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ABSTRACT
Numerous problems of practical significance such as clickthrough
rate (CTR) prediction, forecasting, tagging and so on, involve com-
plex interaction of various user, item and context features. Manual
feature engineering has been used in the past to model these com-
binatorial features but it requires domain expertise and becomes
prohibitively expensive as the number of features increases. Feed-
forward neural networks alleviate the need for manual feature
engineering to a large extent and have shown impressive perfor-
mance across multiple domains due to their ability to learn arbitrary
functions. Despite multiple layers of non-linear projections, neural
networks are limited in their ability to efficiently model functions
with higher order interaction terms. In recent years, Factorization
Machines and its variants have been proposed to explicitly capture
higher order combinatorial interactions. However not all feature
interactions are equally important, and in sparse data settings, with-
out a suitable suppression mechanism, this might result into noisy
terms during inference and hurt model generalization. In this work
we present Dual Attentional Higher Order Factorization Machine
(DA-HoFM), a unified attentional higher order factorization ma-
chine which leverages a compositional architecture to compute
higher order terms with complexity linear in terms of maximum
interaction degree. Equipped with sparse dual attention mechanism,
DA-HoFM summarizes interaction terms at each layer, and is able
to efficiently select important higher order terms. We empirically
demonstrate effectiveness of our proposed models on the task of
CTR prediction, where our model exhibits superior performance
compared to the recent state-of-the-art models, outperforming them
by up to 6.7% on the logloss metric.
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1 INTRODUCTION
Supervised learning constitutes a major chunk of problems of prac-
tical significance such as click-through rate (CTR) prediction [16],
conversion rate (CVR) prediction [46], forecasting, tagging [13, 49]
etc., which are common in recommendation systems [12], online
advertising [18], social networks [51] and so on. In the general
setting, input consists of a set of continuous and discrete variables
(features) and the output consists of one or more continuous valued
targets for regression and discrete valued labels for classification.
Linear models are expressed as a weighted combination of input
features, and being fast and interpretable, constitute a simple mod-
eling choice for many of these problems [8]. However, multiple real
life scenarios ranging from customer preference for a product being
conditioned on both product category and discount in e-commerce
platforms (order-2 interactions) to app download behavior of male
teenage gamers preferring shooting games/RPGs over other cate-
gories (order-3 interactions) [16] provide an intuitive justification
for the need of higher order interactions terms in modeling complex
functions.

Prior to the rise of neural networks and deep learning, ML prac-
titioners employed feature engineering to include higher order
polynomials and cross products of select feature combinations to
model important interactions. The success of these models can be
in part explained by Weierstrass approximation theorem [35, 39],
which states that continuous, bounded functions can be approxi-
mated by a polynomial function to an arbitrarily high degree of
accuracy. However the problem with manual feature engineering is
that it becomes expensive to identify useful feature interactions as
the feature space increases. The increased input dimension further
complicates learning, especially on domains with sparse data. In
our work, we address this problem via an attentional architecture
which summarizes higher order interactions of degree p to same
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dimensionality as that of the input through a clever attention mech-
anism. As a result, the additional complexity from higher order
interactions is linear w.r.t input size.

Multi-layer feed forward neural networks (FFNN) [4] with a
single hidden layer can approximate any continuous function [21]
and have been heavily adopted across problems in recommenda-
tion systems [52], computer vision [1, 36] and natural language
processing [25, 50]. However, neural networks do not effectively
approximate higher order combinations of features, and require
significant over-parameterization to accurately capture the higher
order interactions [5, 17, 43, 44]. Factorization Machines (FM), intro-
duced by [33] are a class of models which explicitly generate feature
interactions for all feature combinations, for e.g., a second-order FM
can leverage second order feature interactions (pairwise) eliminat-
ing the need for extensive feature engineering. On the other hand,
being a linear model on features and their combinations, FMs are
not as effective in cases where the target function has non-linear
dependency on input features. This has led to a popular pattern of
combining explicit interactions terms using FM and implicit feature
combinations using a neural network component [16]. We show an
empirical justification of this choice via synthetic data experiments
(section: 4.6). Despite their success, in all of these models, FMs
are applied to learn only up to second order interactions (Neural
FM [17], DeepFM [16] etc.). Although the original Factorization
Machines paper proposes higher order interactions, it suggests no
practical methods to learn the higher order terms. Additionally,
since all the interactions in FM get same weight, it is unable to
differentiate importance of the feature interactions.

Recent advancements in learning higher order interactions
[6, 26, 43, 44] propose computing higher order interactions via
multi-layered architecture. However, in all of these approaches, the
feature interactions are unnormalized. In a real world scenarios, not
all feature combinations attribute equally, and this is problematic in
systems with sparse data, where only a few feature combinations
might be present during training. Thanks to its useful properties,
attention mechanisms have enjoyed tremendous popularity in com-
puter vision and NLP [2, 9, 42, 48, 53]. [47] proposes using attention
mechanism to suppress such irrelevant feature interactions. How-
ever, it is limited to degree-2 interactions.

To address these shortcomings, in this work we present a unified
model which simultaneously captures higher order interactions via
multiple interaction layers and attends to important combinations
by leveraging an attention mechanism. Apart from capturing the
combinatorial interactions efficiently, the proposed model lever-
ages a feedforward neural network to model implicit higher order
features. Our major contributions in this work are as follows:

• We propose a multi-layer, dual-attention based deep factor-
izationmachine architecture for explicitlymodeling bounded
degree (all interactions terms up to a degree p), higher order
feature interactions.

• We further demonstrate that imposing sparsity constraints
on higher order interactions to allow only useful combina-
tions offers better generalization (on held-out data).

• We establish the efficacy of our model on the task of click
prediction via extensive experimentation on three public

datasets, on which our approach attains superior perfor-
mance compared to the state-of-the-art models.

2 RELATEDWORK & BACKGROUND
Leveraging cross feature interactions has been successfully used to
achieve state-of-the-art results in recommendation system problems
with sparse categorical features such as click-through Rate (CTR)
prediction.
Factorization Machines (FM): First introduced in [33] FMs are
well known for modelling higher order interactions. While FMs
can be theoretically extended to arbitrarily high order, the original
paper only shows how to do it efficiently for order-2 (pairwise)
interactions. Given data samples XN

i=1 with F features, the FMmodel
is expressed as

fFM (X ) = w0 +
F∑
i=1

wixi +
F∑
i=1

F∑
j=i+1

⟨vi , vj ⟩ xix j (1)

where,w0 ∈ R, w ∈ RF , V ∈ RF×d are parameters to be estimated,
where d is the latent factor/feature embedding size. A similar ap-
proach Poly2 was proposed in [7]. In last few years, several variants
and extensions of Factorization Machines have been proposed. Field
Aware FM (FFM) [23] extended the idea of learning single latent
vector per feature to latent vector per ‘field’ pair (a field is equiv-
alent of a categorical feature which can assume multiple values).
However, FMs of this form are still linear models of individual and
pairwise features.
Combining Interactions and Neural Nets: Wide & Deep [10]
was one of the early works to report performance gains with use of
cross features and combining it with a deep neural network. How-
ever, the cross features were hand-crafted. Product based Neural
Networks (PNN) [31] proposed inner/outer product based operators
to automatically compute pairwise interactions terms. This was
followed by architectures such as DeepFM [16] which automatically
learned the implicit and explicit feature interactions, by combining
a FM and a neural network while sharing the latent embeddings
of features between the FM and the neural network component.
On similar lines, Neural FM [17] proposed ‘Bi-Interaction’ layer,
which essentially creates a (sum) pooled representation of pair-
wise interaction terms, and leverages a deep neural network on
top of the pooled representation. However, a major issue with the
above-mentioned architectures is that only single interaction layer
is present, which restricts the class of polynomials these models
can explicitly capture.
HigherOrder Interactions:Higher Order FactorizationMachines
[6] proposed one of the first algorithms for efficiently training arbi-
trarily high order FMs (HOFM) which used a dynamic programming
based approach. However, due to lack of any non-linear projec-
tions, HOFM is still limited to linear combination of interaction
terms. Deep & Cross Network (DCN) [43] proposed a multi-layer
architecture with ‘cross’ layers in which each layer learns a higher
order representation (v(l )) of input feature space (v(0)) by taking
a cross-product of last layer’s representation with first-order fea-
tures and leverages residual connections to include lower level
interaction/cross terms. Recently, DCNv2 [44], an improvement
over the original Deep & Cross Network was proposed. Both the
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Table 1: Summary of representational capabilities of various higher order interaction models.

Model (Explicit) Order-2 interac-
tions

(Explicit) Efficient higher
order interactions

Interaction level at-
tention

(Implicit) higher or-
der interactions

Wide & Deep [10] No No No Yes

FM [34] Yes No No No
HOFM [6] Yes Yes No No
DeepFM [16] Yes No No Yes
AFM [47] Yes No Yes No
AoAFM [45] Yes No Yes No

InterHAT [26] Yes Yes No Yes
AFN+ [11] Yes Yes No Yes
DCNv2 [44] Yes Yes No Yes

DA-HoFM (Proposed) Yes Yes Yes Yes

architectures can be summarized as

v(l+1) = v(0) ⊙ (W(l )v(l ) + b(l )) + v(l ) (2)

where in case of DCN,W(l ) ∈ Rd is vector, whereas it is a square
matrix in case of DCNv2; b(l ) is a bias term, ⊙ represents the ele-
mentwise Hadamard product. Another related model is InterHAT
[26] which utilizes a transformer encoder [42] to learn higher order
feature representations, followed by hierarchical cross layers with
residual connections to capture higher order terms. It differs from
Deep & Cross Networks in its usage of attentional aggregation
to compute final representation used for prediction. Apart from
these enumerative approaches to compute higher order interactions,
approaches like Adaptive Factorization Network (AFN) [11] take
a slightly different route to computing higher order interactions.
Instead of enumerating and aggregating factors, leveraging ideas
from Logarithmic Neural Networks [19], it introduces a logarith-
mic transformation layer which implicitly captures arbitrary order
terms.
Attentional Interaction (single layer): Despite the improve-
ments over plain neural networks and order-2 FMs, all higher or-
der terms get equal weightage in these architectures, which can
be problematic in problems with sparse data domains like CTR
prediction, where only few of the feature combinations co-occur
frequently. Attentional Factorization Machines (AFM) [47] was one
the first papers to address this issue and proposed assigning an
attention weight to each of the interaction terms to lower the effect
of unimportant feature interactions. Recently, another attentive
model, AoAFM [45] was proposed which improves upon AFM by
introducing an interaction level attention network which helps in
cases where there are redundant features causing high attention
weights on interaction of these features. However both of these
model only up to order-2 interactions. Representational capabilities
of representative models are summarized in Table 1.

We extend and enhance the prior work by proposing an uni-
fied attentional higher order factorization machine model, which
captures explicit higher order terms by using a contextual atten-
tion mechanism and leverages a feed forward neural network to
capture implicit higher order representation of feature space. Addi-
tionally, we propose various methods to induce sparsity in attention
mechanism to further suppress irrelevant higher order interaction
terms.

3 OUR APPROACH
Here we describe our proposed model which leverages a multi-layer
dual-attention mechanism to model higher order interactions. Fig.
1 illustrates the architecture of our model.

3.1 Feature Representation
An instance of supervised learning problem consists of categorical
valued and numerical valued input features. Categorical features
may take thousands of unique values, and directly using the one-
hot encoding might blow up the feature space. Thus given a sample
x with F features, an embedding layer is used to encode unique
categorical feature values to a densed-dimensional representational
space v(0)i ∈ Rd (d is the latent factor size in FM terminology).
Additionally, similar to [17, 26], for the jth numerical feature, an
embedding vj ∈ Rd is learned, and embedding for a particular
value of numerical feature x j is given as v(0)j = x j .vj (where ‘.’
represents the scaling operation of a scalar/vector by scalar). The
final feature representation of a data sample is given as v(0) =
[v(0)1 , v

(0)
2 , ..., v

(0)
F ]. Note that, the latent embeddings corresponding

to a feature are the counterpart of low-dimensional latent-factors
in original Factorization Machines.

3.2 Attentional Interaction for Higher Order
terms

The proposed higher order interaction component is composed
of multiple layers of attentional interaction, wherein each layer l
generates (l + 1)th order representation of features. Starting with
initial feature representation v(0) ∈ RF×d , for each layer l > 0,
higher order term corresponding to feature i is generated as:

v(l+1)i =

F∑
j=1

α
(l )
i j (v

(l )
i ⊙ v(0)j ) (3)

where, α (l )i j = softmaxj (α
′(l )
i ) =

exp (α ′(l )
i j )∑F

q=1 exp (α
′(l )
iq )

(4)

and, α
′(l )
i j = (v(l )i ⊙ v(0)j )T W(l )

a + b
(l )
a (5)

Here ⊙ represents the Hadamard product, and softmaxj denotes
softmax(.) transform across jth dimension. As discussed before, not
all higher order terms are equally important, and thus we use a
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Figure 1: Visualization of the proposedmodel composingmultiple layers of attentional interaction to capture explicit bounded
degree feature interactions, and non-linear projections of input features to model implicit higher order feature representa-
tions.

contextual attention mechanism which is a function of both the
interacting terms, to downscale the low valued interactions (Eq. (5)).
W(l )

a ∈ Rd and b(l )a represent the contextual weights and biases at
a given layer l , respectively.

One potential issue with use of softmax(.) function to compute
attention-weights in Eq. (4) is that outputs of softmax consist of
non-zero terms, and thus the generated probability distribution is
not sparse. In our case, this implies that all the higher order terms
become part of the final representation after layer L. This might
result in overfitting. One way to circumvent this is by using spar-
sity inducing normalizing functions, for instance, Sparsemax [28],
which is similar to softmax, but can output sparse probabilities.
However, in our experience, the commonly available implemen-
tations being O(F loд F ) add significant latency to train/inference
time. Instead, we used the temperature scaled version of the softmax
function [20]

αi j = softmaxj (α ′
i /τ ) (6)

The τ hyperparameter can be used to tune the sharpness of softmax
distribution. As τ → ∞, the output distribution will tend to uniform
distribution, whereas, for τ → 0, the distribution will peak around
the maximum value in input vector, driving other values to 0, thus
sparsifying the output. Suitably choosing a value of τ ensures that
only selective higher order terms are part of the final representation.

3.3 Attentional Pooling
The output of an attentional interaction layer (l ) for a data sample
x is the higher order representation v(l ) = [v(l )1 , v

(l )
2 , .., v

(l )
F ] (v(l ) ∈

RF×d ), where v(l )i ∈ Rd summarizes all the higher order terms of
order l involving feature i . To include the lower order terms, broadly
two major approaches have been proposed in prior work: first

involves using residual connections [40] at each layer l from layer
l − 1 [26, 43, 44], and second involves sum pooling of outputs from
each layer [27]. For ourmodel, we found pooling as a summarization
mechanism performed better compared to the residual architecture.

We leverage attentional pooling to compute the layer represen-
tation z(l ) (l > 0) as

z(l ) =
F∑
j=1

β
(l )
j v(l )j where, (7)

β
(l )
j =

exp (β ′(l )j )∑F
q=1 exp (β

′(l )
q )

and, β ′(l )j = v(l )
T

j W(l )
r + b

(l )
r (8)

where W(l )
r ∈ Rd and b(l )r represent the learnable parameters for

attentional sum at layer l .
While the described dual attentionmechanism enables ourmodel

to select explicit higher order terms, to capture implicit higher order
interactions [17, 44], we further augment our model with a neural
network component.

3.4 Implicit Interactions via Neural Networks
Neural networks are known to be very effective in modelling func-
tions with a compositional structure, which can be approximated
by series of non-linear projections. Different from the Factorization
Machine variants which utilize a linear layer to capture first order
terms [33, 47], we leverage a feed-forward neural network (FFNN)
to learn implicit higher order representations of the raw features
similar to [16, 43]. The network consists ofM hidden layers, with
ReLU (rectified linear unit) [29] as non-linearity, and embeds the
input features into d dimensional space (which is chosen to be
same as the factor size) represented by z(0). We use the standard
neural network recipe of using Batch Normalization [22] between
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the layers, as it is known to speed up the convergence of neural
networks by alleviating the problem of covariate shift. We also
leverage Dropout [38] and L2 regularization to prevent overfitting.

3.5 Loss Function
Final representation of a sample x is computed by concatenating
fixed sized (d-dimensional) representations from all the interme-
diate higher order terms and assigning importance to individual
terms via a linear projection

ŷ(x) = sigmoid([z(0), z(1), .., z(L)]T Wf + bf ) (9)

whereWf ∈ R(L+1)×d and bf are learnable parameters for the final
projection. Note that this projection can be replaced by a more
complex component like a neural network, however in this work,
we simply utilize a linear layer.

Since all the benchmark datasets we use are datasets with bi-
nary response, we use binary cross-entropy loss to learn the model
parameters.

L(θ ) = −
1
N

∑
s ∈Dtr

ys log(ŷs ) + (1 − ys ) log(1 − ŷs )

+ λ1 ∥θ ∥2 + λ2 Lsp (θ ) (10)

Here N is the number of data samples in the training set, θ repre-
sents all the model parameter and λ1 denotes decay term for L2
regularization. Apart from using scaled-softmax, to further enforce
sparsity in attention layers, we add per-sample entropy loss [15]
with weight λ2 on both the attention layers described in Eq. (5, 7)

Lsp (θ ) =
1
NL

∑
x ∈Dtr

L∑
l=1

Lent (α
(l )) + Lent (β

(l )) where,

Lent (α
(l )) = −

1
F

F∑
i=1

α
(l )
i log(α (l )i ) (11)

where, Lent (.) denotes the entropy of a given distribution and is
similarly defined for β (l ). We optimize Eq. (10) using the AdaGrad
[14] optimizer.

4 EXPERIMENTS
In this section, we evaluate our proposed model DA-HoFM on real
world datasets to answer the following research questions:

• RQ1 How does the proposed model compare against the
state-of-the-art models?

• RQ2What is the incremental benefit of different components
of the model – contextual attention, attentional pooling and
sparsity enforcing regularization?

• RQ3What is the incremental benefit of (explicit) multiplica-
tive interactions vs. (implicit) non-linear additive interac-
tions?

• RQ4 How does the model performance vary with change
in specific hyperparameters like factor size, size of hidden
layers and number of layers?

Table 2: Dataset statistics for Criteo, Avazu and Frappe.

Dataset Criteo Avazu Frappe

Feature fields (C + N) 20 + 14 21 + 0 10 + 0

Total records 45.8M 40.4M 288K

Unique tokens 526.97K 32.38K 5.38K

4.1 Datasets
We evaluate our model on three publicly available datasets:
Criteo1: It is a popular benchmark dataset for CTR prediction,
containing chronologically ordered click-through records. The first
80% of data is used for training, and the rest is randomly split in
1:1 ratio to form the validation and test sets.
Avazu2: Avazu is another large scale CTR dataset of users’ mobile
behavior. Data is randomly split in 8:1:1 ratio for form the train,
validation and test sets respectively. We follow data pre-processing
methodology suggested in [26] for Criteo and Avazu.
Frappe3 [3]: Frappe is a dataset containing context-aware app
usage. It contains count values for usages. Similar to prior work
[17, 47], we use negative sampling in ratio 2:1, binarize the count
values and split the data into 7:2:1 to form the train, validation and
test sets.

Table 2 shows the statistics of the three datasets, where C and
N denote the categorical and numerical features. Various works in
literature have used different subset of features and training data,
and various pre-processing strategies for the Criteo and Avazu
datasets. In this work, we have followed the feature subsetting
strategy followed in InterHAT [26], and have used the entire labeled
dataset for creating the data splits for training and evaluation. For
Frappe, we have used the standardized dataset proposed in [17].
We have not used any specialized pre-processing on the raw data.

4.2 Baselines
The choice of baselines has been carefully made to cover the best
performing models covering a wide range of higher order interac-
tion models. We compare our model with the following baselines:

• Wide & Deep [10]: Combines a linear model with a deep
neural network. Note that the authors had used hand-crafted
cross-features, which we omit for a fair comparison with
other models. It is a representative model for vanilla neural
network based approaches.

• Factorization Machine (FM) [34]: We implemented order-
2 FM in PyTorch [30] and used it for our experiments.

• DeepFM [16]: It combines a deep neural network with order-
2 FM, and feature embeddings are shared between the two
components. We use it as a representative architecture for
models combining FM with neural networks.

• Attentional Factorization Machines (AFM) [47]: En-
hances order-2 FM by using an attention mechanism to give

1ailab.criteo.com/kaggle-contest-dataset-now-available-academic-use/
2kaggle.com/c/avazu-ctr-prediction/
3baltrunas.info/research-menu/frappe
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higher weight to more relevant interactions. We use the
publicly available implementation4.

• Attention Over Attention Factorization Machines
(AoAFM) [45]: AoAFM extends AFM by augmenting the
interaction attention mechanism with an additional parame-
ter to handle redundant features. We implemented the non
field Aware version of the model in PyTorch for fairness of
comparison.

• Adaptive Factorization Network (AFN+) [11]: AFN is a
recently proposed model which computes higher order in-
teractions via a logarithmic transformation layer. We use the
AFN+ model proposed in the paper which also augments
AFNwith a parallel deep neural network.We use the publicly
available implementation5.

• Deep & Cross Network v2 (DCNv2) [44]: It is a state-of-
the-art model for CTR tasks. We implemented the model in
PyTorch and used the optimal parameters mentioned by the
authors in the paper for each dataset.

• InterHAT [26]: A recently proposed model for interpretable
predictions on CTR tasks. We implemented InterHAT in
PyTorch for our experiments.

• Stacked Transformer Encoders (Trans-Enc) Owing to
the popularity of Transformer [32, 42] architectures in re-
cent years, and due to the similarity of self-attention mecha-
nism to the interaction strength calculated in FM style archi-
tectures, we also include a custom baseline consisting of 3
transformer encoder blocks stacked over each other. It also
generalizes models like AutoInt [37] which uses transformer
encoder followed by a linear projection to capture complex
non-linear functions.

4.3 Experimental Setup
Metrics: To establish the efficacy of our proposed models on CTR
datasets with binary response, we report logloss (binary cross-
entropy) and ROC-AUC (Area under the ROC curve). Note that
even an improvement of 0.1 basis-points (bps) in logloss is consid-
ered to be significant improvement for the CTR tasks, since the
improvement gets amplified due to millions of impressions on daily
basis [10, 44, 47].
Implementation details: All our model variants as well as the
baselines are implemented in PyTorch, except AFN for which the
publicly available implementation is used. For other models, hy-
perparameter selection is performed using a mix of grid search
(where a group of hyperparameter values are pre-specified) and
manual tuning. Factor/Embedding size is chosen to be constant 16,
and batch size 512 for all the baselines for fair comparison. The
best set (model version) is selected using (minimum) logloss on
validation set. In choice of optimizers, we experiment with ADAM
[24] and AdaGrad [14] algorithms with multiple learning rate and
L2 decay parameters and final results are reported with the best
optimizer setting. For learning rate and L2 decay, search parame-
ters ranged from {10−1, 10−2, 10−3}, and {0, 10−2, 10−4, 10−5, 10−6}
respectively. For the models with a neural network component, we
start with the optimal hyperparameters reported by the authors

4github.com/hexiangnan/attentional_factorization_machine
5github.com/WeiyuCheng/AFN-AAAI-20

wherever applicable (for instance DCNv2, InterHAT, AoAFM), and
tuned the parameters like number of hidden layers ({2, 3}), hid-
den layer size ({64, 100, 200, 300, 512, 768}) and dropout probability
({0, 0.2, 0.5}).
Our Configuration: We report results for our models with Ada-
Grad learning-rate of 10−1 and L2 decay of 10−4, 10−6, 0 for Frappe,
Avazu and Criteo respectively. Number of interaction layers L and
number of hidden layers in neural network are set to 2. Size of the
hidden layers is set to 512. Scaling parameter τ (softmax) used is
set to 0.8.
Hardware: All the experiments are run on a 64 CPU machine with
single Nvidia V100 GPU per model.

4.4 RQ1: Performance Comparison
Table (3) shows performance metrics of our proposed model DA-
HoFM along with the other baseline models. It can be observed that
our model outperforms the state-of-the-art DCNv2 and AFN+ mod-
els on Criteo and Frappe datasets, and on Avazu it is competitive to
the DCNv2 model. Our model outperforms more complex models
transformer encoder based models such as InterHAT and stacked
transformer encoder. Note that all of these are multilayer models
and DCNv2 and AFN+ are additionally augmented with a deep neu-
ral network, but lack an attentive mechanism to suppress irrelevant
interactions. For other models, it can be observed that Wide & Deep
model without pairwise interaction terms, underperforms FM with
much lesser parameters on Avazu and Frappe datasets, however
on Criteo dataset it outperforms the FM. Note that in contrast to
the prior works which use LibFM [34] based implementation of
FM, we use a PyTorch based implementation which leverages em-
bedding layer. Similar to [47], we observe that this implementation
performs better compared to the libFM implementation, and and
yields competitive results on all the datasets. As expected DeepFM
which combines a neural network and order-2 FM, outperforms
both the Wide & Deep and FM models. Equipped with the attention
mechanism, AFM outperforms the plain FM. AoAFMwhich extends
AFM by learning interaction level parameters to further suppress
redundant features outperforms AFM. The multilayer (higher order)
interaction model DCNv2 and DA-HoFMwhich leverage neural net-
works for modelling implicit interactions outperform all the models
which only consider up to order-2 interactions, which demonstrates
the importance of higher order interactions.

4.5 RQ2: Model Ablation
To illustrate the incremental value of each component of our model,
we benchmark four model variants: (1) Model with only contextual
attention, which uses sum pooling instead of attentional pooling.
We call it SA-HoFM. (2) Model with neural network component
replaced by a single linear layer. We refer to it as DA-HoFM-lin,
(3) Model without sparsity regularization, which we indicate as
DA-HoFM-NS. Table (4) summarizes the results. We can observe
from the table that the full model with dual attention outperforms
the model variant with only contextual attention and sparsity regu-
larization further improves the model. Similarly, on both the large
scale datasets, neural network component results in performance
improvement being able to capture non-linearities which are not
efficiently captured by FMs.
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Table 3: Performance comparison of DA-HoFM with the baselines (Logloss: lower is better; AUC: higher is better).

Criteo Avazu Frappe

Interaction Type Model Logloss ↓ AUC ↑ Logloss ↓ AUC ↑ Logloss ↓ AUC ↑

(Implicit) Interactions Wide & Deep 0.4651 0.7860 0.3892 0.7619 0.1946 0.9771

(Explicit) Order-2 Interactions FM 0.4665 0.7829 0.3880 0.7644 0.1772 0.9757
AFM 0.4641 0.78506 0.3949 0.7512 0.17313 0.9753

AoAFM 0.4621 0.7882 0.3879 0.7644 0.1597 0.9804

(Explicit) Order-2 + Implicit DeepFM 0.4590 0.7926 0.3879 0.7647 0.1701 0.9793

(Explicit) Higher Order + Implicit InterHAT 0.4593 0.7908 0.3898 0.7613 0.2164 0.9635
Trans-Enc. 0.4585 0.7917 0.3878 0.7646 0.1894 0.9758
AFN+ 0.4538 0.7980 0.39016 0.76136 0.1580 0.9784
DCNv2 0.4551 0.7963 0.3865 0.7666 0.1688 0.9805

DA-HoFM 0.4503 0.8014 0.3865 0.7668 0.1474 0.9821

Table 4: Performance comparison of the model variants.

Dataset Criteo Avazu Frappe

Metrics Logloss ↓ AUC ↑ Logloss ↓ AUC ↑ Logloss ↓ AUC ↑

SA-HoFM 0.4505 0.8012 0.3867 0.7665 0.1595 0.9806

DA-HoFM-lin 0.4656 0.7838 0.3885 0.7632 0.1546 0.9810

DA-HoFM-NS 0.4508 0.8008 0.3866 0.7667 0.1484 0.9817

DA-HoFM 0.4503 0.8014 0.38657 0.7668 0.1474 0.9821

4.6 RQ3: Explicit vs. Implicit interactions
Factorization Machine based architectures explicitly model the com-
binatorial terms, whereas neural network based architectures are
well suited to model functions with a compositional structure in-
volving non-linear projections. This is one of the central arguments
to support combining the two architectures for superior model
performance [16, 17, 26, 41, 44]. Here, we conduct synthetic experi-
ments to empirically establish that for certain classes of functions,
for instance polynomials with product terms, FMs are more param-
eter efficient, while for non-linear compositional functions, neural
networks are better suited. In a nutshell, first input (X)/output
(y) data is generated by a probabilistic process, and then, neural
network and vanilla factorization machine models are used to ap-
proximate f : X → y. In this experiment, 70% of data is used for
training, while the remaining 30% is split into validation and test
sets.

4.6.1 Polynomial function: Input data [x , z] ∈ R2 and outputy ∈ R
are generated as follows

x ∼ U(xmin ,xmax ); z ∼ U(zmin , zmax );

yi ∼ N(f (xi , zi ), 0.01); where, f (xi , zi ) = ax2i + bz
2
i + cxizi (12)

whereU(, ) and N(, ) represent uniform and normal distributions
respectively; a,b, c are constants.

4.6.2 Non-linear function: Input data [x , z] ∈ R2 (generated as in
Eq. 12) and output y ∈ R generated as follows

yi ∼ N(f (xi , zi ), 0.01); f (xi , zi ) = tanh(c tanh(ax + bz + d))
(13)

where tanh represents the hyperbolic-tangent function, a popular
activation function used in neural networks; a,b, c,d are constants.

For both the experiments, Stochastic Gradient Descent based
optimization with learning-rate of 1e−3 is used. Training is run for
500 epochs, and the best model is selected using mean squared error
on the validation set. Non-linear tanh is used as an activation in
the neural network model for the hidden layers.

It should be noted that the first data generating process naturally
matches the inductive bias in factorizationmachine models whereas
the second favors the neural networks. Figure 2 summarizes results
of the experiments. It can be observed that FMs are much more
efficient (w.r.t to the parameter space) on the task of learning the
polynomial function with product terms, whereas neural network is
more effective on the non-linear function. This provides an empiri-
cal justification for our approach where we use multiple interaction
layers to capture explicit higher order terms and use a feedforward
neural network to learn implicit higher order representation of
input space.

4.7 RQ4: Sensitivity to Hyperparameters
Hyperparameters can profoundly impact a model’s performance. In
this section, we analyze the effect of some of the important hyper-
parameters on the Frappe dataset. The other two datasets, Avazu
and Criteo follow a similar pattern.
Factor size: One interpretation of the interaction terms (V(0)V(0)T

=
∑
i
∑
j v

(0)T
i v(0)j ) is a low rank factorization of the actual feature

interaction matrixWI ∈ R
d×d . Thus latent factor size determines

the ability to approximate interaction information. Intuitively larger
factor sizes will incur lower approximation loss. This explains the
trend observed in figure (3.a) – performance improves with increase
in factor size up to a latent factor size of 512, after which a dip in
both logloss and AUC metrics can be observed, which can be attrib-
uted to overfitting on data.
Number of interaction layers: As more layers of interaction are
added, DA-HoFM will in effect, capture higher order/degree inter-
actions. For this experiment, we constrain the hidden layer size of
neural network component to be the same as latent factor size (16),
so that effect of interactions is more pronounced. Figure 3.b) shows
performance trends as number of interaction layers increases. It
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Figure 2: Test-set mean squared error on approximation of simple functions with feedfoward neural networks (marked as NN,
sizes of hidden layers are indicated inside [..]), and factorization machines (marked as FM, with factor size d = 1). It can be
observed that for polynomial function with interaction/combinatorial terms, FMs with parameter size of 4 is more efficient to
learn (w.r.t parameter space), compared to NN, which requires 300 parameters to attain equivalent performance. Whereas, for
the non-linear function, NN with parameter size of 4 attains lower mean squared error compared to FMs with similar number
of parameters.
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Figure 3: Effect of various hyperparameters on the performance of DA-HoFM (Frappe)

can be observed that, there is steady improvement in logloss as
number of interaction layers increase from 1 (order = 2) to 3 (order
= 4), however, there is slight increase in logloss possibly due to
overfitting when order-5 interactions are also added.
Size of hidden layer in neural network: Our model uses a neural
network to model implicit higher order representation of features.
A larger hidden layer increases representational capacity of the neu-
ral network. This can be observed in Fig. 3.c) where with increase
in hidden layer size (from 64 to 1024), model logloss decreases, even
as AUC remains flat, up to hidden layer size of 512.

4.8 Sparse Feature Interactions
One of the key differences of our proposed model with other higher
order interaction models like DCN is use of sparse attention. In this
section, we conduct experiments on a synthetic dataset with sparse
higher order interaction terms.
The data contains 100k synthesised records (X ∈ Rm ) which are

generated via the following generative process

Xi ∼ U(0, 1); X ∈ R10 (14)

Wi ∼ U(1, 2);W ∈ Rt ; Mi ∼ B(0.01) (15)

The corresponding targets y ∈ {0, 1} are generated as

y
(l in)
i = 1 +

m∑
j=0

WjXi j , (16)

y
(ho)
i =

m∑
j=0

m∑
k=0

WjMiXi jXik +
m∑
j=0

m∑
k=0

m∑
l=0

WjMiXi jXikXil (17)

y
(val )
i = y

(l in)
i + y

(ho)
i ; yi = 1, if y(val )i > y(th) else 0 (18)

where, t denotes the number of terms in the multivariate polyno-
mial P(x) of degree d .U(, ) denotes a uniform distribution and B(.)

represents a Bernoulli distribution. For purpose of our experimen-
tation, we constrain the number of variablesm = 10 and degree
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Figure 4: Visualization of feature-feature interaction for (left) DA-HoFM and (right) DCNv2 models on synthetic dataset. For
DA-HoFM, values are derived by averaging over α (0) over the evaluation set. For DCNv2, the interactions are visualized Frobe-
nius norm of each matrix block in the learned cross-interaction matrix.

of P(x) to 3. By construction, this dataset has all the linear terms,
while the higher order interactions are extremely sparse. y(th) is
set such that less than 5% of data is labeled as positive, to simulate
response in CTR systems.

We train DA-HoFM and DCNv2 models on this dataset, where
we remove the neural network components from both the models.
The dataset is split into train, validation and evaluation sets in 8:1:1
ratio, where validation set is used for model selection (logloss met-
ric). Figure 4 shows the feature-feature interaction learned by the
two models. For DA-HoFM, feature attention at each layer α (l )(x)
(Eq. 4) corresponding to each data sample x provides a straight-
forward way to visualize normalized feature interaction strengths.
We average the α values over all the samples in evaluation set for
visualization purpose. For DCNv2, blockwise view of the learned
cross-interaction matrix corresponds to the the feature interac-
tions learned by the model [44]. It can be observed that DA-HoFM
learns a sparser interaction structure compared to DCNv2. Note
that the dense diagonal patch in DA-HoFM output is result of self-
interactions. Evaluation logloss for DA-HOFM is 0.0227, compared
to 0.0238 for DCNv2, which is consistent with our experiments on
the public datasets where the proposed model consistently outper-
forms DCNv2.

4.9 Training & Inference Latency
Apart from satisfactory performance, in production systems (e.g.,
recommendation system serving Ads), training cost and inference
latency are two important factors. Table (5) displays training time
per epoch (averaged over 5 epochs) and inference latency (per
a batch of 100 samples) for Criteo and Avazu datasets. We omit
reporting results for Frappe as it is a relatively small dataset. Even
as the proposed DA-HoFM model has increased complexity due to
the computation of attentional interactions at every layer, resulting
into higher training latency compared to simpler models such as
FM/AFM, it can be observed that prediction latency is permissible
for deployment in real time systems.

Table 5: Model latency comparison.

Dataset Criteo Avazu

Train/Epoch (s) Inference (ms) Tr./Ep. (s) Inf. (ms) ↓

FM 660.86 3.42 299.62 2.59
AFM 866.81 3.25 432.23 2.84

Wide&Deep 801.5 3.35 431.89 2.76
DeepFM 827.38 3.36 417.31 2.60
DCNv2 788.17 3.30 432.16 2.93
AoAFM 946.87 3.39 494.01 2.61

DA-HoFM-NS 1450.72 3.80 902.28 3.23
DA-HoFM 1625.82 4.01 996.81 3.12

AFN+ 1672.71 4.38 1183.78 4.12
InterHAT 2021.36 5.03 1338.49 3.79
Trans-Enc. 2217.35 5.46 1469.39 4.14

5 CONCLUSION & FUTURE DIRECTIONS
In this work, we propose DA-HoFM, an unified model which com-
bines benefits of multiple layers of attentional interaction to com-
pute bounded degree, higher order interaction terms, with repre-
sentational capacity of neural networks. At the same time, thanks
to the sparse attention mechanism, it is capable of pruning out
the non-important higher order interaction terms. Our model out-
performs the state-of-the-art models on benchmark CTR datasets.
Additionally, we demonstrate incremental benefits of the individual
components of our model via a granular ablation study. Although
the proposed model scales linearly in maximum order of interac-
tion terms, one issue with the proposed model is that computation
complexity at each layer is quadratic w.r.t the number of features F,
and thus one key direction will be to optimize this to sub-quadratic
complexity. While we demonstrate the efficacy of our model on
CTR datasets, it is generic in nature and can be applied to other
supervised learning problems as well.
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