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Abstract—Speaker Diarization (SD) is a crucial component of
modern end-to-end ASR pipelines. Traditional SD systems, which
are typically audio-based and operate independently of ASR, often
introduce speaker errors, particularly during speaker transitions
and overlapping speech. Recently, language models including fine-
tuned large language models (LLMs) have shown to be effective
as a second-pass speaker error corrector by leveraging lexical
context in the transcribed output. In this work, we introduce
a novel acoustic conditioning approach to provide more fine-
grained information from the acoustic diarizer to the LLM. We
also show that a simpler constrained decoding strategy reduces
LLM hallucinations, while avoiding complicated post-processing.
Our approach significantly reduces the speaker error rates by 24-
43% across Fisher, Callhome, and RT03-CTS datasets, compared
to the first-pass Acoustic SD.

Index Terms—Speaker Diarization, LLMs, Error Correction

I. INTRODUCTION

Speaker Diarization (SD) solves the problem of determining
“Who spoke when” in an audio recording. SD systems can
be broadly categorized into two types: 1) Modular systems
[1], [2], which consist of components like a segmenter and
an embedding model , and 2) End-to-end systems [3]–[5],
which are designed to handle speech overlaps and are directly
optimized for diarization by incorporating permutation invariant
training loss, followed by a clustering phase . However,
many real-world applications like meeting analytics, call-center
analytics, and video captioning often require associating spoken
words with the speaker labels, as opposed to just the speaker
time ranges predicted by SD modules.

Conventional ASR [6]–[9] systems are generally designed
for speaker-agnostic scenarios and answer the question “What
was spoken” without providing speaker labels. Multi-speaker
transcription systems, however, address the question “Who
spoke what and when,” which is essential for many prac-
tical applications. Various approaches have been developed
to achieve this, primarily falling into three categories: 1)
Speech/Speaker Separation followed by ASR [10]–[12], 2)
Speaker-attributed ASR [13]–[16], and 3) Modular ASR and
SD systems. Challenges with Speech Separation and SA-ASR
systems include difficulties with a larger number of speakers
[10], duplicated artifacts [11], lack of speaker timestamps
[13], and handling long-form audio [11]. Independent ASR
and SD systems, which operate separately and later reconcile
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their results, offer a more practical solution for multi-speaker
transcription pipelines.

In modular ASR-SD systems, the ASR and SD components
are trained independently and combined using their respective
timestamps, a process we refer to as reconciliation. This rec-
onciliation can lead to speaker attribution errors, compounded
by inherent errors in the SD system, especially during speaker
transitions or in overlapping speech regions [17], [18]. Although
End-to-End Neural Diarization (EEND) systems can handle
speech overlaps, since the speaker agnostic ASR system can
only detect words from one speaker at a time, this can still
produce speaker errors in overlap regions.

Lexical information, which complements acoustic data, can
be crucial for accurately assigning speaker labels [17]–[20].
For example, by analyzing a transcript like "how are you i am
good", one can infer a speaker change between "how are you"
and "i am good". In this work, we propose SEAL, a Speaker
Error Corrector using Acoustic-conditioned Large Language
Models, which integrates the LLM’s inherent lexical knowledge
with acoustic information from the SD system. Additionally, we
introduce a Constrained Decoding (CD) technique to prevent
the LLM from hallucinating, ensuring that the generated
word sequence strictly matches the original transcript without
modifying any words.

II. RELATED WORK

Some earlier works [21], [22] have utilized lexical knowledge
for speaker diarization, but they have been limited to speakers
with specific roles. More recently, a Lexical Speaker Error
Correction (SEC) framework [17] and its extension with
acoustic score fusion [18] have been proposed to correct general
speaker errors using a pre-trained Language Model (LM)
encoder, such as RoBERTa, demonstrating good improvements.
However, these methods only utilize a pre-trained LM encoder
and do not take advantage of the capabilities of modern
instruction-tuned large LLMs.

A few works [23]–[25] have explored the use of LLMs for
either performing SD or correcting speaker errors. For instance,
[23] uses an LLM to predict speaker probabilities for the next
word, incorporating these into beam search decoding along
with the acoustic scores for speaker diarization. However, this
approach will be computationally expensive since the LLM
must be invoked for every word in the transcript, and the beam
search adds additional complexity. Other works [24], [25]



Fig. 1: Proposed framework of SEAL.

employ LLMs to correct speaker diarization errors from an
acoustic SD module by prompting a fine-tuned LLM to rectify
errors in the transcript. A limitation of this approach is that the
LLM lacks access to acoustic information in the audio which
can lead to over or under-correction as highlighted in [18].
Additionally, a challenge with LLM-based speaker correction
is word hallucination. To address this, [24] introduces the
"Transcript Preserving Speaker Transfer" (TPST) algorithm,
which maps predicted speaker labels back to the input word
sequence. While this removes any word hallucinations in
the final output, it doesn’t eliminate the LLM’s inherent
tendency to hallucinate, potentially leading to sub-optimal
speaker assignments.

SEAL builds on the strengths of [18] and [24], proposing a
method to condition the LLM with acoustic speaker scores for
enhanced error correction. Inspired by previous works [26]–
[28] that apply various constraints to guide LLM generation, we
implement a similar Constrained Decoding (CD) strategy, which
prevents LLM word hallucinations by ensuring that generated
word sequences strictly match the original transcripts. Our
results demonstrate that these approaches lead to significant
improvements in speaker error correction.

III. SPEAKER ERROR CORRECTION USING
ACOUSTIC-CONDITIONED LLMS (SEAL)

An overview of the SEAL framework is shown in Fig 1.

A. First pass Speaker Diarization Module

EEND is a preferred choice as a first pass acoustic diarization
module for our setup as it can efficiently handle overlaps and
output soft speaker scores that can acoustically ground the
LLM decisions for speaker error correction. Given the frame
level acoustic features X = {xi}ti=1, X ∈ Rt×f , where t
and f represent the number of frames and feature dimensions
respectively, the speaker posteriors P = {pi}ti=1, P ∈ Rt×k,
where k represents the number of speakers, are obtained using
an EEND network fEEND

{p1, p2, ..., pt} = fEEND(x1, x2, ..., xt) (1)

These frame-level posterior scores are then median-filtered
and mean-pooled at the word level to produce word-level

Fig. 2: Different input transcript formats with acoustic score
mapped to 3 labels: low, med, high.

aggregated posteriors {si}Wi=1, where W is the number of words
in the transcript, with values ranging from [0, 1], following
the approach in [18].

B. Acoustic Conditioning

To account for the fact that LLMs are predominantly trained
on text and often struggle with understanding numerical values
without specialized mechanisms [29], we propose converting
the soft scores from the EEND module into more easily
interpretable labels. We classify the scores into three categories:
“low”, “medium” and “high”. For each word-level score si, we
assign a category ci based on the following formula:

ci =


high, for Thmed < si ≤ 1

med, for Thlow < si ≤ Thmed

low, for 0 < si ≤ Thlow

The thresholds Thlow, Thmed are tuned based on a dev set
and we refer this component as the “Score Mapper” module in
Figure 1. To assess the effectiveness of this approach, we also
conducted an ablation study using the raw probabilities from
the EEND module as well as a more granular categorization
approach that divides the scores into 10 uniformly distributed
integer classes between [0,1]. We refer to the model finteuned
only on ASR transcripts without any acoustic conditioning
as LLMAC-none, the model acoustically conditioned with raw
speaker probabilities si as LLMAC-prob, the model acoustically
conditioned with speaker confidence labels ci as LLMAC-label
and the LLM conditioned on the 10 integer classes as LLMAC-int.
These comparisons are detailed in Section V.

With these different conditioning strategies, we experimented
with two transcript formats: “Spkturn”, which follows the same
format from [24], [25] where speaker turns are indicated after
the speaker label, and “Spkword” where each word is followed
by its speaker label and corresponding acoustic label. These
formats are illustrated in Fig 2.

C. Constrained Decoding (CD)

Fine-tuned LLMs may still hallucinate and produce non-
verbatim outputs [24], [25]. To address this, [24] introduces



the "Transcript Preserving Speaker Transfer" (TPST) algorithm,
which maps predicted speaker labels to the input word sequence.
While this approach prevents word hallucinations in the final
output, it does not stop the LLM from generating hallucinations
during inference. This limitation affects speaker assignments
since TPST doesn’t leverage lexical context from the input or
generated transcripts.

To maintain output fidelity while correcting speaker errors,
we propose a Constrained Decoding (CD) strategy that limits
the LLM’s predictions to specific words at each step. The
permitted words are either the next word or a speaker label in
the Spkturn format, and only speaker labels in the Spkword format,
as the LLM only needs to predict speaker labels preceding
each word. CD guarantees that the LLM adheres to the input
word sequence while adjusting speaker labels, preventing word
hallucinations. Algorithm 1 provides details of this strategy.

Algorithm 1 Constrained Decoding Algorithm
Inputs

Input sequence of length M : winp = {w_ini}Mi=0

LLM model: LLM()
Allowed words module: get_allowed_words()

Outputs
Output sequence of length O : wout = {w_oi}Oi=0

1: procedure CONSTRAINEDDECODING
2: wout ← “” ▷ Initialize wout to empty string
3: for 1 ≤ j ≤ N do ▷ N is max supported seq length
4: curr_inp_seq ← {w_ini}ji=0

5: next_out_dist← LLM(curr_inp_seq)
6: allowed_words← get_allowed_words(i, winp)
7: for each word in next_out_dist do
8: if word not in allowed_words then
9: next_out_dist[word]← -inf

10: end if
11: w_oj ← argmax(next_out_dist)
12: if w_oj is <EOS> then
13: break
14: end if
15: wout ← wout + w_oj
16: end for
17: end for
18: end procedure

IV. EXPERIMENTAL SETUP

A. Dataset and Metrics
We use the Fisher dataset [30], [31] to finetune LLMs.

The same pre-processing as [18], [24] was done to get a
single channel Fisher audio inputs and respective ground-truth
transcripts. We held out the same partition of the dataset as
test set as mentioned in [18], [24], [32]. In addition to that,
we also test our models on CALLHOME American English
(CHAE) [33] and RT03-CTS [34].

We use the concatenated minimum permutation WER or
cpWER [35] and ∆cp [23] as our main evaluation metrics

TABLE I: Ablation of acoustic conditioning variants for Spkturn
format with TPST. Model names are defined in Section III-B

CHAE

Models Dev Test

cpWER ∆cp cpWER ∆cp
LLMAC-none 17.6 7.47 14.88 5.89
LLMAC-prob 18.2 8.07 15.15 6.16
LLMAC-int 17.4 7.27 14.72 5.73
LLMAC-label 15.17 5.09 13.75 4.83

which appropriately captures the combined ASR and Speaker
Diarization related errors.

B. Baseline

We use the same baseline EEND and ASR system as reported
in [18]. The EEND model consists of 6 stacked self-attention-
based Transformer layers, 8 attention heads with a hidden size
of 256 and 1024 internal units in the position-wise feed-forward
layer. The ASR system comprises of a Conformer Acoustic
model [36] and a n-gram Language model.

We chose the publicly available Mistral 7b Instruct v0.2
[37] as the backbone LLM for this work similar to [25]. We
fine-tune the LLM without any confidence scores and refer to
it as the LLMAC-none which serves as our finetuning baseline.
For decoding, we use the TPST algorithm from [24] as our
decoding baseline.

C. Training

The LLM fine-tuning was done using 4 A10 GPUs each
with a VRAM of 24GB. We set our batch size to 4, gradient
accumulation steps to 5 and a maximum sequence length to
1000. We used Quantized Low-Ranked Adaption of Language
Models [38] for efficient fine-tuning with a rank of 64
similar to [25], to balance computational resources with model
performance improvements. Similar to [18], [24], the input
transcripts to the LLM are transcribed and diarized by the
ASR, SD systems and the outputs that the LLMs are optimized
on, are the Reference Speaker transferred version of the input
transcripts (referred as Oracle transcripts in [24]). This is to
ensure that the LLMs produce verbatim transcripts and only
correct the speaker labels.

During fine-tuning, each batch contained chunks limited to 64
words. The chunks were normalized, converted to lowercase,
and stripped of punctuation before being processed by the
LLM. The thresholds for acoustic score integration, Thlow

and Thmed, were set at 0.5 and 0.8, respectively, following
optimization on the Fisher dev set.

V. RESULTS AND DISCUSSION

We evaluate different acoustic-conditioning variants of the
SEAL models in Table I. As expected, it can be observed
that LLMAC-prob struggles with raw probabilities, leading to
degraded ∆cp compared to the non acoustic-conditioned model,
LLMAC-none. Although LLMAC-int shows marginal improve-
ments, LLMAC-label yields the best results by converting speaker
probabilities into simple, parsable words.



TABLE II: Evaluation of SEAL models with other baselines. LLMAC-none is the LLM without acoustic-conditioning, LLMAC-label
is the SEAL model with speaker scores mapped to labels. Best scores are bolded and second best are underlined.

Transcript
Format

Decoding/
Post-processing

Fisher CHAE RT03-CTS

Models Test Dev Test Dev Test

cpWER ∆cp cpWER ∆cp cpWER ∆cp cpWER ∆cp cpWER ∆cp
Acoustic SD - - 12.53 3.72 15.52 5.44 14.33 5.41 9.96 3.57 10.03 3.87
LSEC [17] - - 11.62 2.81 15.15 5.07 13.51 4.59 9.17 2.78 9.15 2.99
LLMAC-none Spkturn TPST 11.2 2.71 17.5 7.37 14.7 5.71 11.1 4.06 10.83 4.66
AG-LSEC [18] - - 10.95 2.14 14.15 4.07 12.95 4.03 8.7 2.31 8.36 2.2
LLMAC-label Spkturn TPST 11.73 2.88 15.17 5.09 13.47 4.37 9.77 3.38 9.25 3.09
LLMAC-label Spkturn CD 11.29 2.49 14.08 4.01 13.1 4.18 9.35 2.95 8.75 2.59
LLMAC-label Spkword CD 10.92 2.12 13.6 3.53 13.6 4.68 8.45 2.05 8.5 2.34

Fig. 3: A Qualitative example of the incremental speaker error corrections with each of the proposed strategies. Errors are
shown in red and the incremental corrections in green.

Based on these findings, Table II benchmarks the best-
performing SEAL model, LLMAC-label, against other baselines.
The first part of the table presents models without acoustic
conditioning and the first-pass Acoustic SD baseline. All
systems share the same SD and ASR components, resulting
in identical WERs, as word hallucinations with the LLMs are
eliminated using TPST or CD. The LLMAC-none with Spkturn
format replicates the DiarizationLM framework [24] but with
a different LLM (Mistral 7b Instruct v0.2) and baseline ASR,
SD systems. While LLMAC-none improves error correction on
the Fisher test set, it underperforms on other datasets, likely
due to differing conversation types (informal vs. formal) and
limited domain adaptability. LSEC [11] performs best among
text-only models, underscoring the limitations of LLMs in
handling natural conversations without further conditioning.

The second part of Table II compares acoustic-conditioned
models using CD or TPST for generating verbatim transcripts.
AG-LSEC [18] consistently performs well across datasets,
leading in two out of the five data splits. Acoustic conditioning
significantly improves LLM performance across all datasets,
as demonstrated by the LLMAC-label rows. CD further enhances
performance significantly compared to TPST as demonstrated
by the TPST and CD rows with Spkturn transcript format.
Additionally, changing the transcript format from Spkturn to
Spkword boosts performance in most data splits. Overall, non

acoustic-conditioned LLMs lag behind specialized LSEC [17]
and AG-LSEC [18] models, while SEAL models outperform
AG-LSEC in most splits, achieving relative ∆cp improvements
of 24-43% over first-pass Acoustic SD. Qualitative examples
of the different correction strategies are shown in Figure 3.

VI. CONCLUSION

We introduce SEAL, a novel Speaker Error Corrector
using Acoustic-conditioned LLMs that incorporates acoustic
information from the SD system, coupled with a constrained
decoding strategy to ensure that generated word sequences align
precisely with the original transcripts. Our evaluations across
three datasets shows that acoustic conditioning significantly
enhances the LLM’s Speaker Error Correction (SEC) capabili-
ties and its ability to generalize to diverse conversation styles.
The combination of our acoustic-conditioning and constrained
decoding consistently surpasses both the first-pass acoustic SD
baseline and the non acoustic-conditioned LLMs with TPST
on the Fisher, Callhome, and RT03-CTS datasets. While SEAL
models also achieve modest improvements over the specialized
LSEC models, they offer the additional advantage of being
versatile for tasks beyond SEC and will continue to improve
as more powerful LLMs are developed. Future work will focus
on expanding this framework to languages beyond English.
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