2. Related Work
As convolutional neural networks often suffer from sig-

nificant redundancy in their parameterization, lots of works
have emerged and focus on the acceleration and com-
pression of CNNs recently. Here we only review the
works related to ours and refer the reader to recent surveys
[12, 6, 32, 5, 8] for a comprehensive overview.

Full-precision parameters are not required in achieving
high performance in CNNs. To compress the models, [40]
proposed to quantize the weights incrementally and showed
that with reduced precision to 2-5 bits classification accu-
racy on the ImgeNet could be even slightly higher. Further-
more, several recent works [7, 41, 3] focused on quantiz-
ing both the weights and activations for acceleration gain.
As conventional quantization methods use the same bit-
width for all (or most of) the layers and often suffer signifi-
cant accuracy degradation in the ultra-low precision regime,
lots of different methods have been proposed to address it
through mixed-precision quantization recently. As we have
discussed in Section 1, most existing works can be empiri-
cally categorized into two groups, namely search-based and
criterion-based ones. Besides, [36] formulate the problem
as a neural architecture search problem and propose a dif-
ferential neural architecture search (DNAS) framework to
efficiently explore the search space with gradient-based op-
timization. [33] proposes to parametrize the quantizer with
step size and dynamic range which are optimized through
straight-through estimator (STE) [2], and then the bit-width
of each layer can be inferred from them automatically.



3. Methodology
In this section, we firstly introduce a general formulation

of mixed-precision quantization as a discrete constrained
optimization problem with regard to the bit-width assign-
ment. Secondly, as it is intractable to calculate the origi-
nal objective function, we approximate it with second-order
Taylor expansion and propose an efficient approach to com-
pute its Hessian matrix. Finally, we transform the optimiza-
tion into a special variant of the Knapsack problem called
Multiple-Choice Knapsack Problem (MCKP) and propose
a greedy search algorithm to solve it efficiently.

3.1. Notation and Background

Notation: We assume a L-layer Convolutional Neural
Network f : Ω × X → Y and a training dataset of N sam-
ples (x(n),y(n)) ∈ X × Y with n = 1, . . . , N . The model
maps each sample x(n) to a prediction ŷ(n) using some
paramaters θ ∈ Ω. Then the predictions are compared with
the ground truth y(n) and evaluated with a task-specific loss
function ` : Y×Y→ R, for example the cross-entropy loss
for image classification. This leads to the objective function
to minimize L : Ω→ R,

L(θ) =
1

N

N∑
n=1

`(f(θ,x(n)),y(n))

=
1

N

N∑
n=1

`(n)(θ).

(1)

Specially, for the l-th convolutional or full-connected layer,
we denote its weight tensor as W (l) ∈ Rco×ci×k×k and its
flattened version as w(l) ∈ Rcocik

2

, where k is the kernel
size (equals to 1 for full-connected layers), ci and co are the
number of input and output channels, respectively.

Quantization Background: The purpose of quantiza-
tion is to map the floating-point values into a finite set with
discrete elements. Mathematically, we can formulate the
quantization function as Q : RD × Z+ → Πb, which takes
full-precision vector and quantization bit-width as input and
outputs the quantized vector. In this paper, we only consider
uniform symmetric quantization as it takes little extra over-
head to implement in most hardware platforms. As a result,
Πb equals to s × {−2b−1, . . . , 0, . . . , 2b−1 − 1} for signed
input and s× {0, . . . , 2b − 1} for unsigned one, where b is
the quantization bit-width and s is the step size between two
consecutive grid points. Here we adopt Minimum Squared
Error (MSE) as the quantization criterion and solve the fol-
lowing minimization problem

min
s
‖w −Q(w, b)‖2 s.t. Q(w, b) ∈ Πb (2)

to get the step size s with a given bit-width b. After
that, one can easily get the quantized vector by leverag-

ing the rounding-to-nearest operation, e.g. Q(w, b) =
clip(bw/se, 0, 2b−1)× s for unsigned input.

3.2. Problem Formulation

Let w := {w(l)}Ll=1 be the set of flattened weight tensors
of a CNN which has L layers. To find the optimal bit-width
assignment with the goal of compression or acceleration,
we have the following discrete constrained problem:

min
{b(l)}Ll=1

1

N

N∑
n=1

`(f(w + ∆w,x(n)),y(n))

s.t. ∆w(l) = Q(w(l), b(l))− w(l)

Cj(b(1), . . . , b(L)) ≤ 0

b(l) ∈ B
l ∈{1, . . . , L}, j ∈ {1, . . . ,M}

(3)

Problem (3) is a general form of mixed-precision quan-
tization. More specifically, inequality constraints Cj for
j ∈ {1, . . . ,M} indicate our quantization budgets, such as
model compression, flops reduction or both of them. For
fair comparison with other mixed-precision methods, here
we consider the constraint of model compression. That is to
say, we instantiate the quantization target as

L∑
l=1

|w(l)| · b(l) ≤ btarget ·
L∑

l=1

|w(l)| (4)

where btarget denotes our target average bit-width of the
network, and |·| denotes the length of corresponding vector.
However, objective function (3) is computationally expen-
sive as we need to evaluate the network on the whole train-
ing dataset for each candidate bit-width assignment. In-
stead, it is replaced with the second-order Taylor expansion

L(w + ∆w) =
1

N

N∑
n=1

`(n)(w + ∆w)

≈ L(w) + gTw∆w +
1

2
∆wTHw∆w.

(5)

Here we use gw := ∇L(w) and Hw := ∇2L(w) to denote
the first-order gradient and second-order Hessian matrix re-
spectively. First, the zero-order term is a constant which
can be removed without any influence on the optimization.
Then, given a pre-trained model, it’s reasonable to assume
that it has converged to a local miniumum with nearly zero
gradient vector. Therefore, we conclude with the only re-
served term ∆L = 1

2∆wTHw∆w, which is our final objec-
tive function that approximates the loss perturbation from
quantization. However, although the gradient can be com-
puted in linear time, the Hessian matrix is much harder to
compute and store as its complexity is quadratic to the num-
ber of parameters. Hence, we need to find an efficient ap-
proach to compute and store these matrices.



3.3. Approximated Hessian Matrix

Denote the neural network output of each sample as
f (n)(w) = [f

(n)
1 (w), · · · , f (n)

p (w)]T ∈ Rp. According to
the chain rule, the Hessian matrix can be computed by

∂2L
∂wiwj

=
1

N

N∑
n=1

∂2`(n)

∂wiwj

=
1

N

N∑
n=1

(
∂

∂wj

( p∑
k=1

∂`(n)

∂f
(n)
k

∂f
(n)
k

∂wi

))

=
1

N

N∑
n=1

p∑
k=1

∂`(n)

∂f
(n)
k

∂2f
(n)
k

∂wiwj

+
1

N

N∑
n=1

p∑
k,l=1

∂f
(n)
k

∂wi

∂2`(n)

∂f
(n)
k ∂f

(n)
l

∂f
(n)
l

∂wj
.

(6)

We note that the first term of Eq. (6) is the bottleneck
of computation cost. To calculate the Hessian efficiently,
we approximate it by neglecting this term (see supplemen-
tary material for the theoretical&empirical analysis of this
approximation). To simplify the notations, we introduce
∇f (n)(w) ∈ Rp×d which is the Jacobian matrix of f (n)

on w, and Σ(n) ∈ Rp×p which is the Hessian matrix of `(n)

on f (n). Therefore, the approximated Hessian matrix can
be written in matrix form as

H̃w =
1

N

N∑
n=1

∇T f (n)(w)Σ(n)∇f (n)(w) (7)

Then we substitute the Hessian matrix with our approxima-
tion into the loss perturbation ∆L and get

∆L =
1

2
∆wTHw∆w ≈ 1

2
∆wT H̃w∆w

=
1

2
∆wT · 1

N

N∑
n=1

∇T f (n)Σ(n)∇f (n) ·∆w

=
1

2N

N∑
n=1

[∇f (n)∆w]T Σ(n)[∇f (n)∆w].

(8)

As we can see from Eq. (8), it only involes first-order
derivate except Σ(n) which can be solved analytically with
the given loss function. Here we consider the commonly-
used loss function in classification task, cross-entropy loss,

L(w) = − 1

N

N∑
n=1

p∑
k=1

y
(n)
k logf (n)

k (9)

and it’s easy to derive that

Σ(n) = diag(y
(n)
1 /[f

(n)
1 ]2, . . . , y(n)

p /[f (n)
p ]2). (10)

Then, it is noted that the ground-truth label y(n) of each
sample is a one-hot vector. As a result, we can rewrite the
formula (8) as

∆L =
1

2N

N∑
n=1

1

[f
(n)
t∗ ]2

(∇f (n)
t∗ ∆w)2, (11)

where t∗ and ∇f (n)
t∗ denote the ground-truth label and t∗-

th row of∇f (n) respectively. It means that we only need to
calculate one single row of the Jacobian matrix∇f (n)(w) to
figure out the loss perturbation ∆L of each sample. What’s
more, refer to the Convergence Analysis in Section 4.1, the
result of loss perturbation converges rapidly as the number
of images increases. Hence there is no need to traverse the
entire dataset, which improves the computation efficiency
further.

3.4. MCKP Reformulation

Up to now, we are able to calculate the loss perturba-
tion incurred from the quantization of specific bit-with as-
signment efficiently. To finish the bit-width assignment au-
tomatically, we make the assumption that the Hessian ma-
trix is block-diagonal with non-zero terms only within each
layer parameters, namely the quantization of different lay-
ers is independent of each other. Hence we can reformulate
the objective function as

∆L =
1

2
∆wT H̃w∆w

≈ 1

2

L∑
l=1

(∆w(l))T H̃w(l)∆w(l).
(12)

Now combine Eq. (3), (4) and (12), finally we can reformu-
late the optimization problem as

min
{b(l)}Ll=1

1

2

L∑
l=1

(∆w(l))T H̃w(l)∆w(l)

s.t. ∆w(l) = Q(w(l), b(l))− w(l)

L∑
l=1

|w(l)| · b(l) ≤ btarget ·
L∑

l=1

|w(l)|

b(l) ∈ B
l ∈ {1, . . . , L}

(13)

To solve the problem, we will introduce a special variant
of the Knapsack problem called Multiple-Choice Knapsack
Problem (MCKP) [17] and show that problem (13) can be
written as an MCKP.

Definition 1. Given k classes N1, . . . , Nk of items to pack
in some knapsack of capacity c. Each item j ∈ Ni has a
profit ρij and a weight ωij , and the problem is to choose one



item from each class such that the profit sum is maximized
without having the weight sum to exceed c. The Multiple-
Choice Knapsack Problem (MCKP) may thus be reformu-
lated as:

max
xij

z =

k∑
i=1

∑
j∈Ni

ρijxij

s.t.
k∑

i=1

∑
j∈Ni

ωijxij ≤ c∑
j∈Ni

xij = 1, xij ∈ {0, 1}

i ∈ {1, . . . , k}, j ∈ Ni.

(14)

All coefficients ρij , ωij and c are positive real numbers, and
the classes N1, . . . , Nk are mutually disjoint, class Ni hav-
ing size ni. The total number of items is n =

∑k
i=1 ni.

It’s evident that problem (13) can be reformulated as
an instance of MCKP according Definition 1. More spe-
cially, each class is defined by each layer with size ni = |B|
which denotes the number of candidate bit-width. Then the
bit-width assignment of each layer can be regarded as an
MCKP item. Besides, we define ωij as |w(i)| · j and ρij as

− 1

2
(∆w

(i)
j )T H̃w(i)∆w

(i)
j (15)

with ∆w
(i)
j = Q(w(i), j)−w(i). The capacity of knapsack

c is our target model size, namely btarget ·
∑L

l=1|w(l), and
xij indicates whether choose bit-width j for layer i.

As MCKP is NP-hard, here we propose a greedy search
algorithm to solve it efficiently. To this end, we first intro-
duce some fundamental properties of MCKP.

Definition 2. If two items r and s in the same class Ni

satisfy that

ωir ≤ ωis and ρir ≥ ρis, (16)

then we say that item r dominates item s.

Then it is easy to get the following conclusion.

Proposition 1. Given two items r, s ∈ Ni. If item r domi-
nates item s then an optimal solution to MCKP with xis = 0
exists.

As a consequence, we only have to consider the undom-
inated items in the solution of MCKP. Briefly speaking, we
first filter all the dominated items and then initialize each
layer with the minimum available bit-width. After that, each
time we choose the layer with the highest priority based on
our proposed greedy criterion and increase its bit-width un-
til the target compression constraint is broken. In the end,
the overall procedure of our proposed method is summa-
rized in Algorithm 1, please refer to it for details of imple-
mentation.

Algorithm 1 Constrained Optimization-based Algorithm
for Mixed-Precision Quantization
Input: training dataset {(x(n),y(n))}Nn=1,

pre-trained network with weights {W (l)}Ll=1,
candidate bit-widths of each layer B,
target average bit-width btarget

Output: bit-width assignment of each layer {b(l)}Ll=1

1: /* Step 1: calculate ∆w of the given network */
2: calculate {{∆w(l)

b = Q(wl, b)− w(l)}b∈B}Ll=1

3: /* Step 2: calculate ∆L of the given network */
4: initialize loss perturbation {{∆L(l)

b }b∈B}Ll=1 with zero
5: for n = 1 to N do
6: compute output and gradient for (x(n),y(n))

7: update {{∆L(l)
b }b∈B}Ll=1 according to Eq. 11

8: end for
9: /* Step 3: greedy search to solve MCKP problem */

10: /* Step 3.1: eliminate dominated items of each class */
11: for l = 1 to L do
12: remove the dominated items based on {∆L(l)

b }b∈B
and update the candidate bit-widths denoted by B(l)

13: end for
14: /* Step 3.2: assign bit-width with greedy criterion */
15: initialize b(l) with the minimum bit-width of B(l)

16: while average bit-width below the target btarget do
17: for l = 1 to L do
18: obtain the next available bit-width b̂(l) and its cor-

responding loss perturbation ∆L(l)

b̂(l)

19: calculate the priority of layer as
∆L(l)

b̂(l)
−∆L(l)

b(l)

(b̂(l)−b(l))·|w(l)|
20: end for
21: sort the priority among layers, denote the largest one

as layer l? and its bit-width as b̂(l
?)

22: update the bit-width assignment by b(l
?) ← b̂(l

?)

23: end while

4. Experiments
4.1. Method Analysis

In this section, we conduct comparative analysis from
different aspects to understand our method further.

Convergence Analysis: As shown in Algorithm 1, we
need to traverse the entire given training dataset for the cal-
culation of loss perturbation ∆L. However, as the scale
of the dataset increases, this calculation will become the
bottleneck of time cost of the whole algorithm. There-
fore, we first analyze the convergence of loss perturbation
with regard to the number of images. As shown in Figure
1, the results converge rapidly with a few hundred images
for all kinds of architectures, which indicates the chance
to improve the algorithm’s efficiency significantly. Conse-
quently, we only sample 1024 images randomly to figure
out the loss perturbation in the following experiments.
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Figure 1. Relationship between the convergence of loss perturbation and the number of images for various kinds of architectures.
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Figure 2. Comparision of different criteria for greedy search of
various kinds of architectures.

Efficiency Analysis: Although most previous methods
focus on performance improvement, we argue that com-
putation efficiency should also be taken seriously in the
actual deployment. For the search-based methods of Au-
toQ [26], it explores 400 episodes totally with the proposed
hierarchical-DRL algorithm and fine-tunes each quantiza-
tion policy with ten epochs in the randomly selected 100
categories of images from ImageNet for evaluation. In other
words, it takes more than 1000 GPU-hours of RTX 2080Ti
to search for the optimal bit-width of ResNet-50. And for
the criterion-based methods of HAWQ-V2 [10], which is
much more efficient, it still needs 30 minutes with 4 GPUs
to calculate all the average Hessian traces of ResNet-50, let
alone the time cost of the Pareto frontier calculation for au-
tomatic bit-width assignment. By contrast, thanks to the
rapid convergence of loss perturbation and efficient greedy
search algorithm, our method only takes less than 2 min-
utes to finish the whole bit-width assignment procedure of
ResNet-50 with a single RTX 2080Ti and demonstrates sig-
nificant efficiency advantage (see supplementary material
for the theoretical analysis of computation complexity).

4.2. Ablation Study

In this section, we conduct ablation studies to justify the
effectiveness of our method’s different parts.

Approximated Hessian Matrix: As stated above, we
adopt the approximated second-order term 1

2∆wT H̃w∆w
as the proxy loss perturbation. To verify its advantages, we
employ several other candidates for mixed-precision quan-
tization and summarize the results in Figure 3. First, as
the pre-trained model converges to a local minimum with
nearly zero gradient vector, there is a devastating accu-
racy drop if only the first-order term is adopted. Second,
compared with uniform bit-width and other Hessian-free
(e.g. 1

2∆wT ∆w) candidates, the significant performance
improvement makes it worthwhile to pay for the extra com-
putational cost of second-order information, especially for
deep (e.g. ResNet-50) and lightweight (e.g. MobileNet-
V2) networks. Finally, although it’s theoretically better to
combine the first and second-order terms, our experimental
results contradict this intuition. We believe that it’s because
the extremely weak gradient information, which should be
zero theoretically, acts more as noise for our loss perturba-
tion approximation.

MCKP Reformulation: As MCKP is NP-hard, we pro-
pose a greedy search algorithm to solve it efficiently. To jus-
tify the effectiveness of the original criterion, we compare
it with the other two ones, namely the reversed criterion
and the random criterion. Specifically, the reversed crite-
rion means that we choose the layer to increase bit-width
with the lowest (instead of the highest) priority based on
the original criterion, and the random criterion means that
we choose the layer randomly. The results are summarized
in Figure 2. As we can see, the original criterion outper-
forms the other two ones consistently for various kinds of
architectures.



4 6 8 10 12 14 16
Compression Ratio

0

10

20

30

40

50

60

70

To
p-

1 
Ac

cu
ra

cy
(%

)

gT
w w

uniform bitwidth
1/2 wT w
gT

w w + 1/2 wTHw w
1/2 wTHw w

(a) ResNet-18

4 6 8 10 12 14 16
Compression Ratio

0

10

20

30

40

50

60

70

To
p-

1 
Ac

cu
ra

cy
(%

)

gT
w w

uniform bitwidth
1/2 wT w
gT

w w + 1/2 wTHw w
1/2 wTHw w

(b) ResNet-50

4 6 8 10 12 14 16
Compression Ratio

0

10

20

30

40

50

60

70

To
p-

1 
Ac

cu
ra

cy
(%

)

gT
w w

uniform bitwidth
1/2 wT w
gT

w w + 1/2 wTHw w
1/2 wTHw w

(c) Mobilenet-V2

Figure 3. Comparision of different loss perturbation approximations for bit-width assignment of various kinds of architectures.

0 5 10 15 20
layer index

0

2

4

6

8

bi
tw

id
th

vanilla conv
downsample conv
fc

(a) ResNet-18

0 10 20 30 40 50
layer index

0

2

4

6

8

bi
tw

id
th

vanilla conv
downsample conv
fc

(b) ResNet-50

0 10 20 30 40 50
layer index

0

2

4

6

8

bi
tw

id
th

fc
3x3 conv
depthwise conv
pointwise conv

(c) Mobilenet-V2

Figure 4. Bit-width assignment for various kinds of architectures.

4.3. Comparision with SOTAs

Furthermore, we compare the accuracy results after fine-
tuning with several quantization methods proposed recently,
which including uniform and mixed-precision quantization.
The summarized results are reported in Table 1(see supple-
mentary material for the experimental setup).

For ResNet-18, compared with LQ-Nets [38] which in-
troduces learnable scale factor for each bit, our method at-
tains a smaller accuracy drop (−0.26% vs. −0.30%) with
larger compression ratio (10.66× vs. 6.10×). What’s more,
under the setting that the compression ratio of both weights
and activations≥ 8.00×, we can achieve almost lossless ac-
curacy (0.10% drop), which improves significantly against
other uniform quantization methods.

For ResNet-50, except for uniform quantization, we also
compare with other mixed-precision methods that including
AutoQ [26], HAWQ [11], HAWQ-V2 [10], and HAQ [35].
Compared with HAWQ and HAWQ-V2 that also utilize the
second-order information of the model, we achieve signif-
icantly less accuracy drop (−0.85% vs. −1.91%) with a
similar compression ratio. Compared with HAQ that lever-
ages reinforcement learning to search for optimal bit-width
assignment, our method reaches the same accuracy drop
(0.85% drop) with a much larger compression ratio for both
weights and activations and less computation cost.

At last, a much more efficient and lightweight architec-
ture, MobileNet-V2, is utilized for further evaluation. Here
we mainly compare with DC [8] and HAQ [35], which are
uniform and mixed-precision quantization methods respec-
tively. It should be noted that these two methods employ
k-means algorithm to quantize the weights, and we instead
adopt fixed-point quantization that sacrifices model accu-
racy for inference efficiency. Even under the situation of an
unfair comparison, we still achieve significant performance
improvement with a similar weight compression ratio and
higher activation compression ratio in three different com-
pression regimes, which justifies our method further.

4.4. Bit-width assignment

Finally, as shown in Figure 4, we visualize the bit-width
assignment for these three networks to understand what our



Table 1. Summary of quantization results on ImageNet dataset. We compare with various kinds of uniform quantization methods such as
DC [13], ABC-Net [22], LQ-Nets [38], DoReFa-Net [41] and PACT [7], and also recent mixed-precision methods such as AutoQ [26],
HAWQ [11], HAWQ-V2 [10] and HAQ [35]. The ‘MP’ refers to mixed-precision quantization, where we report the lowest bits used for
weights and activations. The ‘w-ratio’ and ‘a-ratio’ stand for weight and activation compression ratio, respectively.

Network Method Top-1/Full w-bits a-bits w-ratio a-ratio Top-1/Quant Top-1/Drop

ResNet-18

LQ-Nets† [38] 70.30 3 32 7.45× 1.00× 69.30 −1.00
LQ-Nets† [38] 70.30 4 32 6.10× 1.00× 70.00 −0.30

Ours 69.76 2MP 32 10.66× 1.00× 69.50 −0.26
Ours 69.76 2MP 8 10.66× 4.00× 69.39 −0.37

ABC-Net [22] 69.30 5 5 6.40× 6.40× 65.00 −4.30
LQ-Nets† [38] 70.30 4 4 6.10× 7.98× 69.30 −1.00
DoReFa† [41] 70.40 5 5 5.16× 6.39× 68.40 −2.00

PACT† [7] 70.40 4 4 6.10× 7.98× 69.20 −1.20
Ours 69.76 3MP 4MP 8.32× 8.00× 69.66 −0.10

ResNet-50

ABC-Net [22] 76.10 5 5 6.40× 6.40× 70.10 −6.00
LQ-Nets† [38] 76.40 3 3 5.99× 10.64× 74.20 −2.20
LQ-Nets† [38] 76.40 4 4 5.11× 7.99× 75.10 −1.30
DoReFa† [41] 76.90 4 4 5.11× 7.99× 71.40 −5.50

PACT† [7] 76.90 32 4 1.00× 7.99× 75.90 −1.00
PACT† [7] 76.90 2 4 7.24× 7.99× 74.50 −2.40
AutoQ[26] 74.80 MP MP 10.26× 7.96× 72.51 −2.29
HAWQ[11] 77.39 2MP 4MP 12.28× 8.00× 75.48 −1.91

HAWQ-V2[10] 77.39 2MP 4MP 12.24× 8.00× 75.76 −1.63
HAQ[35] 76.15 MP 32 10.57× 1.00× 75.30 −0.85

Ours 76.13 2MP 4MP 12.24× 8.00× 75.28 −0.85

MobileNet-V2

DC[13] 71.87 MP 32 13.93× 1.00× 58.07 −13.80
HAQ[35] 71.87 MP 32 14.07× 1.00× 66.75 −5.12

Ours 71.88 2MP 8 13.99× 4.00× 68.52 −3.36
DC[13] 71.87 MP 32 9.69× 1.00× 68.00 −3.87

HAQ[35] 71.87 MP 32 9.69× 1.00× 70.90 −0.97
Ours 71.88 2MP 8 9.79× 4.00× 71.20 −0.68

DC[13] 71.87 MP 32 7.47× 1.00× 71.24 −0.63
HAQ[35] 71.87 MP 32 7.47× 1.00× 71.47 −0.40

Ours 71.88 3MP 8 7.49× 4.00× 71.83 −0.05
† do not quantize the first and last layer

method learns. First, on ResNet-18 and ResNet-50, as the
first convolution layer processes the input image directly
and is much lighter than other layers, it receives a higher
bit-width. Then, on ResNet-18, we notice that the output FC
layer and downsample convolution layers also obtain higher
bit-width, which is consistent with our prior knowledge that
these components are critical for model performance. How-
ever, it should be noted that this conclusion does not hold
strictly for ResNet-50, which is worthy of our further ex-
ploration. Besides, on MobileNet-V2, our method recog-
nizes that depthwise convolution layers are more sensitive
to quantization and allocates them higher bit-width, which
is consistent with the conclusion of previous work[35].

5. Conclusion

In this paper, we present a novel and principled frame-
work to solve the mixed-precision quantization problem.
We first formulate the mixed-precision quantization as a dis-

crete constrained optimization problem to provide a princi-
pled and holistic view. To solve the optimization problem,
we propose an efficient approach to compute the Hessian
matrix. Then we reformulate it as Multiple-Choice Knap-
sack Problem (MCKP) and propose a greedy search algo-
rithm to solve it efficiently. Extensive experiments are con-
ducted to demonstrate the efficiency and effectiveness of the
proposed method over other uniform and mixed-precision
quantization approaches.
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