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Abstract—Existing Deep Neural Nets on crops growth pre-
diction mostly rely on availability of a large amount of data.
In practice, it is difficult to collect enough high-quality data to
utilize the full potential of these deep learning models. In this
paper, we construct an innovative network architecture based on
domain adaptation learning to predict crops growth curves with
limited available crop data. This network architecture overcomes
the challenge of data availability by incorporating generated
data from the developed crops simulation model. We are the
first to use the temporal convolution filters as the backbone to
construct a domain adaptation network architecture which is
suitable for deep learning regression models with very limited
training data of the target domain. We conduct experiments to
test the performance of the network and compare our proposed
architecture with other state-of-the-art methods, including a
recent LSTM-based domain adaptation network architecture.
The results show that the proposed temporal convolution-based
network architecture outperforms all benchmarks not only in
accuracy but also in model size and convergence rate.

Keywords—Pervasive Computing Applications, Deep Learning,
Transfer Learning

I. INTRODUCTION

Environments have enormous influences on crop growth
and development, resulting in significant variation in crop
yields. Under such conditions, the significance of crop growth
prediction is threefold. Firstly, once the growth curve of
crops can be correctly predicted, agricultural experts can make
better planting decisions and thus increase agricultural output.
Secondly, an accurate growth prediction gives farmers the
advantage of beneficial marketing plans for their products.
Thirdly, growth prediction before harvest is crucial for national
food security [1] including policies concerning import/export
plans and prices. Therefore, crop growth prediction during
crop production processes is essential for optimum crop man-
agement [2].

The crop growth simulation model like WOFOST [3],
DSSAT [4] have been widely used for this purpose. These
models are based on the inherent laws of crop growth and
development. Consequently, it can quantitatively describe and
predict crop growth and the dynamic relationship between
the environment and crops. The accuracy of these models is
limited by assumptions that simplify the growth process and
ignore some determining factors that are difficult to compute.
With the development of deep neural networks, deep learning

models can predict the growth curves of crops [5] [6] [7] [8],
making them play an essential role in predicting agricultural
production [3] [4] [9] and smart agricultural decision-making
[10] [11].

However, deep learning models are data-driven models
which require a large amount of data to produce a precise pre-
diction. State-of-the-art deep learning architectures [12] [13]
usually use accumulated data in specific regions, expanding
to dozens of years. Some parts of these datasets are not even
accessible online [14].

In real-world applications, environment and crop conditions,
including climate, soil, and seed, usually exhibit different data
distribution among different regions. Many regions lack years
of accumulated crops data. Adapting prediction models to
a real farm on a smaller scale requires a large amount of
historical crop data. Nevertheless, the challenge is that field
experiments, and crop data collection are expensive and time-
consuming as the growth of most crops expands for several
months.

We address the challenge of data availability by combining
simulation and data-driven models with innovative transfer
learning architecture. To obtain the model that can effectively
predict the growth curve of actual crops, we first use the
simulation model to generate a large amount of crop growth
data as our source domain dataset. Those simulated data reflect
generic patterns of crop growth. However, we hypothesize that
even though these data have a different distribution from real-
world crop data, the knowledge learned from such data can
help improve the performance of data-driven models, like deep
neural networks. Correspondingly, we collect data on a real-
world farm, and a small amount of actual crop growth data is
obtained as our target domain dataset. We use the data in these
two domains to carry out domain adversarial transfer learning
and train a crop growth prediction model.

Considering the gap between distributions of the source
domain and target domain, we design a Temporal Convolu-
tional Networks (TCN) backboned Domain Adversarial Neural
Networks (DANN) architecture that can predict plant growth
curves accurately with minimal training data of the target do-
main. Adversarial training of different parts in our architecture
results in domain-invariant performance between the source
domain and target domain datasets. Additionally, we select
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TCN as the feature extractor of the proposed architecture.
TCN employs casual and dilated convolutions, increasing the
reception field within fewer convolution layers. Concretely, the
contributions of the paper are listed as follows:

• A customized version of Domain Adversarial Neural
Network in which a gradient reversal layer is used to
generate the domain-invariant features is proposed for
crop growth prediction in a data-limited situation, and
a Gaussian distribution regressor is used to improve the
model performance.

• Temporal Convolution Networks is used as the backbone
of our network architecture to fully explore both temporal
space (dilation) and spatial space (residual).

• Real-world experiments are conducted to evaluate our
proposed network architecture, in which we collect target
domain data from edge devices with multiple sensors and
use a simulation platform to generate source data.

In our evaluation, we show that compared to other state-
of-the-art benchmarks, our TCN-based network architecture
performs much better in terms of prediction loss, model size
and convergency rate.

The structure of this paper is as follows. Section II presents
background and related work. In Section III, we will describe
the collection and process of our dataset. Section IV gives out
specific problem and corresponding solutions. In Section V,
we will give the specific results and analysis of the experiment
to validate our proposals. Finally we will summarize our work
in Section VI.

II. RELATED WORK

A. Crop Growth Prediction

Machine learning (ML) and Deep Learning (DL) have been
used in crop growth prediction. Representative works for ML
method include artificial Neural Networks (Drummond et al.
[15]; Fortin et al. [16]), support vector regression (Ruß [17]),
and k-nearest neighbor (Zhang et al. [18]). There is also
a comparative study of ANN, SVR, M5-Prime, kNN ML
techniques, and Multiple Linear Regression for crop yield
prediction in ten crop datasets [19].

More recently, DL techniques have been applied for crop
yield prediction. There are some works such as multi-layer
perceptron (MLP) [20] and LSTM models [21] [22] [23].
The idea of combining two kinds of network architecture
also became popular recently. For instance, CNN-LSTM based
models were used in soybean yield prediction [12] and winter
wheat yield prediction [14]. In another work [13], a CNN-
RNN model has been used for yield prediction based on
environmental data and management practices.

However, all ML and DL based methods require a consider-
able amount of data. Due to the characteristics of agricultural
production, collecting a large amount of data is both time-
consuming and expensive. Furthermore, labeled training data
required by these methods is quite scarce. Firstly, agricultural
production is a seasonal work that leads to long-term data
collection. Furthermore, a large amount of data collected by

sensors in the farm are not labeled. What is more, open-source
data in the agriculture field are much fewer than in other
scenes, such as auto-driving. Due to the harsh environment
of the farm, continuous data collection using sensors is rather
challenging. Accidents like thunder or power failure, even
agricultural vehicles running into a sensor node can easily
damage the data collection process.

B. Domain Adaptation

Domain Adaptation (DA) is a particular case of transfer
learning that leverages labeled data in one or more related
source domains to learn a classifier for unseen or unlabeled
data in a target domain. Many shallow domain adaption meth-
ods have been studied in the transfer learning field, including
instance re-weighting [24] [25], parameter adaptation [26]
[27], feature augmentation [28], feature space alignment [29],
and unsupervised feature transformation [30].

In deep domain adaptation, fine-tuning is widely used.
Yosinskiet et al. [31] conducted a study on the impact of
transferability of features from different layers of the network.
It is demonstrated that lower layer features are typically
more general (i.e., class agnostic in the context of classi-
fication) while higher-layer features have greater specificity
than lower ones. Another promising deep domain adaptation
method is using an adversarial discriminative model. The two
most widely used models are the Domain-Adversarial Neural
Networks (DANN) [32] and the Adversarial Discriminative
Domain Adaptation (ADAA) [33]. DANN [32] integrates a
domain classifier into the standard architecture to promote the
emergence of domain-independent features that are discrimi-
native for the main learning task on the source domain and
indiscriminate concerning the data distribution shift between
the domains. ADAA [33] uses an inverted label GAN loss
to split the optimization into two independent objectives for
the generator and the discriminator. This model considers the
independent source and target mappings, allowing domain-
specific feature extraction. Also, the target weights are ini-
tialized by the network pretrained on the source. Compared
to adversarial discriminative models, generative adversarial
networks combine the discriminative model with a generative
component in general based on GANs [34].

In this paper, due to the lack of historical data on the
target domain, we chose to approach the problem with domain
adaptation, allowing the transfer of knowledge from the source
domain to the target domain. We specifically chose DANN
for its appealing performance in domain adaptation transfer
learning. Additionally, DANN integrates domain adversarial
training of neural networks in a single process, simplifying
the implementation and lowering the parameters search cost.

C. Temporal Convolutional Networks for Sequence Modeling

Colin Lea et al. [35] first introduces Temporal Convolutional
Networks (TCN), which use dilation convolution and residual
connect to expand the receptive field exponential, thus captur-
ing long-range temporal patterns with fewer layers. Their work
achieves state-of-the-art performance on challenging datasets
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and outperformed strong baselines, including Bidirectional
LSTM. Then Shaojie Bai et al. [36] presented an empirical
evaluation of generic convolutional and recurrent architectures
across a comprehensive suite of sequence modeling tasks.
Their results indicate that TCN models outperform generic
recurrent architectures such as LSTMs and GRUs.

It has shown that temporal convolutional architectures have
been successfully used in some scenarios, such as audio
synthesis and machine translation. In our work, to the best
of our knowledge, we are the first to leverage TCN with
DANN for crop prediction and analyze the potential of such
a combination for pervasive systems with similar constraints
(deep learning models training with limited datasets).

III. DATA COLLECTION AND PRE-PROCESSING

A. Data Collection

The farm where we collect real crops data is located in
the northeast of China. This farm covers about 250 acres.
The main crops grown on this farm are corn and rice. Four
sets of edge nodes are deployed on the farm for field envi-
ronmental monitoring, each containing 14 different kinds of
sensors to monitor different environmental variables. These
sensors include soil temperature and humidity sensor, air
temperature and humidity sensor, light intensity sensor, wind
sensor, rain sensor, and air pressure sensor. The features and
unit of measure for these sensors are shown in Table I. The
environmental monitoring process has started in September
2020 and has continued to the present. Each edge node uploads
the environmental variables every half hour to the data center,
and we now have over 70000 records in total. Each record
contains 16 columns, including 14 features, collection time,
and edge device number. For crop images, three spherical
cameras are deployed on the farm. A program is developed
to drive the spherical camera and deployed in a Raspberry
Pi 3B model. Each camera is set to take photos from several
preset points every hour. They have taken over 40000 pictures,
including corn and rice, from May 2021 to October 2021.

Sensor data is directly sent to a Mysql server deployed on
the cloud for data transmission and storage. Crop pictures are
sent to an Object Storage Service (OSS) hosted in the cloud for
generating their respective URLs. Then the URLs combined
with the image capture time and location information are also
inserted into the Mysql server mentioned above. All network
transmissions are done using a 4G network.

The actual data collection process is far more complicated
than anticipated. Several power failure accidents appear due
to the changeable environment on the farm. The Power mode
for the edge nodes has to be changed from solar to AC. The
sandy and dusty environment have also caused some trouble
in collecting data. These issues also strengthen our assumption
that high-quality data is challenging to retrieve, and after the
data cleaning process, less data remains for model training.

B. Data Pre-processing

For the source domain, we develop a simulation model to
generate a large amount of crop data. Specifically, Python Crop

Fig. 1. Sensor node located on the real farm

TABLE I
ENVIRONMENTAL VARIABLES BEING MONITORED

Features measurement
Air Temperature degree centigrade/°C
Humidity percentage
Illuminance lux
Soil Temperature degree centigrade/°C
soil humidity percentage
Air Pressure HPa
Rainfall mm
Wind Speed m/s
Wind Direction E, S, W, N
Photosynthetic µmol*m−2*s−1
Sun Exposure Time hour
Carbon Dioxide ppm
Soil Salinity ms/cm
Soil PH 1

Simulation Environment (PCSE), a python implementation of
WOFOST [3], is used. A default file containing parameters
for maize corn is selected, and open source weather data
[37] is used to generate simulated crop data as our source
domain dataset. Specifically, the PCSE simulates a maize
growth cycle. The virtual maize crop is set to be sowed on
May 1st and harvested on October 20th. As a result, the total
time of simulated growth is 173 days. We generate over 400
rounds of the complete growth process of virtual maize corn.
The output of the PCSE is considered as time-series data
where each element in the series is a multi-dimensional vector.
The vector represents all the features concerning weather
conditions and the crop itself, including Leaf Area Index (LAI)
which characterizes the plant growth situation. It is defined as
the green leaf area per unit ground surface area, and it serves
as an essential feature for crop growth prediction.

For the target domain, as mentioned above, data are col-
lected from a real-world farm. Fourteen kinds of sensors peri-
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(a) corn image taken in 2021-06-29 (b) corn image taken in 2021-07-06

Fig. 2. Example of image data automatically collected by camera at the same preset point

odically record data that comprise our target domain dataset.
Images of the growing crop will be converted to the LAI to
manifest the growing situation of the crop.

Image data is manually labeled for accuracy to compute
LAI. Since electrical shortage frequently happens on the farm,
a specific range of our collected data is selected as testing data
from June 29th to July 9th in 2021. The crop images have
better quality in this period without electric interrupt.

Several common features are selected in both domains for
the same feature space, and the merged time series dataset is
constructed at a regular interval of 24 hours. We also cut the
longer simulated data into a shorter range to construct the same
feature space. Specifically, the highest temperature, the lowest
temperature, average humidity, and the average irradiation in
a day are used as features of weather data at an interval of a
day. LAI is used as the label and input at the same time. The
LAI value serving as the label in a previous day will be the
input feature of the crop growth situation for the next day.

In general, after merging two domains, each batch of data
has a length of 11 days. Each day has five features as LAI,
the highest temperature, the lowest temperature, the average
humidity, and the average irradiation power together with one
label which is the LAI of the next day. There are over 6000
batches in the source domain dataset and mere 46 batches in
the target domain dataset.

IV. SOLUTION

Traditional transfer learning mainly relies heavily on fine-
tuning, which re-trains parameters on the target domain for a
pre-trained net. However, fine-tuning is still far from satisfied
in the presence of a distribution shift between source and
target domain. Ganin et al. [32] proposed an architecture
that emphasizes features that cannot be discriminated between
domains. They constructed an additional domain classifier to
train the feature extractor, usually a convolution network, to
generate domain-invariant features. In this manner, the distri-
bution of features learned from the source domain will play
a more critical role in transferring the network to the target
domain. This domain adaptation architecture, called Domain-
Adversarial Neural Networks (DANN), employs a gradient

Fig. 3. Dilated Convolution in TCN

reversal layer to simplify the implementation of the reversed
gradient updates within the existing deep learning framework.
In this case, an adversary between these two parts results in a
feature extractor that tends to provide better features without
domain characteristics. The previous study [32] [38] shows
that DANN can train a feature extractor with the least domain
characteristics, thus providing better performance in the target
domain.

In this paper, we modify the DANN framework to make it
applicable to our time-series prediction problem. Specifically,
a series [x1, ...,xT ] where each xi is a multi-dimensional
vector is input data and a series [y1, ...,yT ] where each yi
is real value is the corresponding output label. The whole
architecture we construct is shown in Fig.4, and it mainly
consists of three parts which we shall introduce in detail.

As shown on the bottom of Fig.4, the first part is feature
extractor denoted by Gf (·; θf ) with parameters θf . We use
Temporal Convolution Networks (TCN) as the backbone of
the domain adaptation architecture. With causal and dilated
convolutions, TCN can map an input sequence of any length
into an output sequence of the same length and greatly
increase the reception field within fewer convolutional layers.
As shown in Fig.3, the convolution will have some space
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Fig. 4. Temporal Convolution Networks Domain Adversarial Architecture

between the convoluted nodes instead of covering consecutive
nodes. With designed dilation size, dilated convolutions help
to enlarge the reception field exponentially. This makes TCN
show appealing performance with fewer layers. Together with
residual connections in the architecture, TCN also improves
gradients update when layers of the architecture increase.
In our architecture, we use four TCN Residual Block with
dilation size increasing exponentially. In each Residual Block,
two layers of dilated causal convolution followed by auxiliary
layers are stacked together. The output of the last layer will
be added to the result of up-sampled input to create a residual
connection within the block.

Follow the output of feature extractor and forward to the
top of Fig.4, we will see the second part. To accomplish
the goal of prediction, features extracted by TCN will be
forward to our regressor denoted by Gr(·; θr) with parameters
θr. According to [39], regressor in our architecture predicts
a Gaussian distribution instead of the exact value of the
label. The Gaussian likelihood performs better than the mere
predicted value when we consider the noise. Consequently, this
change will improve the performance of our model. Formly

speaking, we clarify that

(µi, σi) = Gr(Gf (xi; θf ); θr)

and further more, we get regression loss from the prediction
likelihood

Lr((µi, σi), yi) = −
1√
2πσi

exp (− (yi − µi)2

2σ2
i

)

where µi and σi represent mean and standard deviation
of predicted Gaussian distribution. Gf (·; θf ) represents the
feature extractor with parameters θf . Gr(·; θr) represents the
regressor with parameters θr.

To the right of regressor in Fig.4 is a critical part for
domain adversary in our architecture. It is a domain classifier
denoted by Gd(·; θd) with parameters θd. Consisting of several
dense layers with batch normalization and ReLU, the domain
classifier tends to discriminate features from TCN between
source and target domains. On the other side, the feature ex-
tractor aims to confuse the discriminator by producing features
without domain characteristics. As a result, domain adversarial
training between feature extractor and domain classifier helps
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the model adapt to the target domain and increase prediction
accuracy.

In general, we will get the prediction loss and the domain
loss respectively by

Lir(θf , θr) = Lr(Gr(Gf (xi; θf ); θr), yi)

Lid(θf , θd) = Ld(Gd(Gf (xi; θf ); θd), di)

Where di ∈ {0, 1} represent the domain label of the input
data xi, additionally, Lir represents the loss computed from the
regressor as mentioned above. Lid represents the loss computed
from the domain classifier with the Binary Cross-Entropy loss
function.

To train the DANN networks, we aim to optimize

E(θf , θr, θd) =
1

T

T∑
i=1

(Lir(θf , θr)− λLid(θf , θd))

by finding the saddle point θ̂f ,θ̂r,θ̂d such that

(θ̂f , θ̂r) = argmin
θf ,θr

E(θf , θr, θ̂d)

θ̂d = argmax
θd

E(θ̂f , θ̂r, θd)

In the process of training, gradient updates are employed to
find the target point as follows:

θf ←− θf − µ(
∂Lir
∂θf
− λ∂L

i
d

∂θf
)

θr ←− θr − µ
∂Lir
∂θr

θd ←− θd − µλ
∂Lid
∂θd

where µ is the learning rate which was set to 10−3 in our
experiments.

We note that the gradients from regression loss and domain
loss are subtracted, which is different from most cases in
modern deep learning framework. With a gradient reversal
layer (GRL) [32], the standard optimization algorithm in the
framework can be utilized in training. As shown in Fig.4,
domain loss Ld will backward to the domain classifier as
usual, but its sign will be reversed at GRL and backward
to feature extractor. Consequently, the optimizer in the deep
learning framework can be utilized to proceed this gradient
updates process. This extra layer makes the implementation
of the special domain adversary architecture convenient and
straightforward.

In the final stage, the feature extractor will generate domain-
invariant features that assist the regressor in accurately pre-
dicting the label of input data. The domain classifier will be
removed from the model since the domain label will not be
used in the inference period.

V. EXPERIMENTS

A. Experimental Settings

We conduct all of our experiments on a Linux Server (GPU:
NVIDIA RTX 2080). As stated in Section III, we generate a
large amount of crops data with WOFOST [3] as our source
domain dataset. Real-world crops data are collected on a farm
located in North China as the target domain dataset. Simulated
data covers over 400 complete rounds of maize corn, and each
round consists of 173 days. The size of collected real-world
data is relatively modest, and it consists of 46 different batches
of growth data expanding to 11 days. The considerable gap
between source and target domains reflects the difficulty of
transfer learning.

TABLE II
PARAMETERS SETTING OF OUR DANN

Layer Parameters

TCN Feature Extractor TCN

input: 5 channels
hidden: 40 channels
output: 40 channels
sequence length: 11

Regressor Dense
ReLU

(40,2)

Discriminator

Dense
BatchNorm

ReLU
Dense

Sigmoid

(440,64)

(64,1)

1) Evaluation Metric: Mean Absolute Errors (MAE) and
Root Mean Squared Errors (RMSE) are used to evaluate
the performance of various models. Though our regres-
sor uses subtracted likelihood as the loss function, we
use RMSE to evaluate our approach’s performance. The
calculation of MAE and RMSE are shown below:

MAE =
1

TN

T∑
t=1

N∑
i=1

|(yit − ŷit)|

RMSE =

√√√√ 1

TN

T∑
t=1

N∑
i=1

(yit − ŷit)2

where yit represents the label for data with index i

at timestamp t and ŷit represents the corresponding
predicted label.

2) Baseline Models: For DANN, we implement two vari-
ants:

• DANN(LSTM): using LSTM as the feature extrac-
tor to learn the mapping from the space of input
data to the latent space.

• DANN(TCN): using TCN as the feature extractor
to learn the mapping from the input data space
to the latent space. The structure of TCN is less
complicated, but its carefully designed architecture
helps extract better latent features.

We compare DANN with the following baselines:
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• MLP (Multilayer Perceptron) (with fine-tuning): a
feed-forward neural network that has been widely
used in classification and regression problems. Its
ability in function approximation has made it ef-
fective in neural networks architecture. However, it
also relies on feature extraction and the availability
of a large amount of data. We implement a MLP
with three layers with 40 features in hidden layers.

• LSTM (Long Short-Term Memory) (with fine-
tuning): a classic recurrent-based model with a
deliberately designed cell unit. It is popular in many
time-series predictions. We implement a LSTM with
1, 2, and 4 layers with 40 features in hidden layers.

• TCN (Temporal Convolutional Networks) (with
fine-tuning): an innovative convolution network ar-
chitecture with casual and dilated convolutions. We
implemented a TCN with 1, 2, and 4 layers with 40
features in hidden layers.

• ADDA-LSTM (Adversarial Discriminative Domain
Adaption): a domain adaptation architecture that
also employs a domain classifier to train a better
extractor on the target domain. We use LSTM as the
feature extractor on both domains. We implement
LSTM with 2 layers with 40 features in hidden
layers.

We conduct three sets of experiments based on the baselines
mentioned above. In the first experiment (Feature Extractors),
we train and test existing feature extractors directly on the
target domain dataset. This experiment is intended to show
the performance of existing feature extractors. For the transfer
learning part (Transfer Learning), we compare traditional
transfer learning and DANN. In fine-tuning, we pretrain MLP,
LSTM, and TCN on the source domain dataset and retrain
them on little data from the target domain. Furthermore, we
apply our TCN-DANN architecture to the transfer learning
problem. Finally, we compare DANN’s performance with
LSTM or TCN as the feature extractor (Ablation Study). The
parameters setting for our proposed DANN architecture is
described in TABLE II.

B. Experimental Results

TABLE III
PERFOMANCE OF FEATURE EXTRACTOR

Model MAE RMSE
MLP 0.006834 0.008003
LSTM 0.001875 0.002762
TCN 0.002384 0.003378

1) Feature Extractors: In the first experiment, we train
some existing models directly on the target domain data.
We select two classic approaches (MLP and LSTM) and an
innovative network (TCN). MLP has the powerful ability to
approximate functions. Though it does not take the tempo-
ral dependency of input data into consideration, it can still

accomplish some prediction tasks where the distribution of
the dataset is not very complicated. LSTM leverages temporal
dependency to extract better features from input data. With
deliberately designed unit cells to manipulate the hidden status
of the model, LSTM outperforms traditional Recurrent Neural
Networks when the length of input data is relatively long.
TCN leverages casual convolutions to process time-series data
and map the input sequence to a same-length sequence in the
latent space. Dilated convolutions and residual connections
play a critical role in the architecture of TCN which show
promising performance and potential. Table III validates our
assumptions, showing that TCN with RMSE loss of 0.003378
and LSTM with RMSE loss of 0.002762. We note that the gap
between LSTM and TCN is much smaller than in MLP, which
means for time series data, convolution-based TCN is also an
appealing method in prediction tasks as against the common
default practice of using LSTM or similar architecture. What
is more, temporal dependency is proved to be critical in
the prediction of time series data since both LSTM and
TCN leverage temporal relationships concealed in the dataset
distribution, which further confirms our design decision to
use TCN, and in the experiments followed, we can see the
advantages of using TCN over LSTM.

TABLE IV
PERFOMANCE OF TRANSFER LEARNING

Model MAE RMSE
MLP-Finetuning 0.009752 0.011633
LSTM-Finetuning 0.001689 0.002676
TCN-Finetuning 0.001781 0.002621
DANN-LSTM 0.001925 0.002976
DANN-TCN 0.001964 0.002789
ADDA-LSTM 0.016917 0.020881

2) Transfer Learning: To verify the effectiveness of our
proposed domain adaptation architecture, then we conduct
fine-tuning of these approaches and two variants of DANN
on our crop dataset. Different from traditional deep learning,
where outstanding performances depend on a large amount of
data, few training samples are available in our target domain.
In the fine-tuning process, models are first trained on source
domain data. Later, parameters are transferred to the target
domain and retrained to improve the accuracy of the model.
While in our proposed domain adaptation architecture, domain
adversarial training helped to accomplish the same goal of
fine-tuning. Table IV reveals that transfer learning is effective
since the information from the source domain is exploited
to increase model performance in the target domain. As
shown in Table IV, we note that TCN backboned architecture
outperforms other models with RMSE loss up to 0.002621
and 0.002789. This result validates that DANN architecture
is able to give out domain-invariant features and is good at
transfer learning since the gap between DANN and fine-tuning
is so narrow. What is more, we also construct an Adversarial
Discriminative Domain Adaption (ADDA) architecture using
LSTM to compare different domain adaptation architectures.
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TABLE V
PERFOMANCE COMPARISON BETWEEN LSTM AND TCN

Model MAE (1 / 2 / 4 Layers) RMSE (1 / 2 / 4 Layers)
LSTM 0.003374 / 0.002031 / 0.001875 0.004424 / 0.002994 / 0.002762
LSTM-Finetuning 0.001689 / 0,001801 / 0.001855 0.002676 / 0.002686 / 0.002740
DANN-LSTM 0.001944 / 0.001925 / 0.002708 0.003007 / 0.002976 / 0.003791
TCN 0.002924 / 0.003826 / 0.003048 0.003772 / 0.004719 / 0.004079
TCN-Finetuning 0.001929 / 0.001781 / 0.001829 0.002799 / 0.002621 / 0.002652
DANN-TCN 0.001943 / 0.001964 / 0.001956 0.002821 / 0.002789 / 0.002885

We believe that ADDA is also a powerful model of transfer
learning, but it is more complicated in the implementation and
search of hyperparameters. Our LSTM based ADDA did not
perform as expected. However, DANN is also a complicated
architecture compared to a mere fine-tuning. We observe only
a narrow gap between the performance of DANN and fine-
tuning models (specifically for two TCN based networks). We
believe that the dimensionality of the target domain dataset
(5 features) is not big enough to exploit the full potential
of DANN based architecture. But our results show that even
with such limited features, our heavy-weight DANN has a
very close performance of fine-tuning (still better than MLP
finetuning) and much better than an equally heavy-weight
domain adaptation network (ADDA-LSTM). We hypothesize
that when applied in the real world where the underlying data
is more complex, our proposed architecture shall outperform
the method of fine-tuning. We will conduct this as a future
work for other pervasive application systems with similar
issues with high-quality data shortages.

Fig. 5. RMSE Loss of DANN-TCN and DANN-LSTM (4 layers)

TABLE VI
PARAMETERS SIZE

Model Parameters(1 / 2 / 4 Layers)

LSTM 7,520 / 20,640 / 46,880

TCN 4,000 / 10,560 / 23,680

3) Ablation Study of TCN and LSTM: In our last set-
ting, we compare TCN and LSTM in the same domain
adaptation architecture. We construct DANN with TCN and
LSTM ,respectively in 1, 2, and 4 layers. From Table V, we
notice that TCN-based outperforms LSTM-based in the case
of accuracy in time series data predictions with the lowest
RMSE of 0.002621. This validates our design choice of using
TCN in our domain adaptation network and shows that TCN
is a promising architecture in time series prediction tasks
in general. Additionally, TCN bears fewer parameters when
compared to LSTM with the same layers as shown in Table
VI. TCN requires almost half of the size of LSTM network
architecture, which makes TCN a much suitable candidate for
pervasive computing applications where computation and stor-
age are constraints. Moreover, the gap in the model size most
likely will result in different convergence rates. From Fig.5,
we note that TCN based DANN converged after nearly 150
epochs of training while it took LSTM based DANN over 500
epochs to stabilize its RMSE loss. This is another insightful
finding as for those pervasive systems which require continual
learning (autonomous driving models), the convergence rate is
crucial.

In summary, we conduct three sets of experiments with
simulated crops data generated from WOFOST and real-world
crops data collected from a real-world farm. The experimental
results show that our proposed TCN backboned DANN archi-
tecture outperforms baselines in general. Moreover, we notice
the promising future for TCN to be extensively studied and
used for pervasive application systems for its better accuracy,
smaller model size, and faster convergence rate.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a TCN backboned DANN
transfer learning architecture to predict crops growth with
simulated data as the source domain dataset and collected real-
world data as the target domain dataset. We have conducted a
comprehensive analysis of our proposed model and compared
it with the state-of-the-art transfer learning approach. The
experiment shows promising results of our proposed architec-
ture compared with other benchmarks. Specifically, we find
that TCN has better accuracy, a smaller model size, and a
faster convergence rate. As future work, we will apply our
TCN based domain adaptation framework for diverse pervasive
applications with similar training data constraints.
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