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ABSTRACT

Products contribute to carbon emissions in each phase of their life
cycle, from manufacturing to disposal. Estimating the embodied
carbon in products is a key step towards understanding their impact,
and undertaking mitigation actions. Precise carbon attribution is
challenging at scale, requiring both domain expertise and granular
supply chain data. As a first-order approximation, standard reports
use Economic Input-Output based Life Cycle Assessment (EIO-LCA)
which estimates carbon emissions per dollar at an industry sector
level using transactions between different parts of the economy.
EIO-LCA models map products to an industry sector, and uses the
corresponding carbon per dollar estimates to calculate the embodied
carbon footprint of a product. An LCA expert needs to map each
product to one of upwards of 1000 potential industry sectors. To
reduce the annotation burden, the standard practice is to group
products by categories, and map categories to their corresponding
industry sector. We present CaML, an algorithm to automate EIO-
LCA using semantic text similarity matching by leveraging the
text descriptions of the product and the industry sector. CaML
uses a pre-trained sentence transformer model to rank the top-5
matches, and asks a human to check if any of them are a good match.
We annotated 40K products with non-experts. Our results reveal
that pre-defined product categories are heterogeneous with respect
to EIO-LCA industry sectors, and lead to a large mean absolute
percentage error (MAPE) of 51% in kgCOe/$. CaML outperforms
the previous manually intensive method, yielding a MAPE of 22%
with no domain labels (zero-shot). We compared annotations of a
small sample of 210 products with LCA experts, and find that CaML
accuracy is comparable to that of annotations by non-experts.
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« Information systems — Retrieval models and ranking; «
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1 INTRODUCTION

A rapid increase in greenhouse gas (GHG) emissions is warming
our planet [33]. Household products and services contribute to 60%
of these emissions [22]. Attribution of GHG emissions, measured
in units of kilograms of carbon dioxide equivalent (kgCOze), to
each product will drive awareness and change, from individual
consumers to large corporations. Life Cycle Assessment (LCA) is a
scientific framework that is used to estimate environmental CO2e
emissions of products starting from raw material extraction to
disposal or other end-of-life pathways [17, 21]. To precisely estimate
the carbon embodied in a product, we need to know the materials
and processes of manufacturing, transport data from manufacturer
to customer, emissions during use such as fuel for a stove, and
how the product is disposed. For global impact, we need to do
such analysis on millions of products. We posit machine learning
(ML) will play a crucial role in accelerating carbon attribution, LCA
modeling, and decision-making for carbon abatement.

We take initial steps towards this vision by automating COxe
estimation of products at an industry sector level. Economic Input-
Output (EIO) LCA reduces the effort involved by estimating the
aggregate sector-level COze emissions based on the materials and
energy use measured through economic transactions [41, 46]. To
assign carbon emissions to a product, we need to find its corre-
sponding industry sector defined by standards such as North Amer-
ican Industry Classification System (NAICS) [25] and International
Standard Industrial Classification [42]. We use NAICS in our exper-
iments, and consider products sold in the United States (US). The
US government publishes an EIO-LCA database which provides the
kgCOze per dollar estimate for aggregated NAICS codes [19].

Picking from one of 1K+ NAICS codes is time consuming, and
requires LCA expertise. To reduce annotation burden, carbon foot-
print reports aggregate products into categories, and then map
the category to an industry sector [3, 26]. We consider the man-
ual product category mapping based carbon emission estimates
as our baseline. We minimize the annotation burden and increase
the accuracy of product to NAICS mapping using natural language
processing (NLP). Prior works have treated this as a supervised
classification problem [40], where the product features are the input
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Figure 1: CaML uses semantic text similarity to match products with industry codes and estimate COze emissions with EIO-LCA.

and NAICS code is the output. However, the previous results were
on hundreds of products, and need prohibitively large number of
labelled examples for a model to generalize to millions of products.
Instead, we leverage the text descriptions of the NAICS code and
use semantic text similarity matching to identify an appropriate
NAICS code for a product.

Our CaML (carbon assessment with ML) algorithm uses SBERT,
a bi-encoder transformer model that generates a vector embedding
given a sentence as an input, and uses cosine similarity between sen-
tence embeddings as a measure of semantic similarity [35]. SBERT
models are pre-trained on natural language inference datasets, and
we use it as a zero-shot method to match products to NAICS codes.
Given a product, we consider the top-5 matches ranked by cosine
similarity and use it for annotations by a human. Choosing from
five instead of 1K+ NAICS codes makes the annotation task much
easier (~5x increase in labeling throughput). Human annotations
help us both evaluate the zero-shot performance, and fine-tune the
SBERT model for this specific domain. Figure 1 gives an overview
of the CaML algorithm.

We consider products in the US retail sector for our experiments.
We annotated 40K products using an annotation service, a dataset
that is two orders of magnitude larger than prior state-of-the-art.
We consider annotators as non-experts, and get consensus across
5 annotations per product. For our baseline, we use product cate-
gories defined by an e-commerce retailer. Treating the annotations
as ground truth, we find that the baseline of mapping product cate-
gory to NAICS codes gives an accuracy of 11% (a random classifier
would give <0.1%). When we translate the NAICS codes to carbon
emissions in units of kgCO2e/$ using EIO-LCA, the product cat-
egory mappings give a mean absolute percentage error (MAPE)

of 51%. The NAICS codes matches using the pre-trained SBERT
model substantially outperforms the baseline, giving an accuracy
of 48% (+3700bps) and a kgCOze/$ MAPE of 22% (-2900 bps). We
further annotated a random subset of 210 products with LCA ex-
perts, and found that non-experts are 46% accurate with a MAPE
of 30%. CaML, on the other hand, gives an accuracy of 48% and
MAPE of 25%. Therefore, the zero-shot CaML model is a scalable
replacement for non-experts with about the same performance.

We open source our code and dataset with a permissive license!.

2 BACKGROUND AND RELATED WORK
2.1 Life Cycle Assessment

LCA relies on life-cycle inventory, a dataset containing all rele-
vant environmental, material and energy flows, to perform impact
assessments such as global warming potential (GWP) and fresh
water depletion. Our focus is on GWP, measured as carbon diox-
ide equivalent (COze). There are two primary approaches to LCA:
process-based and Economic Input-Output analysis-based (EIO)
[10]. A process-based LCA is a bottom-up approach that tracks all
the inputs (i.e. material and energy) and outputs (i.e. emissions and
environmental wastes) of a product across its supply chain. The
process LCA framework allows practitioners to dive deep into im-
pacts of a specific product to identify hotspots in the supply chain.
However, process-based LCAs are labor and time intensive, often
requiring full tear-downs of the products.

EIO-LCAs take a top-down macroeconomic approach using
supply-use tables provided by governments to estimate the emis-
sions associated with the production of a unit currency worth of a

Uhttps://github.com/amazon-science/carbon-assessment-with-ml
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given good or service. An input-output matrix of industry sectors
across the economy captures the inter-dependencies between the
sectors as measured through economic transactions. The matrix
quantifies how the demand in one sector impacts the rest of the
economy. Environmental data such as water withdrawals, green-
house gases, energy extraction, etc are collected for each sector in
the economy, and are normalized into a unit of currency based on
gross economic output by each sector [19]. This is an established
method for estimating carbon emissions when detailed data are not
available for a product. EIO is beneficial because it can be used to
conduct LCAs using the accounting and financial data that com-
panies already track. Leveraging these data sources removes the
need to conduct an inventory of manufacturing a product, which
shortens the time required for the analysis. Because we have a wide
variety of products in the market, EIO-LCA can be used to identify
the products that contribute most to environmental impacts, and
target those for impact assessment deep dives.

The EIO-LCA dataset represents the financial transactions for
the entire economy and are simplified by aggregating into industry
sectors defined by economic codes such as North American Indus-
try Classification System (NAICS) [25]. To identify the emissions
associated with a product, we need to map it to one of these indus-
try sectors. The government publishes the carbon emissions for
each industry sector in units of kgCO2e/$, multiplying this factor
by the sale price gives us the total carbon emissions of the product.

2.2 ML for LCA

ML has been recognized as a method to scale LCA in literature [2,
16]. Prior works have used ML in LCA for buildings [6], trans-
portation [32], and various products [44]. We refer the reader to
Algren et al. [2] for a survey. Froemelt et al. [14] used ML to cluster
houses based on their environmental impact using a household con-
sumption dataset. In contrast, we focus on environmental impact
assessment of individual household products. Sousa and Wallace
[40] proposed that ML can be used to create ‘surrogate’ LCAs for
products that lack accurate ground truth information. They used
neural networks to predict the energy consumption of 103 products
with a maximum error of 40%. Wisthoff et al. [44] extended these
ideas, and used ML for LCA of prospective design decisions that
reduce environmental impact of 37 products. Other works have
used ML to dive deeper into the supply chain of a single product,
such as biochar [8] and sugarcane [30], to simulate the impact of
design decisions. To our knowledge, we are the first to attempt
EIO-LCA for products at scale. Our dataset is at least two orders
of magnitude larger than prior works. Unlike prior methods that
relied on simple supervision, we leverage label text for zero-shot
prediction using language models trained on web data.

2.3 ML for NAICS code prediction

Prior works have also used ML for industry sector assignment based
on text descriptions. Wood et al. [45] matched companies to NAICS
codes using text data scraped from the web. They use bag-of-words,
term frequency-inverse document frequency (tf-idf) for feature
extraction, and a multi-layer perceptron for classification. The U.S.
Bureau of Economic Census used write-in surveys to classify new
businesses to specific NAICS codes using bag-of-words and logistic
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regression [13]. Oehlert et al. [31] use ML to validate NAICS codes
reported in company tax forms using tf-idf and random forests. All
of these works rely on a large labeled dataset for supervision. For
example, Wood et al. [45] use 4 million labeled data points.

The Office of National Statistics in the UK use pre-trained embed-
dings to cluster companies and use Singular Value Decomposition
(SVD) to extract descriptions for the cluster [38]. In contrast, our
work matches products to existing NAICS codes with minimal la-
beling. Use of pre-trained language models also helps us support
text from multiple languages, called out as a challenge in prior
works. We focus on matching products to NAICS codes instead of
companies because a single company can manufacture products
that belong to multiple NAICS codes, e.g., Adidas manufactures
both sports gear and apparel. Working with individual products
gives us a more precise estimate of carbon emissions.

2.4 Natural language models

We use pre-trained SBERT models for encoding our text features [35].
SBERT has been used in a similar fashion for applications such as

fact-checking [24], cyberbullying detection [15], and author rep-
resentation [36]. Our algorithm is similar to the label embeddings

proposed by Zhang et al. [48]. We do not claim novelty in NLP

algorithms, and instead demonstrate that application of state-of-
the-art in NLP can lead to step change in performance in the domain

of LCA. While our results are promising, it can be potentially im-
proved by exploiting the hierarchical structure of our labels [29, 37],
or framing the problem as an entailment task [28]. We hope our

work leads to further research into challenging tasks in the domain,
such as automation of process-based LCA which requires extraction

of bill-of-materials of products [5], and inferring environmental

impacts from product disclosure documents [20].

3 DATASET AND CARBON ATTRIBUTION

We have selected the NAICS codes as the primary unit to which a
product will be mapped to. NAICS is published by the US Census
Bureau [25] and the commodities (products and services) in each
NAICS code represent detailed resolution of industry classifica-
tion. A single NAICS code can contain multiple industries. The
6-digit NAICS code are organized hierarchically, with 4-digit and
2-digit NAICS codes forming two levels in the hierarchy. Figure 3
in Appendix illustrates an example.

These NAICS codes are further translated to another set of eco-
nomic codes called Bureau of Economic Analysis codes [1]. BEA
codes aggregate multiple NAICS codes into higher level industry de-
scriptions, which typically map to the corresponding 4-digit NAICS
code. For example, the NAICS codes for chocolate and candy mak-
ing (311320), granulated sugar production (311313), and crystallized
fruits making (311340) all map to the BEA code for sugar and con-
fectionery product manufacturing (311300). These BEA codes can
then be used to calculate carbon emissions using the USEEIO (US
Environmentally Extended Input Output) model published by the
EPA [19]. The USEEIO model assigns a carbon emissions number
with units of kg CO3 equivalents per $1 (kgCOze/$) of commodi-
ties produced by the industries in a BEA code. If the product being
mapped is an artisanal chocolate bar costing $5, then it is first
mapped to the NAICS code for chocolate making (311320), and then
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translated into the BEA code for sugar/confectionery production
(311300), and is finally assigned 5.7 kgCOgze (1.14 kgCOze$ x $5).
We use the NAICS data available from https://naics.com/ and
carbon emission data published by Yang et al. [46].

We use products sold in the US from an e-commerce retailer. We
create two datasets - one containing 40000 products, and another
with 6646 food products for our experiments. The food dataset
represents products from a variety of industry sectors to evaluate
our method. In comparison, sectors such as books have minimal
variations. For product description, we use a concatenation of the
following texts from the product web page: title, description, and
bullet points that describe additional attributes.

4 DATA PRE-PROCESSING

We clean the product and NAICS text descriptions using the Natu-
ral Language Toolkit [27]. We convert the text to lower case, and
replace punctuation with underscores. As our descriptions are in
English, we remove stopwords such as ‘a’, ‘the’, ‘and’. We use lemma-
tization, and remove extra spaces, numbers, and special characters
like parentheses. We remove repeating words such as ‘manufac-
turing’ and ‘production’ from NAICS text descriptions as they do
not aid in classification. While such text cleaning procedures are
not strictly required for natural language processing (NLP) models
like SBERT, we find that cleaning the text leads to improvement
in performance. We hypothesize that product descriptions often
include special characters and formatting that impacts model per-
formance. We present the impact of text pre-processing on model
performance with an ablation analysis in Section 7.3.

5 CAML METHODOLOGY

CaML uses SBERT for semantic text similarity based matching [35].
SBERT, short for Siamese-BERT, is a bi-encoder transformer archi-
tecture that takes tokenized text as input and outputs a fixed-size
embedding. SBERT is based on BERT [12] models that were trained
with masked language model pre-training objective, and produced
state-of-the-art NLP results at the time of release. We use SBERT
models as they are computationally more efficient for sentence sim-
ilarity task compared to BERT cross-encoder models. We use the
“all-mpnet-base-v2” model from the sentence-transformer library
because it gives the best average performance across sentence sim-
ilarity benchmarks [18]. The model has been trained on 1 billion
sentence pairs from a collection of 33 NLP datasets. The model
consists of 110M parameters, is of size 420MB, and outputs 768
dimensional embeddings. We use a sentence length of 128 tokens,
which translates to about 100 English words; the rest of the sen-
tence is truncated. We include an ablation analysis with different
ML models and sentence lengths in the Section 7.3.

NAICS codes have multiple industries associated with them even
at the lowest level in the hierarchy (see Figure 3 in Appendix). CaML
treats each industry description as a separate sentence in our seman-
tic matching algorithm. The specificity of the NAICS description
helps find improved matches with the SBERT model. In total, we
have 11623 NAICS sentences. We observe the best performance
when we concatenate the detailed industry descriptions with their
corresponding BEA title, as we show in Section 7.3.

Balaji et al.

Algorithm 1: Pseudocode for CaML

Input :product_text, naics_text_list, eio_lca_table
Output:product_kgCO2e_per_dollar
similarity_scores = []
product_text = preprocess(product_text)
product_embedding = model(product_text)
for naics_text in naics_text_list do
naics_text = preprocess(naics_text)
naics_embedding = model(naics_text)
similarity_scores.append(
cosine_similarity(naics_embedding, product_embedding))
naics_index = arg_max(similarity_scores)
naics_match = naics_text_list[naics_index]
product_kgCO2e_per_dollar = eio_Ica_table(naics_match)

Algorithm 1 gives an overview of CaML. Both the product text
and NAICS text are fed as inputs to the SBERT model after pre-
processing to get their corresponding embeddings. CaML computes
the cosine similarity of the product embedding and all the NAICS
embeddings, and picks the NAICS code corresponding to the em-
bedding with the highest similarity score as the best match. The
EIO-LCA table consists of kgCOze/$ values for each NAICS code.
A lookup from this table gives us the product kgCOe/$.

6 ANNOTATIONS AND METRICS

Given a product embedding, CaML ranks the NAICS sentences by
the cosine similarity score of their embeddings. The top matches
of NAICS sentences typically correspond to the same NAICS code.
Therefore, CaML considers the top-20 matches, and aggregates
them by their NAICS codes. After aggregation, we consider the
top-5 NAICS codes ranked by decreasing cosine similarity for anno-
tations. It is possible that the top-20 NAICS sentence matches yield
less than 5 unique NAICS codes, we use them as-is for annotations.
Figure 4 shows an example of our annotation task for an artisanal
chocolate in our annotation interface after finding the top NAICS
codes using the CaML algorithm. The artisanal chocolate has 10
NAICS sentence matches that belong to the same NAICS code in
the top-20 matches. CaML aggregates the top-20 NAICS sentences
to get 3 unique NAICS codes. We also include an equivalent Jupyter
notebook based annotation interface in Figure 4 of Appendix B.

We use an annotation service for labeling the data at scale. Given
the product description, an annotator can mark if each of the NAICS
codes are a ‘Match’ with a checkbox, which we translate to a label
of 1 or 0. It is possible that there is more than one match or none at
all. The annotator can choose to skip products if unsure. They can
also look up the product on the web, and verify the description of
NAICS code online. We categorize our annotators as non-experts
(crowd-sourced workers in the annotation service).

We also annotate a small sample of products with LCA scien-
tists, and refer to them as expert annotations. An expert uses their
experience of interpreting the constituents of the supply chain of
a product when assigning a NAICS code. When they compare the
product and NAICS description for annotations, they estimate the
possible upstream industries that make up the supply chain of the
product. E.g., for a chocolate drink some of the possible NAICS
codes are ‘chocolate liquor’, and ‘chocolate milk’. An LCA expert
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Match product to economic sector

Which of the following economic categories best describes the product? *

[ Nuts, chocolate covered, [ Nuts, chocolate covered, [OJNuts, covered (except
made from cacao beans
Below is a product description and the highest ranked economic categories are beans
listed on the right. Select which of these categories are a match. It is possible
hat there is more than one match for a product. It is also possible that there is
no good match. If you are unsure, please select "Not sure . You can learn more

about the product by looking it up on the web. You can learn more about the

made from purchased cacao  chocolate covered),
manufacturing
[JNot sure

OAlmond pastes [J Peanut cake, meal, and

manufacturing oil made in crushing mills

economic category by looking it up on naics.com

Category: Specialty Nut Butter
Maranatha Almond Btr, Raw, Ns, 16-Ounce

Item Package Length: 8.5cm
Item Package Width: 9.3cm
Item Package Height: 15.0cm
Item Package Weight: 0.722 kg

Figure 2: Screenshot of the annotation task from Amazon SageMaker GroundTruth. We provide product and NAICS text
descriptions to the SBERT model and find the top NAICS code matches for a product using cosine similarity. A crowd-source
worker labels if the top ranked NAICS codes match the given product description. It is possible that there is more than one

match or none at all.

knows from their experience that such drinks have a milk compo-
nent in their supply chains and they map the product to ‘chocolate
milk’ without hesitation but a non-expert may get confused be-
tween the two mappings.

We performed a pilot experiment with 10 products across three
pools of workers, with associated costs of $0.012 (low complexity),
$0.024 (medium complexity) and $0.36 (high complexity) respec-
tively. Each product received three annotations to infer a consensus
among workers. We found that the accuracy of annotations were
similar regardless of the costs. We chose the medium complexity
worker pool for larger scale experiments as their throughput (an-
notations per second) was the highest. We gather 5 annotations per
product for larger experiments to increase fidelity.

For evaluating model performance, we only consider the top
match ranked by cosine similarity. We consider a NAICS code
prediction as correct if it is marked as a ‘Match’ by the annotator.
In many cases, the NAICS codes marked by the expert, and the
one matched by the model may be similar. For example, an expert
marked a product as ‘soft drink manufacturing’, whereas the model
matched it to ‘bottled water manufacturing’. Both the NAICS codes
map to the same carbon emission factor obtained from the EIO-LCA
database. Therefore, we also measure the regression error in the
estimation of carbon emissions in terms of kgCOze/$.

We perform all our experiments on a p3.2x instance in Ama-
zon Web Services, which contains an NVIDIA V100 Tensor Core
GPU [4]. Model inference time with this instance is 0.55 ms on
average. It takes an average of 117.4 ms to compute the best NAICS
match for a product using cosine similarity. We have made our code
available in the supplementary material.

7 RESULTS

We collect three sets of annotations with 210, 6646, and 40000
products respectively. The datasets follow a long-tailed distribution.
There are 519 unique NAICS codes in the 40K dataset, where 20%
of the codes accounts for 77% of the products. Other datasets follow
a similar distribution. Table 1 summarizes our results.

7.1 Deep Dive with Small Dataset

We start our analysis from the 210 food products annotated by both
experts and non-experts. The scale of annotation is small as we
have access to only a few experts. We annotated a total of 288 food
products with experts, of which only 210 had a match in the top-5
predictions by the model. Therefore, the recall for this dataset is
73%. We did not collect the expert ground truth for products with
no good matches, and use the remaining 210 products for further
analysis.

7.1.1  Human Annotation Performance. We have 5 non-expert an-
notations per product, and we only consider products for which
at least two annotators agree. We pick the NAICS code that re-
ceives the highest number of votes as a ‘Match’, breaking the tie
randomly when multiple NAICS codes received two votes each. We
refer to the corresponding dataset as Non-expert >2/5. 206 of the
food products we consider received at least two votes per NAICS
code matched. We also report the result with a variation of the
dataset where we consider only those products for which a single
NAICS code received more than three votes. However, it reduces
the number of eligible products to 132 (Non-expert >3/5).

If we use the expert labels as ground truth, annotations from
non-experts give an accuracy of 46% for NAICS codes with >2/5
votes (random classifier gives <0.1% accuracy). In terms of predict-
ing kgCOze/$, the corresponding mean absolute percentage error
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# Products ‘ Ground Truth ‘ Predictor ‘ Accuracy | MAPE | R2 # NAICS
Human-level performance: Expert vs Non-expert annotations
206 Expert Non-expert (>2/5 votes) | 46% 30% 0.21 63
132 Expert Non-expert (>3/5 votes) | 54% 29% 0.43 63
134 Expert 1 Expert 2 49% 13% 0.44 35
Baseline: Product category vs individual product mapping by humans
27708 Non-expert (>2/5 votes) | Category mapping 11% 51% -0.22 503
16960 Non-expert (>3/5 votes) | Category mapping 12% 49% -0.24 472
4591 Non-expert (>2/5 votes) | Category mapping 17% 40% -0.62 244
2817 Non-expert (>3/5 votes) | Category mapping 20% 40% -0.61 206
159 Expert Category mapping 28% 31% -0.47 58
Proposed: Zero-shot CaML model vs human annotations
38218 Non-expert (>2/5 votes) | Zero-shot Model 48% 22% 0.45 519
23283 Non-expert (>3/5 votes) | Zero-shot Model 54% 19% 0.53 497
6318 Non-expert (>2/5 votes) | Zero-shot Model 67% 12% 0.57 260
3879 Non-expert (>3/5 votes) | Zero-shot Model 78% 8% 0.75 225
210 Expert Zero-shot Model 48% 25% 0.34 63
Proposed: Fine-tuned CaML model vs human annotations — 4-fold cross-validation results
6318 Non-expert (>2/5 votes) | Fine-tuned Model 52% 22% 0.19 260
3879 Non-expert (>3/5 votes) | Fine-tuned Model 58% 20% 0.19 225
210 Expert Fine-tuned Model 63% 20% 0.45 63

Balaji et al.

Table 1: Summary of experiment results. We treat the NAICS code from the ‘Ground Truth’ column as the ground truth and
compute metrics against the predicted NAICS codes in the ‘Predictor’ column. Accuracy measures the correctness of the NAICS
code prediction, MAPE and R2 measure the mean absolute percentage error and coeflicient of determination with respect to

kgCO2e per dollar.

(MAPE) is 30% with a coefficient of determination (R?) of 0.21. The
accuracy improves to 54% if we use >3/5 votes. The relatively low
accuracy shows the difficulty of the task, where the annotator needs
to pick from closely related NAICS codes. Even if we consider an-
notations by two experts on the same subset of products, we get
an accuracy of only 49%, albeit with an improved MAPE of 13%.
Prior works on NAICS classification report a similar problem with
errors in manual labeling, with a dataset of labeled food related
NAICS codes giving only 42% accuracy [45]. Therefore, we con-
sider a model that predicts at ~50% or higher accuracy as having
human-level performance.

Krippendorft’s Alpha is a standard measure of inter-annotator
agreement, measured on a scale of 0 to 1 (0 is perfect disagreement,
1is perfect agreement). The Krippendorff’s Alpha for our dataset is
0.31 for the 6K food dataset and 0.25 for the 40K generic products
dataset. We expect the agreement to be low given the large number
oflabels (519 unique NAICS codes) and workers (364). Similar values
have been reported in literature for heavy-tailed distributions [23].

7.1.2  Baseline: Product Category Mapping. Our baseline is a map-
ping of product categories to NAICS codes by experts. The product
categories are defined by an e-commerce service. The categories are
fine-grained, with >5K of them in our dataset. Examples of product
categories include ‘berries’, ‘clipboards’, ‘fitness accessories’, ‘en-
velopes’. To avoid annotation of each product to a NAICS code, it is
common practice to use a mapping of product category to a NAICS
code for carbon footprint reports [3]. However, the categories are
designed for a wide-variety of use cases, and may not align with

the NAICS code definitions. For example, an ‘earpiece headset’ has
the product category ‘fitness accessories’ but the corresponding
NAICS code is ‘telephone apparatus manufacturing’. Of 210 prod-
ucts annotated by experts, we have product category to NAICS
code mapping for 159 of them. Considering the expert annotations
as ground truth, the product category mapping gives an accuracy
of 28%, MAPE of 31% and R? of —0.47. As the set of products that
have both the category mapping and the annotations is a reduced
sample (159 as opposed to 210), this is not a fair comparison. There-
fore, we include results with the same set of products in Table 8 of
Appendix D for both the small and the larger datasets. The results
only change marginally, and our conclusions remain the same.

7.1.3  CaML Performance. We evaluate CaML predictions with
the SBERT pre-trained model. For the 210 food products labeled
by experts, the model yields an accuracy of 48%, with a MAPE
of 25% with respect to kgCOze/$. Therefore, the zero-shot CaML
model is far superior to our baseline, and marginally exceeds the
performance of non-expert annotations. We manually analyzed
the errors made by the model in the expert dataset. About 15% of
them were caused by mislabeling by the LCA expert. 30% of the
predictions were similar to the NAICS code chosen by the LCA
expert (the first four digits of the NAICS code matched), whereas
55% of the errors were not close matches. The errors are primarily
caused by words in the product description that confused the model.
For example, one of the products was a ‘cake icing coloring gel’,
and the model labelled it as ‘cake frosting manufacturing’ whereas
the LCA expert picked ‘food coloring, synthetic, manufacturing’.
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We fine-tuned the model with 4-fold cross-validation. The per-
formance improves to 63% accuracy and 20% MAPE for the expert
dataset. We use the correct NAICS code (as per expert annotation)
among the top-5 ranked by the model as the positive example, and
the other four codes as hard negatives. We use cross-validation as
the 210 products dataset is small relative to typical ML datasets,
and we want to evaluate the performance across all the datapoints.
We experimented with different hyper-parameters manually in one
of the four folds to improve performance: the number of epochs,
the length of sentence, and different ways to clean text. The model
performance remained stable with changes to hyper-parameters,
with a change in accuracy of <2%. We report the results from the
best of these hyper-parameters after evaluation on all four folds,
and use the same hyper-parameters for the other datasets. We list
the ranges of the hyper-parameters we tuned, and their final values
in Appendix C.

7.2 Medium to Large Datasets

The trends we observe in the small dataset continue as we expand
to thousands of products. After filtering out erroneous annotations,
we get a total of 6318 annotated food products with >2/5 votes.
The baseline of product category mapping gives an accuracy of
17%. CaML zero-shot model, on the other hand, gives an improved
accuracy of 67% with a corresponding MAPE of 12%. Therefore,
CaML again substantially outperforms the baseline. We get 3879
products with >3/5 votes, and the conclusion from the results re-
main the same. CaML gets an accuracy of 78% while the baseline
gets 20%. The annotators have an option to pick ‘No good match’ in
the interface, and they do not find a match for 1.5% of the products
with >2/5 votes, i.e., our model recall is 98.5%. The improved recall
compared to the smaller dataset with expert annotations reveals a
gap in domain knowledge when we crowd-source labels.

Surprisingly, CaML performance dropped after fine-tuning. The
cross-validation accuracy is 52% for the >2/5 and 58% for the >3/5
dataset respectively. We hypothesize that the performance of the
model saturates at ~50% accuracy due to noisy annotations by
non-experts. To improve accuracy, we would need ground truth
labels that can be treated as a gold standard. Future works can
endeavour to learn models that correct for noisy labels [9], and
improve annotation quality with better interface design [11].

Our results generalize beyond food products. We evaluate CaML
on a dataset of 40000 products from the US retail sector, going
beyond food items to include clothing, electronics, pharmacy, au-
tomotive and more. We get 38218 products with >2/5 votes, and a
corresponding product category mapping. CaML zero-shot model
achieves a recall of 99.7% and an accuracy of 48% compared to 11%
with our baseline. The resulting carbon estimate gives a MAPE of
22% for kgCOze/$ estimation. The results are similar if we consider
>3/5 votes (Table 1), or control for the same number of products
(Table 8 in Appendix).

7.3 Ablations

We perform an ablation analysis to quantify the impact of our de-
sign decisions. All the results are based on the large 40000 products
dataset. We start with variations of text pre-processing, summa-
rized in Table 2. If we do no pre-processing and use raw text as
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Method Accuracy MAPE R2
No pre-processing 27.3% 37% -0.005
Keep numbers 44.2% 259%  0.38
Keep stop words 36.1% 29.3%  0.29
No lemmatize 43.2% 248%  0.38
Include common words  35.8% 283%  0.21
Default 48.2% 22.5% 0.45

Table 2: Ablation of text pre-processing methods. Our default
method in CaML removes numbers, removes English stop
words, uses lemmatization, and removes common words in
NAICS text such as ‘manufacturing’.

Method Accuracy MAPE R2
BEA title only NA 492%  -0.02
NAICS title only 13.9% 57.4%  -0.75
NAICS + BEA title 20.6% 43.4% -0.1
NAICS description 32.5% 35.4%  -0.005
Default:

NAICS description + BEA title 48.2% 22.5% 045

Table 3: Ablation of NAICS text input. CaML uses a concate-
nation of NAICS industry description and BEA title.

model input, the performance drops dramatically (-20.9% in accu-
racy, +14.5% in MAPE). If we do not remove English stop words
or common words in NAICS description then accuracy drops by
>5%, although the impact to regression metrics is lower. Other
pre-processing steps have minor impact.

Next, we ablate the NAICS text that is used to create the label
embedding (Table 3). The label that is directly attributed to the
carbon emissions is BEA title. However, the title description is too
vague to match with specific products. For example, the BEA title of
‘Oilseed’ includes a variety of products such as mustard, soybean,
flaxseed, and canola. The SBERT models do not infer such hier-
archical relationships and give a low cosine similarity score. This
leads to poor performance, MAPE increases by 26.7% compared to
our default method. As we increase the specificity of the text input,
the performance improves. However, we see the best performance
with a concatenation of detailed NAICS industry description and
the BEA title, which captures the relationship between them.

We vary the sentence length of the inputs to the SBERT model,
and found the performance improves with increasing length (Table
5). Performance is worst at 32 tokens with a 7% reduction in accu-
racy. The performance saturates at 128 tokens, which is the default
choice for the rest of the results.

We measure the impact on performance by using different SBERT
pre-trained models for zero-shot prediction of NAICS codes (Table
5). The performance is inline with the benchmark results published
in sbert.net, with a decrease in performance as model size de-
creases. The ‘all-*’ models were trained on generic text with over 1
billion training pairs. The ‘ga* models were trained on question
and answer sentence pairs and ‘paraphrase®” models were trained
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Sentence length Accuracy MAPE R2

32 41.2% 27.7% 0.31
64 44.8% 24.8% 0.4

Default: 128 48.2% 22.5% 0.45
256 48.2% 22.5% 0.45
512 48.2% 22.6% 0.45

Table 4: Sensitivity to sentence length on CaML performance

Pre-trained Model Acc MAPE R2 Size
paraphrase-albert-small-v2 17.0%  53.2% -0.32  43MB
all-MiniLM-L12-v2 25.6% 39.2% -0.15 120MB
all-distilroberta-v1 21.6% 44.4% -0.41  290MB
multi-qa-mpnet-base-dot-v1 271%  38.3% -0.06  420MB

paraphrase-multi-mpnet-base-v2  20.9% 44.5%  -0.07 970MB

Default: all-mpnet-base-v2 48.2% 22.5% 045 420MB

Table 5: CaML performance with different pre-trained SBERT
models.

Model Accuracy MAPE
XGBoost + TF-IDF + Classification 21.3% -
XGBoost + TF-IDF + Regression - 52.9%
XGBoost + SBERT + Classification  25.6% -
XGBoost + SBERT + Regression - 45.7%
Default: zero-shot CaML 49.4% 22.3%

Table 6: Comparison of CaML zero-shot performance with
fully supervised solution

for paraphrase mining dataset. The generic ‘all-* models trained
with the largest dataset yield the best performance. The ‘mpnet’
model outperforms other models of similar size due to an improved
training objective that uses permuted language modeling instead
of masked language modeling used by BERT [39]. The ‘MiniLM’

model outperforms ‘distilroberta’ with an distillation method [43].

We train fully supervised models on the 40000 product dataset
and compare against CaML zero-shot performance, splitting the
data by 3:1 for train and test. We use XGBoost models with default
hyper-parameters, a well-known and robust algorithm [7]. We
evaluate both TF-IDF vectorization [34] and SBERT embeddings to
convert raw text into vectors. The results are poor, with less than
half the performance of the zero-shot CaML model (Table 6). We
ensure that at least 2 datapoints exist for each class. The number
of NAICS code in the dataset drops from 519 to 444, indicating
the large number of classes which only had one datapoint. The
highly imbalanced nature of the dataset makes it challenging to
learn a good supervised model with just 40,000 datapoints. The
challenging nature of NAICS code classification has been observed
by prior work. Even with 4 million labelled datapoints, Wood et
al. [45] achieve a classification accuracy of only 47.9%.
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8 CONCLUSIONS AND FUTURE WORK

We presented a semantic text similarity algorithm to estimate car-
bon emission of household products using EIO-LCA methods. Our
algorithm matches a product to a corresponding industry sector
for which there are published carbon emission factors in terms of
kgCOze/$. We annotated 40K products in the US retail sector, and
found the zero-shot model predictions significantly outperforms
manual mapping of product category to an economic sector. CaML
zero-shot method also outperform direct supervision with a lim-
ited number of labelled examples. We annotated a small sample of
products with LCA experts, and find that the model predictions are
comparable to the annotations by a non-expert. These initial results
are promising, and significantly reduce reliance on annotations
compared to prior state-of-the-art methods based on supervision.

We focused on text based prediction of industry sectors. In some
cases, the product text descriptions are ambiguous because of brand-
ing and keywords optimized for search engines. Use of product
images with a multi-modal model can generate more appropriate
embeddings. The hierarchy of NAICS codes can also be exploited
to improve classification accuracy by encoding it as part of the loss
function [47].

Although we mapped products to NAICS codes to complete the
EIO-LCA, process-based LCAs face similar manual bottlenecks. For
example, when conducting a process-based LCA, one must first
identify the materials and manufacturing processes used to create
a product. Then, each material or process must be assigned to the
most appropriate environmental impact factor. Additionally, this
work enables us to not only quantify greenhouse gas emissions
of a product category, but also opens the door to include water,
waste, biodiversity, and a host of other environmental and socially
relevant impact categories in future LCAs.

We want to empower consumers to understand and reduce their
own carbon footprints. The first enabling step in that direction is
footprint estimates for the products. The effort to more accurately
map hundreds of millions of products to the most appropriate envi-
ronmental impact factor requires a scalable and accurate prediction
algorithm. Use of machine learning is new in this domain. We
have made initial strides towards estimating carbon emissions at
scale. For downstream applications, we need to determine the un-
certainties associated with the model predictions, and take the
uncertainties into account in decision making.

While we have focused on estimating the overall carbon foot-
print, there is additional work required to compare two products
and determine which of them have lesser carbon emissions. To make
such decisions, we need to be more precise about which aspects of
the product that impact the carbon footprint. Currently such work
is done manually by experts, tools to automate or augment such
decisions are an important direction of future work.
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APPENDIX
A HIERARCHY OF NAICS CODES

Code Industry Title

NAICS codes follow a hierarchical structure

1" Agriculture, Forestry, Fishing and Hunting
21 Mining
22 Utilities

23 Construction EIO LCA Carbon emission estimates are based on 4-digit NAICS codes
31-33 Manufacturing

3113 Sugar and Confectionery Product Manufacturing
42 Wholesale Trade

311313 Beet Sugar Manufacturing
311314 Cane Sugar Manufacturing
311340 Nonchocolate Confectionery Manufacturing

311351 Chocolate and Confectionery Manufacturing from Cacao Beans

311352 Confectionery Manufacturing from Purchased Chocolate

Baking chocolate made from purchased chocolate

Candy stores, chocolate, candy made on premises not for immediate consumption

Chocolate (coating, instant, liquor, syrups) made from purchased chocolate

Even the G—digit NAICS code have multiple types Chocolate coatings and syrups made from purchased chocolate
of industries attached to them

Chocolate covered candy bars made from purchased chocolate

Chocolate covered granola bars made from purchased chocolate

Cocoa, powdered drink, prepared, made from purchased chocolate

Figure 3: NAICS codes represent economic sectors defined by the US government.

B ANNOTATION TASK

Category: 20060 Artisanal Chocolate
Tony's Chocolonely Caramel Sea Salt Milk Chocolate Bar, 6 0z

One 6 oz. Caramel Sea Salt Milk Chocolate Bar

32% milk chocolate with a crunchy confetti of caramel morsels and sea salt

Made with outstanding all-natural and non-GMO ingredients

Fairtrade Gertified treat with the perfect salty-sweet crunch

Exists to support cocoa farmers and make 100% slave-free chocolate the industry norm

311320: Candy bars, chocolate (including chocolate covered), made from cacao beans. Votes: 10 Match Mot a match
311330: Nuts, chocolate covered, made from purchased chocolate. Votes: 8 Match Not a match
311340: Synthetic chocolate manufacturing. Votes: 2 Match Not a match

Figure 4: Screenshot of the annotation task from our Jupyter notebook. We provide product and NAICS text descriptions to
the SBERT model and find the top NAICS code matches for a product using cosine similarity. An annotator labels if the top
ranked NAICS codes are a ‘Match’ or ‘Not a match’. We use the annotations as labels for fine-tuning the SBERT model. It is
possible that there is more than one match or none at all. In the example shown above, the first two options are good matches

as they both describe a chocolate industry. It is difficult to tell from the product description if the manufacturer purchased the
chocolate or made it directly from cacao beans.
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C HYPER-PARAMETERS
We manually tuned the hyper-parameters in one of the four folds of our 210 product dataset. We provide the range of hyper-parameters we
tuned, and the final values in Table 7. The rest of the hyper-parameters are the default values listed in sbert.net.

Table 7: Hyper-parameters for fine-tuning the CaML model.

Hyper-parameters Tuning Range Final Value

Token length {128, 256,512} 128

Epochs 4-10 5

Warm up steps - 100

Batch size - 16
D RESULTS WITH SAME NUMBER OF

PRODUCTS
Table 8: Results where we control the number of products to be the same in both baseline and proposed solution. We treat the
NAICS code from the ‘Ground Truth’ column as the ground truth and compute metrics against the predicted NAICS codes in
the ‘Predictor’ column. Accuracy measures the correctness of the NAICS code prediction, MAPE and R2 measure the mean
absolute percentage error and correlation of determination with respect to kgCO2e per dollar.

# Products ‘ Ground Truth ‘ Predictor ‘ Accuracy ‘ MAPE | R2
Human-level performance: Expert vs Non-expert annotations
156 Expert Non-expert (>2/5 votes) | 44% 31% 0.29
132 Expert Non-expert (>3/5 votes) | 54% 29% 0.43
134 Expert 1 Expert 2 49% 13% 0.44
Baseline: Product category vs individual product mapping by humans

27708 Non-expert (>2/5 votes) | Category mapping 11% 51% -0.22
16960 Non-expert (>3/5 votes) | Category mapping 12% 49% -0.24
4591 Non-expert (>2/5 votes) | Category mapping 17% 40% -0.62
2817 Non-expert (>3/5 votes) | Category mapping 20% 40% -0.61
156 Expert Category mapping 27% 32% -0.47

Proposed: Zero-shot CaML model vs human annotations

27708 Non-expert (>2/5 votes) | Zero-shot Model 49% 22% 0.44
16960 Non-expert (>3/5 votes) | Zero-shot Model 55% 18% 0.50
4591 Non-expert (>2/5 votes) | Zero-shot Model 67% 13% 0.60
2817 Non-expert (>3/5 votes) | Zero-shot Model 78% 8% 0.77

156 Expert Zero-shot Model 49% 25% 0.40
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