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ABSTRACT

Pitch estimation is an essential step of many speech processing algo-
rithms, including speech coding, synthesis, and enhancement. Re-
cently, pitch estimators based on deep neural networks (DNNs) have
been outperforming well-established DSP-based techniques. Unfor-
tunately, these new estimators can be impractical to deploy in real-
time systems, both because of their relatively high complexity, and
the fact that some require significant lookahead. We show that a
hybrid estimator using a small deep neural network (DNN) with tra-
ditional DSP-based features can match or exceed the performance of
pure DNN-based models, with a complexity and algorithmic delay
comparable to traditional DSP-based algorithms. We further demon-
strate that this hybrid approach can provide benefits for a neural
vocoding task.

Index Terms— Pitch estimation, instantaneous frequency

1. INTRODUCTION

Algorithms for estimating pitch based on DSP techniques have been
around since the 1960s, and are still widely used in real-time systems
to this day. These traditional DSP-based estimators include methods
based on the cross-correlation [1], on the cepstrum [2], and on the in-
stantaneous frequency [3]. While these methods are computationally
efficient and generally produce acceptable results, many are subject
to errors such as pitch period doubling. They can also be difficult to
properly tune to minimize these errors while maximizing robustness
to noise.

Han et al. [4] were among the first to propose using neural net-
works to estimate the pitch in a supervised fashion. They propose us-
ing deep feedforward and recurrent neural networks to predict a log-
scale quantized frequency value from spectral features – effectively
treating pitch estimation as a supervised classification problem. Kim
et al. introduced CREPE [5], a convolutional model for pitch esti-
mation which was the first end-to-end model to learn pitch from the
waveform. CREPE has demonstrated that it is remarkably robust to
a wide variety of real world conditions and to noise. CREPE has
been followed by further work on end-to-end pitch estimation, such
as FCNF0 [6], DeepF0 [7] and Penn [8]. In contrast, HarmoF0 [9]
and [4] use frequency-domain input features, whereas [10] uses the
instantaneous frequency.

While machine learning based estimators are able to out-perform
DSP-based techniques, they can be impractical to deploy in real-time
systems. This is due to their high complexity, and the fact that some
require significant lookahead (about 30 ms for CREPE).

We propose a hybrid approach that uses efficient DSP-derived
features to make the pitch estimation task easier for a small DNN.
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Among potential features that can be used to estimate the pitch, we
focus on the cross-correlation and the instantaneous frequency (Sec-
tion 2). We propose DNN models (Section 3) that are designed to
take advantage of those features – either in isolation or in combina-
tion. We use the existing CREPE model as ground-truth for training
our algorithm (Section 4). We show that the proposed approach can
match or exceed the performance of pure DNN-based models, with
a complexity and algorithmic delay comparable to traditional DSP-
based algorithms (Section 5).

2. INPUT FEATURES

A DNN with sufficient capacity can be used to approximate almost
any signal processing transformation. That is clearly demonstrated
by CREPE [5], which is able to estimate the pitch from a time-
domain waveform. However, many transformation cannot be effi-
ciently implemented using DNN layers. For example, learning a
discrete Fourier transform would require O(N2) operations rather
than the O(N logN) complexity of the FFT. Similarly, since the
cross-correlation requires multiplying the signal by itself, it cannot
be implemented as a single layer and has to rely on the non-linear ac-
tivation function to approximate the multiplicative effect. For these
reasons, we propose starting from features that are already known to
be useful for pitch estimation: the LPC residual cross-correlation [1]
and the instantaneous frequency [10]. We make the assumption
that these features still contain most of the relevant pitch informa-
tion from the time-domain signal, while allowing us to use a much
smaller DNN than would otherwise be needed.

Let x[n] represent our signal. The short-time cross-correlation
(Xcorr) for time-lag τ of a signal x[n] with window length N and
hop size H is defined as,

Rx[m, τ ] =

N−1∑
n=0

x[mH + n]x[mH + n− τ ] . (1)

We further normalize the above by the sum of the squared norm of
the two sequences as explained in [11]. In practice, we find that com-
puting the cross-correlation on the LPC prediction residual produces
a more accurate pitch estimate, so that is what we use throughout
this work. We only consider integer lags τ , which means that the
cross-correlation will have a higher relative accuracy for low pitch
values (large periods) than for high pitch values where the integer
lag becomes a limiting factor.

The instantaneous frequency features are directly inspired from
frequency reassignment (FR) [12]. The idea behind FR is to re-
fine frequency estimates by using the time-derivative of the phase.
The main issue is that the reassigned frequencies are no longer con-
strained to be regular, thus preventing their usage with neural net-
works that implicitly assume the data to lie on a regular grid. What



we propose instead is to work directly with the discrete time deriva-
tive of the STFT phase, which is simply a shifted version of the ac-
tual reassigned frequency [12]. While this is not the exact expression
for reassignment, we rely on our DNN to learn a more expressive
map from these features for efficient pitch estimation. To avoid the
phase wrapping discontinuity between π and −π, we use a normal-
ized complex representation of the phase difference

∆x[m, k] =
δx[m, k]

|δx[m, k]| , (2)

δx[m, k] = Fx[m, k] · Fx[m− 1, k]∗ , (3)

where ∗ denotes the complex conjugation and Fx[m, k] denotes the
short-time Fourier transform (STFT) of x[n] with window w[n] of
size N and hop size H such that

Fx[m, k] =

N−1∑
n=0

w[n]x[mH + n]e
−j2πkn

N . (4)

Our instantaneous-frequency (IF) features include the log-
magnitude spectrum, as well as the real and imaginary components
of ∆x[m, k] in (2). It is worth noting that through the inclusion
of the log-magnitude spectrum, our IF features are theoretically
sufficient to compute the cepstrum, which is also a useful pitch
estimation feature. Unlike the Xcorr features, the IF features are
most accurate for high pitch values where the harmonics are clearly
separated in the STFT. For lower pitch values, extracting an accurate
pitch out of the spectral features is more challenging.

For both Xcorr and IF, we use N = 320 and H = 160. We
choose to use a rectangular window due to its narrower main lobe
and the fact that we do not need the high frequencies that would
be affected by spectral leakage. The sampling rate for our exper-
iments is Fs = 16 kHz. We compute the cross-correlation over
τ ∈ [0, 256], making the dimensionality of our Xcorr features 257.
For the IF, we restrict ourselves to the first 30 discrete frequencies,
thus making our IF dimensionality 90. We propose three different
strategies: learning the pitch individually from both the Xcorr or IF
features as well as combining the two to obtain a joint IF-Xcorr pitch
estimator.

3. MODELS

CREPE uses stacked 1D convolutional layers (CNN) on the input
waveform to predict the pitch distribution. Since it is directly es-
timating pitch from the waveform, its first layers have to learn a
relevant representation for estimating the pitch. Borrowing some
knowledge from signal processing, we already know that the Xcorr
and IF are robust features for pitch estimation. We use them as input
features, and propose architectures that can best take advantage of
these features. Traditional Xcorr-based pitch estimators attempt to
find the peak in the noisy cross-correlation in a similar way that ob-
ject detection works for images. For that reason, we propose using
stacked 2D causal convolutional layers to do the Xcorr peak-finding.
When it comes to the IF-based features, there is no “local object” to
detect, but rather we need to consider all frequencies simultaneously.
For that reason, we argue that fully-connected (FC) layers are a more
appropriate way of processing the IF information.

Since the pitch of speech is usually smooth, it is common to
use Viterbi-like post-processing to enforce some temporal consis-
tency in the output [13]. However, instead of hardcoding the tempo-
ral dynamics and transition probabilities, we believe that recurrent
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Fig. 1. Network Architectures for pitch estimation from a) Cross-
correlation (Xcorr), b) Instantaneous Frequency (IF) and c) Joint (IF
+ Xcorr) features. All networks output a distribution over the possi-
ble pitch values, the pitch estimate p∗ for a frame is the argmax of
the network output.

networks – more specifically gated recurrent units (GRU) – can ad-
equately model the temporal dynamics. Based on that, we propose
three different network architectures depending on the input features
(Fig. 1):

a) Xcorr: 3 causal 2D CNN layers of size 257 with 3×3 kernels
and output 8 channels (except for the last layer). The CNN
output goes to a 64-dimensional FC bottleneck, followed by
a size-64 GRU. The GRU output goes to an FC layer of size
192. The total number of trainable parameters is 54689.

b) IF: FC layer of input size 90 and output size 64, followed by
a size-64 GRU and a FC layer of output size 192. The total
number of trainable parameters is 47424.

c) Joint IF+Xcorr: For the IF features, we use the same FC
layer as b). For the Xcorr features, we use the same stack of
CNN layers as a). The IF and Xcorr outputs are then concate-
nated and fed to a bottleneck FC layer with (64 + 257) inputs
and 64 outputs, followed by a size-64 GRU and a FC layer of
output size 192. The total number of trainable parameters is
68769.

We use tanh(·) as the activation in intermediate layers and soft-
max on the final output. We work with input batch sizes of 256,
and training sequence length of 100 frames (or 1 second). We use
the Adam optimizer with a learning-rate of 10−3. All networks
are trained for 10 epochs on a single V100 GPU and minimize the
weighted categorical cross-entropy loss. We weigh the categorical
cross-entropy by the voicing to ignore estimates for the unvoiced
frames.

4. DATA AND EVALUATION

As with most machine learning-based approaches, we need labelled
data to train our models, which is a challenge for speech. The stan-
dard dataset for labelled pitch for speech is the PTDB dataset [14],
which provides the raw audio and the reference laryngograph pitch
estimate. We observed however that the reference pitch estimates are
not always reliable. We can see this by plotting the histogram of the
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Fig. 2. Histogram of PTDB reference pitch for female and male
speakers. The bump in the female histogram below 125 Hz is due to
period doubling errors.

reference pitches for male and female voices, as shown in Fig. 2. We
see a second peak for female speakers around 100 Hz, which we ver-
ified to be caused by period doubling on the reference laryngograph
pitch estimation. Furthermore, we observe erroneously marked ref-
erence pitch estimates for unvoiced and silent sections. Thus, we
avoid using the PTDB dataset to train our models. However, we use
it for evaluation, but only after removing the female reference pitches
below 125 Hz, and by performing energy thresholding to remove the
reference pitches for unvoiced sections.

As a proxy metric to see how well our pitch estimator works,
we use the raw cent accuracy (RCA), defined as the fraction of the
frames where the predicted pitch lies within a 50-cent (half a semi-
tone) interval of the reference ground truth pitch,

RCA =

∑
voicedJ |output − reference| < 50 K

Nvoiced
, (5)

where JP K is the Iverson bracket that returns 1 when P is true and
0 otherwise, and Nvoiced is the total number of voiced frames. The
output pitch and reference pitch in the expression above are both in
cents. The cent scale is a logarithmic frequency scale, given by the
transformation,

fcent = 1200 · log2
(
fHz

f0

)
, (6)

where f0 is the reference frequency (62.5 Hz in our case, corre-
sponding to a period of 256 samples at 16 kHz).

CREPE is not trained on PTDB, however it performs quite well
on pitch estimation for PTDB (CREPE’s RCA on PTDB is over
90%). We thus propose using the CREPE estimated pitch as our
ground-truth labels for training. We run CREPE, along with Viterbi
post-processing on approximately 200 hours of several open speech
datasets [15, 16, 17, 18, 19, 20, 21, 22] and use the CREPE pitch
(quantized to the nearest 20 cent interval) as our ground-truth pitch
for training (we use CREPE’s confidence output and threshold it as
a proxy for voicing).

To make our models more robust to noise, we augment our
training data. For level augmentation, we randomly scale the in-
put with gains lying in the [-60,10] dB range. For filtering, we
generate random 2nd order IIR filters with coefficients lying in the
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Fig. 3. RCA for different SNR values on PTDB. All of our proposed
models are significantly more robust to noise than CREPE, and also
outperform the purely DSP-based LPE.

[-3/8, 3/8] range like in [23]. For additive noise, we use the Demand
dataset [24] which contains multi-channel recordings of real-world
noise. We use the first 4 minutes of noise for training and the
last minute for evaluation. We keep 20% of the training dataset
unmodified, and augment the remaining 80%.

5. RESULTS

We test a total of 5 pitch estimation models: CREPE, the default
estimator from the LPCNet vocoder, as well as the 3 proposed algo-
rithms1 (Xcorr, IF, Joint). The LPCNet pitch estimator (LPE) [25] is
a variant of the RAPT algorithm [13], which maximizes the normal-
ized cross-correlation of the LPC residual, followed by a Viterbi-like
causal smoothing. For CREPE we use the full (non-causal) Viterbi-
decoded pitch output (which is also what the network was trained
on). For evaluating the models in different Signal-to-noise (SNR) ra-
tio conditions, we use the Demand dataset again (separate split from
training to ensure that the network has not been trained on evalua-
tion noise). We compute the RCA on the entire PTDB dataset with
a 50 cent threshold. We also note here that none of our models (or
CREPE) have been trained on the PTDB dataset.

Given a frame of 10 ms, all proposed models estimates the pitch
at the first sample given, making their algorithmic delay equal to 10
ms. For LPE, the algorithmic delay is also 10 ms, whereas CREPE’s
(pre-Viterbi) algorithmic delay is about 32 ms.

Fig. 3 shows the variation of RCA with SNR for the 5 different
pitch estimators, and Table 1 shows the RCA computed for clean
PTDB. We see that both the Xcorr and IF models perform simi-
larly for different SNR values. Combining both clearly improves
performance throughout and pushes the RCA on clean PTDB close
to CREPE. All the neural pitch models perform better than LPE for
all SNRs. The proposed models are also significantly more robust to
noise than CREPE, especially at lower SNRs.

1An implementation of the proposed algorithm is available at
https://gitlab.xiph.org/xiph/opus/-/tree/icassp2024

https://gitlab.xiph.org/xiph/opus/-/tree/icassp2024


Model IF Xcorr Joint LPE CREPE
RCA (%) 90.77 90.83 92.02 83.39 92.31

Table 1. RCA (higher is better) for models evaluated on clean PTDB
(SNR → ∞).

Model IF Xcorr Joint LPE CREPE
Features 0.001 0.008 0.009 0.010 -
DNN 0.009 0.048 0.050 - 282
Total 0.010 0.056 0.059 0.010 282

Table 2. Complexity of the different pitch estimation algorithms,
expressed in GFLOPS, where one multiply-add operation counts as
two FLOPS. We separately evaluate the complexity of the feature
computation and that of the DNN model.

5.1. Complexity

Table 2 compares the complexity of the proposed algorithms to that
of the LPE and CREPE estimators. Even the most complex of the
proposed models is about 5000x less complex than CREPE, de-
spite performing similarly on clean conditions (Table 1) and better in
noisy conditions (Fig. 3). As a comparison, even the CREPE “tiny”
model2 has a complexity of 7.4 GFLOPS. The proposed IF model
has a complexity that is equivalent to that of the traditional LPE,
despite being significantly more accurate in all tested conditions.
Considering that the Xcorr model is almost as complex as the joint
model, while having an accuracy similar to that of the IF model, we
can conclude using the cross-correlation alone is not a good choice.
In other words, instantaneous frequency features are always useful
for pitch estimation – regardless of whether a cross-correlation is
also used.

5.2. Improved Neural Vocoding

In many low-complexity vocoders, a key element is estimating the
pitch of the input so that it is correctly replicated during synthesis.
If this is not done accurately, then we can observe pitch instability
effects in the output speech, which negatively impacts the user ex-
perience. For that reason, we evaluate the proposed pitch estimators
in the context of a neural vocoding task where the estimated pitch
is used to resynthesize the input speech signal. We use the LPC-
Net [26] vocoder since it is designed to work with pitch features and
uses LPE as its default estimator. The LPCNet models are trained
following the training procedure specified in [27], with the same
public speech dataset, with the only difference being the pitch es-
timator. We measure the pitch mean absolute error (PMAE) of the
synthesized speech, as described in Takahashi et al. [28] and Mustafa
et al. [29]. The PMAE is defined as the mean L1 norm between the
pitch of the synthesized speech and that of the input speech, where
the pitch is computed using the YAAPT algorithm [30]. Table 3
shows the PMAE, along with the PESQ [31] values when evaluated
on the clean PTDB dataset. All of the proposed estimators show a
clear improvement over LPE – both in terms of PMAE and PESQ,
with the Xcorr and Joint models performing best overall. The ac-
curacy of the proposed model does not significantly improve when
increasing the complexity further.

2https://github.com/marl/crepe

Model IF Xcorr Joint LPE CREPE
PMAE 3.301 3.214 3.232 3.500 3.289
PESQ 3.086 3.105 3.109 2.979 3.040

Table 3. PMAE (lower is better) and PESQ MOS-LQO (higher is
better) for LPCNet synthesis on the PTDB dataset.

6. CONCLUSION

This work demonstrates that accurate pitch estimation can be
achieved using a small DNN combined with a sufficiently rich set of
input features. In particular, the proposed system demonstrates the
usefulness of instantaneous frequency features in determining the
pitch. Results show that a combination of instantaneous frequency
and cross-correlation features can achieve almost the same accuracy
as an end-to-end DNN approach but with a significantly lower com-
plexity, and that using just the instantaneous frequency alone makes
it possible to match the complexity of traditional pitch estimators
with a significantly higher accuracy, even in noisy conditions. We
demonstrate through a speech synthesis task that the improved pitch
estimation can provide benefits to real-life speech applications.
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