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Abstract—Credit ratings are traditionally generated using
models that use financial statement data and market data, which
is tabular (numeric and categorical). Practitioner and academic
models do not include text data. Using an automated approach
to combine long-form text from SEC filings with the tabular
data, we show how multimodal machine learning using stack
ensembling and bagging can generate more accurate rating
predictions. This paper demonstrates a methodology to use big
data to extend tabular data models, which have been used by the
ratings industry for decades, to the class of multimodal machine
learning models.

Index Terms—credit ratings, multimodal, machine learning,
long-form text

I. INTRODUCTION

Modeling credit risk of companies is an important field
in quantitative finance and began with small-scale machine
learning with the work of Altman [1], who applied dis-
criminant analysis to build a classifier to predict corporate
defaults over horizons of one year or more. The feature set
in his model comprised just 5 variables, but this model, now
widely known as Altman’s Z-score, still has wide appeal.
Ohlson [2] also used financial ratios to predict bankruptcy.
Since then, modeling corporate credit risk has gained increas-
ing sophistication, with structural models discussed in Black
and Scholes [3] and Merton [4] that use equity returns and
volatilities in a stochastic differential equation framework to
generate probabilities of default. Other reduced-form models,
such as Jarrow and Turnbull [5] and Duffie and Singleton [6],
extract probabilities of default from bond and credit default
swap spreads. Credit prediction therefore traversed from the
initial binary classification models of bankruptcy prediction to
continuous measures of malaise such as default probabilities.

In between binary choice models and continuous probability
outputs, rating agencies use these models to assign companies
into credit class buckets, known as ratings, which range from
investment grade such as AAA, AA, A, and BBB to below
investment grade (or junk) that includes BB, B, CCC, CC,
C, and D, where D is default. This intermediate granularity
of credit risk (ratings) has become the standard for assessing
corporate credit quality. Both structural and reduced-form
models (also known as “market” models) work well for firms
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that have publicly traded securities (stocks and bonds) and
have been commercialized in models such as Sobehart and
Stein [7] and Sobehart, Keenan, and Stein [8]. For modeling
the ratings of companies that do not have public securities, i.e.,
private companies, models have to rely on financial statement
data, such as the income statements or balance sheets of firms,
and this approach (known as “accounting-based”) also applies
to public firms as well. Therefore, the earliest models were
also the most generally applicable, and were coincidentally
much more akin to machine learning, albeit on very small
data. Further, it is shown in Das, Hanouna, and Sarin [9] that
accounting-based models perform comparably to market-based
ones. For a recent survey of all models, see Altman [10].

In this paper, we show how the literature and practice in
this field may be extended with modern machine learning
approaches. Using a dataset of accounting features, we train
models to predict the ratings of a firm. We then extend this
feature set with long-form text from Securities and Exchange
Commission (SEC) filings, thereby creating a multimodal
dataset on which we perform ratings modeling. Extant rating
models do not use text at all, though rating analysts manually
notch ratings based on their reading of SEC filings, external
news, and internal reports. By showing how text can be
incorporated into standard numeric feature rating models, we
greatly expand the scope of these models. Getting high quality
text for such an exercise is not simple, and we developed
an automated retrieval engine to curate SEC filings for our
analysis. Using an open source dataset of ratings and account-
ing features, we download and join quarterly reports filed by
companies with the SEC (i.e., 10-K/Q forms). This mixed
dataset of long-form text and tabular data is then used to train
a machine learning model that constructs a stack ensemble of
various base models such as boosted decision trees, neural
networks, etc., using n-gram representations of text. These
representations are joined with the tabular data and trained
as a stack ensemble with learned weights using the methods
of Erickson et al. [11]. We believe this is the first paper in
the finance literature to apply multimodal machine learning to
credit modeling using large-scale text.

Other papers in the literature have looked at SEC text in



order to assess financial (credit) constraints on firms, e.g., Bod-
naruk, Loughran, and McDonald [12]. Readability and length
of SEC filings have been shown to be relevant in assessing a
firm’s future prospects, e.g., see Bonsall, Leone, Miller, and
Rennekamp [13] and Ertugrul, Lei, Qiu, and Wan [14]. In
these papers, machine learning is not undertaken nor is long-
form text applied. Instead, text is reduced to a numerical score
by matching to a set of words denoting financial constraints.
This approach is replete in the natural language processing
(NLP) literature in finance, e.g., see reviews such as Das
[15], Gentzkow, Kelly, and Taddy [16], and Loughran and
McDonald [17]. We also implement this approach to create
features for our dataset, but further include long-form text of
the Management Discussion and Analysis (MD&A) section of
10-K/Q filings for multimodal machine learning. With these
multimodal data, we apply ensemble machine learning to the
multimodal representations of the data and obtain results that
show improvements in classification of companies into rating
buckets over models that use only tabular accounting data.
We find that both the full text of the MD&A section and the
numerical scores from the text add value. In our experiments,
the classification accuracy increases by up to 5%.

A corporate credit rating is based on an assessment of a
company’s likelihood of default. Credit rating agencies use
assessments from financials and markets to obtain numeric
assessments of business risk, solvency, cash flows, and default
likelihood, to obtain a “model” rating, where this tabular data
may be used in regression and machine learning models to
determine preliminary ratings. The preliminary rating is then
assessed by analysts to make a final determination of the rating
using judgments based on other information, which is mostly
textual.! Both quantitative and qualitative information are
used by a rating agency, and qualitative judgments are based
on external sources such as analyst reports, published news
articles, overall industry analysis, etc. Multimodal machine
learning has the potential to include both types of information
in a single model, which brings two benefits. One, a model
that includes text in addition to tabular data has the potential
to deliver greater accuracy. Two, it is feasible to use the text in
the model to provide explanations for the rating generated by
the model. Currently analysts have to create an explanation
from scratch in written form, but a multimodal model will
provide an initial explanation generated from the text, which
may then be further curated by the rating analyst. Suffice it is
to say that the credit rating process is essentially a human one,
and multimodal machine learning has the potential to augment
this process. This paper shows how this may be undertaken
as follows: Section II (data), Section III (results), and Section
IV (conclusion).

II. DATA

The dataset used for multimodal machine learning is con-
structed in three steps. First, we obtain data about the financials

!See the procedure followed by Morningstar: tinyurl.com/47n9hk96. See
also: corporatefinanceinstitute.com/resources/knowledge/finance/credit-rating.

of the companies in the form of a tabular dataset that includes
the rating categories of these companies on all dates. Second,
for each firm and date combination, we obtain the SEC
10-K/Q filing for that quarter and join it with the tabular
data. Third, the text in the MD&A section of the filing is
extracted to form another column in the dataset and additional
columns are generated to contain numerical scores describing
the text for features such as readability, sentiment, etc. The
fully enhanced dataframe is then submitted to our multimodal
machine learning algorithm that can ingest multiple columns
of text and tabular data. The following subsections describe
our data engineering in more detail.

A. Corporate ratings dataset

We obtain the corporate credit ratings dataset from Kag-
gle.? This comprises 2029 ratings issued by the major rating
agencies. For each rating, 25 numerical-valued financial ratios,
drawn from the balance sheet and income statement, comprise
the features in the tabular dataset. These fall into various
categories, including: Liquidity Ratios (current ratio, quick
ratio, cash ratio, and days of sales outstanding), Profitability
Ratios (gross profit margin, operating profit margin, pretax
profit margin, net profit margin, effective tax rate, return on
assets, return on equity, return on capital employed, and EBIT
per revenue), Debt Ratios (debt ratio and debt equity ratio),
Operating Performance Ratios (asset turnover, fixed asset
turnover, company equity multiplier, enterprise value multiple,
and payable turnover), and Cash Flow Ratios (operating cash
flow per share, free cash flow per share, cash per share,
operating cash flow to sales ratio, and free cash flow to
operating cash flow ratio).

The industry sector for each company is also available as a
categorical variable, as is the ticker. The dataset also provides
the date of the rating, the company name, and the rating agency
that provided the rating. Since a company shows up multiple
times in the dataset and we know that ratings usually move
smoothly, i.e., migrate to adjacent classes and very rarely jump
classes, the ticker symbol may be a valuable feature as it
provides an anchor to the range of ratings within which a
company resides. We present results with and without the
ticker as a feature. Using the tickers does improve model
accuracy.

The distribution of ratings in the dataset is highly imbal-
anced. It comprises all rating levels: (1) investment grade
(AAA, AA, A, and BBB) and (2) below investment grade
(junk) (BB, B, CCC, CC, C, and D), for a total of 10 ordinal
classes. Since the AAA class has very few ratings, we club it
with AA and name this new class AA+. Similarly, classes CC,
C, and D have very few samples, so we club them all with
CCC and name the new class CCC-. This reduces the number
of classes to 6 slightly better balanced classes, though there is
still reasonable label imbalance, where there are 96, 398, 671,

2See https://www.kaggle.com/agewerc/corporate-credit-rating. The github
repo is https:/github.com/Agewerc/ML-Finance. Credit ratings data in this
repo is originally sourced from https://public.opendatasoft.com/ and financial
information from https://financialmodelingprep.com/.



490, 302, and 72 samples in the AA+, A, BBB, BB, B, and
CCC- class respectively.

B. Retrieving SEC filings

The dataset from the previous subsection is enhanced by
retrieving SEC 10-K/Q filings for each quarter that the tickers
appear in the dataset. Every firm files a 10-Q form for the
first three quarters of its fiscal year and a 10-K (annual
report) in the final quarter. SEC filings are widely used by
finance companies as a source of information to make trading,
lending, investment, and risk management decisions. Required
by regulation, they are of high quality and veracity. They
contain information about the quality of companies and their
outlook. The number of machine downloads of SEC 10-K and
10-Q filings grew from 360,861 in 2003 to 165,318,719 in
2016 [18]. We build a SEC retrieval engine that is used to
download 10-K/Q forms to match our ratings dataset and then
join the data to create an enhanced dataframe, which we call
“TabText” (Tabular+Text). We build a parser to convert the
XML of the SEC filings into plain text and extract the MD&A
section. The mean length of the text in the MD&A section
is over 5,000 words. Hence, the dataframe now comprises a
column of long-form text.

C. NLP Scoring

We further enhance this dataframe by computing the “NLP
scores” from the long-text column. For each SEC filing,
we generate 11 scores for positivity, negativity, litigiousness,
polarity, risk, readability, fraud, safety, certainty, uncertainty,
and sentiment. Readability is based on the Gunning-Fog
index [19]. Sentiment is based on VADER (Valence Aware
Dictionary and sEntiment Reasoner), which is a lexicon and
rule-based sentiment analysis tool [20]. The remaining scores
are based on counting matches to word lists that we curated
in a semi-automated manner for the various concepts we want
to score the text for.> We computed these scores and enhanced
the dataframe with 11 additional numeric columns.

In the next section, we discuss the machine learning models
that we use on the multimodal dataframe and present the
results.

III. ANALYSIS AND RESULTS

We describe how to train machine learning models from the
multimodal dataset obtained from the previous section to pre-
dict the corporate credit ratings. We describe our experiments
and discuss the results.

A. Parsimonious multimodal machine learning

To process the multimodal dataset and train machine learn-
ing models from it, we use a recently developed automated
machine learning (AutoML) framework called AutoGluon-
Tabular (AGT) by Erickson et al. [11]. In recent years, several
AutoML frameworks have been developed that make the

30ther sources of such word lists are the Loughran and McDonald lists,
https://sraf.nd.edu/textual-analysis/resources/, but the types we used are not
all covered by those lists.

deployment of high performance machine learning models
easier. These frameworks implement the best practices for data
preprocessing, feature engineering, model training, etc., and al-
low users to train machine learning models from raw data with
minimal effort. Among the available AutoML frameworks, we
choose to use AGT since it is significantly more accurate while
being able to handle heterogeneous (e.g., multimodal) datasets
in a seamless way. The key components of AGT are as follows.

1) Data processing: When given a labeled dataset, AGT
first infers the problem type (classification or regression) based
on the labels, then it performs model-agnostic data preprocess-
ing to transform the raw data into the common features shared
for all the base models. This preprocessing step categorizes
each feature into numeric, categorial, text, or date/time feature.
Date/time features are subsequently converted into numeric
values, and columns that have little predictive value (e.g., IDs)
are discarded. To handle the text columns such as the MD&A
section, AGT transforms them into numeric vectors of n-gram
features. Depending on the available memory, AGT will retain
only the n-grams with the highest frequency. After this model-
agnostic preprocessing step, we obtain a set of numeric and
categorical features that will be passed to each base model for
further model-specific processing.

2) Base models: Given the preprocessed data, AGT auto-
matically trains several machine learning models (called the
base models) and combines them into an ensemble for better
accuracy. The base models trained by AGT can be categorized
into the following groups.

e k-Nearest neighbors [21]. This group includes two
variants of the k-nearest neighbors model: one that gives
uniform weights to all points in each neighborhood (KNN-
Unif) and one that weights the points by their inverse distances
(KNN-Dist).

e Random forest [22]. The random forest classifiers also
include two variants. The first variant uses the information gain
of nodes to measure the quality of a split (RForest-Entr), while
the second variant uses the Gini impurity for that purpose
(RForest-Gini).

e Extra trees. This group implements the extremely
randomized trees [23], which either use information gain
(ExtraTrees-Entr) or Gini impurity (ExtraTrees-Gini) to mea-
sure the quality of a split.

e Boosted decision trees. This group includes Categorical
Boosting (CatBoost) [24], eXtreme Gradient Boosting (XG-
Boost) [25], and Light Gradient Boosting Machine (Light-
GBM) [26]. AGT also trains two other variants of LightGBM:
one that uses extremely randomized trees (LightGBM-XT) and
one that is customized for large datasets (LightGBM-Large).

e Neural networks. AGT implements neural networks with
an architecture suitable for tabular datasets containing cate-
gorical and numeric features [11]. The architecture consists of
per-variable embeddings that are connected to the output layer
by a linear skip-connection as well as a 3-layer feedforward
network (see Erickson et al. [11] for details). AGT provides
two implementations for such a network. One implementation



uses the FastAl framework (NeuralNet-FastAl) [27], while the
other uses the MXNet framework (NeuralNet-MXNet) [28].

3) Stack ensembling: After training the base models above,
AGT combines them into a multi-layer stack ensemble, where
the concatenated outputs of the base models are fed into the
next layer, which consists of multiple stacker models. The
stacking process is then repeated with the stacker models as
base models up until the final layer, where the stacker models
are aggregated using weighted ensemble selection [29].

4) Repeated k-fold bagging: To further improve the accu-
racy of the stack ensemble, AGT also applies k-fold bagging
at all layers of the stack. Instead of doing a single train-
ing/validation split to construct the ensemble, k-fold bagging
uses k-fold cross-validation to obtain out-of-fold predictions,
which will be used to train the stacker models. Additionally,
AGT repeats the k-fold bagging process multiple times and
averages all out-of-fold predictions over the repeated bags to
further reduce over-fitting.

B. Experiments and results

We conduct two experiments to predict corporate credit
ratings of companies that respectively consider a binary clas-
sification problem (investment grade vs. below investment
grade) and a multi-class classification problem (for each
rating class). For efficient training, we only use a one-layer
ensemble without bagging in these experiments. Subsequently,
we consider a computationally more expensive experiment
that uses multi-layer stack ensembles and repeated k-fold
bagging to improve the accuracy of the models. We describe
the experiments and discuss the results below.

1) Binary classification: In this first experiment, we predict
whether a company’s rating is in the investment grade or below
the investment grade. This problem can be formulated as a
binary classification problem where a label 1 indicates that
the company is in the investment grade (BBB and better), and
a label O indicates that it is below the investment grade (BB
and lower).

Within this experiment, we consider two scenarios. The first
scenario keeps the companies’ tickers column in the input data,
while the second scenario removes the column from the input.
Since the rating of a company tends not to change drastically,
the knowledge of its rating at any particular period can serve
as an anchor that helps improve the prediction of its rating
at other periods. Thus, we would expect to achieve better
prediction accuracy in the first scenario. It is an interesting
question as to whether rating agencies would want to use the
anchoring approach for machine learning, as this is useful
for rating companies that have been rated before, but may
not work well for as yet unrated firms; although even in this
case, it is possible to obtain a rating of a closely matching
firm. For completeness, we decided to provide results for both
approaches.

In each scenario above, we run AGT 10 times on 10 differ-
ent random train/test splits (80% of the samples for training
and 20% for testing) and compute the average test accuracy as
well as its standard error over the 10 different runs. Therefore,

(a) With tickers.

(b) Without tickers.

Fig. 1: Confusion matrices of the best model in two scenarios
of the binary classification experiment.

all reported accuracy values are the averages over 10 runs
along with their standard errors. For shorter training time, we
disable bagging and only use one-layer ensemble, where the
base models are combined into the weighted ensemble directly.

We show the results for the binary classification experiment
in Table I. The average confusion matrices (over 10 runs) of
the overall best model in both scenarios are also given in
Fig. 1. We include the results for three cases, where (1) no text
from the SEC filings is used (i.e., using only tabular corporate
credit rating data), (2) the NLP scores of the MD&A section
are added, and (3) both the NLP scores and the full MD&A
texts are added.

From the results in Table I, we can observe that the
weighted ensemble achieves the best accuracy (88.92%) when
the ticker column is kept in the input and no text is used.
When the NLP scores are added, CatBoost achieves the best
accuracy (89.48%) among all the models and also the best
accuracy for this scenario. When the full MD&A text is
added, CatBoost still achieves the best accuracy, although
its accuracy drops slightly to 89.43%. In the scenario with
no tickers, the ensemble achieves the best accuracy for all
cases, and using both NLP scores and MD&A text results in
the best accuracy overall (87.39%). Using text in addition to
tabular data therefore provides further improvement in model
accuracy.

2) Multi-class classification: Our second experiment aims
to predict the exact ratings of the companies. As discussed in
Section II, we group the AAA and AA companies into a single
group named AA+, and group all companies having ratings
CCC or below into a single group named CCC-. In total,
we have 6 groups of ratings: AA+, A, BBB, BB, B, CCC-,
and we aim to predict which group a company belongs to.
This problem can be formulated as a multi-class classification
problem with 6 labels corresponding to the groups above.
Except for the different label set, we keep other settings similar
to the binary experiment.

Table II shows the results for this experiment, and Fig. 2
shows the confusion matrices of the overall best model in both
scenarios. From the results, the weighted ensembles have the
best performance when there are tickers in the inputs, and the
ensemble that uses NLP scores without full MD&A text has



TABLE I: Average test accuracies of the base models and the weighted ensemble in the binary classification experiment.
Numbers in parentheses are rankings of the models in the corresponding column. Bold numbers indicate the best accuracies

among those in the corresponding column.

Model With tickers No tickers
No text +NLP +NLP+MD&A No text +NLP +NLP+MD&A
CatBoost 88.79+0.34 (2) 89.48+0.46 (1) 89.43+0.46 (1) 82.04+0.54 (4) 83.18+0.48 (4) 86.01+0.39 (7)

ExtraTrees-Entr
ExtraTrees-Gini
KNN-Dist
KNN-Unif
LightGBM
LightGBM-Large
LightGBM-XT
NeuralNet-FastAl
NeuralNet-MXNet
RForest-Entr
RForest-Gini

82.610.43 (5)
82.86-20.46 (4)
70.52-20.48 (13)
69.06-0.46 (14)
82.14-£0.64 (7)
79.98-0.63 (12)
82.4440.69 (6)
87.44-£0.47 (3)
81.0840.74 (9)
80.74+0.28 (10)
80.74-£0.41 (11)

83.4040.51 (6)
83.6740.56 (5)
70.3440.53 (13)
68.4240.64 (14)
83.2540.67 (7)
81.6740.34 (11)
83.9240.54 (4)
86.904-0.33 (3)
82.7140.59 (9)
81.5040.35 (12)
81.7240.37 (10)

86.2140.34 (7)
86.0340.35 (8)
70.3440.53 (13)
68.4240.64 (14)
86.7540.45 (5)
85.524:0.42 (11)
87.1940.41 (4)
87.44-0.60 (3)
82.1240.48 (12)
86.0120.54 (9)
86.554-0.41 (6)
85.79-40.46 (10)

82.00--0.47 (6)
82.02-40.24 (5)
70.52-40.48 (13)
69.06-0.46 (14)
82.14-0.64 (3)
80.71£0.37 (11)
82.340.57 (2)
71.1140.60 (12)
81.5340.62 (7)
80.94--0.40 (9)
80.79--0.34 (10)
81.500.67 (8)

82.81-0.65 (7)
83.0540.51 (5)
70.340.53 (13)
68.4240.64 (14)
83.2540.67 (3)
81.5540.46 (10)
83.65+0.52 (2)
75.6440.58 (12)
82.88-£0.90 (6)
81.7040.44 (9)
81.35£0.48 (11)
82.76-0.61 (8)

85.89--0.36 (8)
86.13-£0.46 (6)
70.3440.53 (13)
68.4240.64 (14)
86.75-£0.45 (4)
85.57-0.38 (9)
87.24-0.42 (2)
84.630.64 (11)
83.050.60 (12)
86.87-£0.46 (3)
86.18-£0.50 (5)
85.47-£0.41 (10)

89.141+0.52 (2)

83.55+0.36 (1)

84.36+0.53 (1)

87.39+0.39 (1)

XGBoost 81704058 (8) 83254051 (8)
Ensemble 88.9240.44 (1)  89.36-051 (2)
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(a) With tickers. (b) Without tickers.

Fig. 2: Confusion matrices of the best model in two scenarios
of the multi-class classification experiment.

the best overall accuracy (67.22%). On the other hand, when
there are no tickers in the inputs, the best accuracy is obtained
by the ensemble with both NLP scores and MD&A text
(63.72%). This is consistent with the observation in the binary
classification experiment: with tickers, adding only NLP scores
is the most helpful, while without tickers, it is best to add both
NLP scores and MD&A text. From the confusion matrices
in Fig. 2, most of the errors are only one rating off from
the correct rating. This is to be expected since there is well-
known overlap across adjacent rating categories (Hanson and
Schuermann [30]). If we do not count the one rating off errors,
the accuracy from the confusion matrices in this experiment
will increase to 95%.

3) Effects of multi-layer ensembling and bagging: In the
previous experiments, we only use AGT with one-layer en-
sembles and without bagging for efficient training. In this
experiment, we allow AGT to train with multi-layer ensembles
and with repeated k-fold bagging. In particular, we consider
the best setting for each scenario in the two experiments above
and select only the top three base models (according to the

internal validation accuracy of AGT) to run AGT with multi-
layer ensembles and bagging. When running this expensive
process, restricting the base models to only the top three would
significantly reduce the training time. In this experiment, the
depth of the ensemble and k are chosen automatically by AGT.

Table III gives the results for this experiment. From the
table, using deep ensemble and bagging can improve the
accuracy of the best models obtained from the previous
experiments, even when we restrict the deep ensembles to
contain only three base models.

IV. CONCLUDING DISCUSSION

The paper enhanced standard financial statement variables
with long-form SEC text to enable multimodal machine learn-
ing, with multimodal representations, stack ensembling, and
model tuning. This is the first paper to do so and it shows
that adding text can improve ratings models. There are two
extensions that we believe will add value in future work: (i)
We can develop a multimodal explainer to generate textual
explanations of the predicted ratings, and (ii) for a subset of
firms that have liquid trading in public equity markets, we can
include standard features such as distance to default [7] and
assess whether there is further model improvement.
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TABLE II: Average test accuracies of the base models and the weighted ensemble in the multi-class classification experiment.
Numbers in parentheses are rankings of the models in the corresponding column. Bold numbers indicate the best accuracies
among those in the corresponding column.

Model With tickers No tickers
No text +NLP +NLP+MD&A No text +NLP +NLP+MD&A
CatBoost 65.49+0.37 (2) 65.76+0.42 (3) 62.7140.66 (4) 54.3840.74 (8) 55.30£0.85 (8) 62.17+£0.67 (4)

ExtraTrees-Entr
ExtraTrees-Gini
KNN-Dist
KNN-Unif
LightGBM
LightGBM-Large
LightGBM-XT
NeuralNet-FastAl
NeuralNet-MXNet
RForest-Entr
RForest-Gini
XGBoost

60.5740.83 (4)
59.2440.73 (5)
41.7040.63 (13)
37.2240.68 (14)
54.584-0.46 (10)
51.80-£0.54 (11)
56.60-0.50 (6)
65.1540.47 (3)
51.0141.01 (12)
55.05-0.60 (8)
55.4740.41 (7)
54.9540.51 (9)
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42.7140.75 (13)
38.204-0.95 (14)
54.460.65 (10)
53.740.60 (11)
57.0940.74 (6)
65.964-0.71 (2)
53.5540.79 (12)
56.2340.87 (7)
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56.214-0.40 (8)

61.3840.81 (8)
62.0040.69 (6)
42.7140.75 (13)
38.20-0.95 (14)
61.9040.50 (7)
58.4540.64 (11)
62.9840.48 (3)
63.9940.92 (2)
54.56+0.82 (12)
60.5740.57 (10)
60.7140.65 (9)
62.0240.62 (5)

58.05--0.68 (1)
58.0340.59 (2)
41.700.63 (13)
37.22-£0.68 (14)
53.9940.57 (9)
52.070.60 (11)
56.72-20.47 (4)
43.9240.62 (12)
52.0941.34 (10)
54.9040.57 (6)
54.5640.54 (7)
55.1740.46 (5)

60.94--0.52 (1)
59.984-0.47 (2)
42.7140.75 (13)
38.204-0.95 (14)
54.7540.51 (9)
53.60:0.50 (10)
58.3040.51 (4)
46.3840.98 (12)
53.1841.22 (11)
55.4440.75 (7)
55.7440.73 (6)
56.0140.63 (5)

61.4340.51 (6)
61.5540.62 (5)
42.7140.75 (13)
38.204-0.95 (14)
61.1620.78 (7)
58.40-40.86 (11)
63.5740.44 (2)
58.67-4-0.80 (10)
54.9040.58 (12)
60.49+0.57 (8)
60.3740.57 (9)
63.2040.57 (3)

Ensemble

65.96+0.57 (1)

67.22+0.53 (1)

64.48+0.79 (1)

58.00+0.55 (3)

59.26-£0.56 (3)

63.721+0.49 (1)

TABLE III: Comparison of the accuracies of the best models
that use multi-layer (deep) ensembling and repeated k-fold
bagging with the best models in Tables I and II, which use
only one-layer (shallow) ensembling without bagging. Bold
numbers indicate the best accuracies in the corresponding row.
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