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ABSTRACT

This paper presents a novel deep neural network (DNN) architecture
with highway blocks (HWs) using a complex discrete Fourier trans-
form (DFT) feature for keyword spotting. In our previous work,
we showed that the feed-forward DNN with a time-delayed bottle-
neck layer (TDB-DNN) directly trained from the audio input out-
performed the model with the log-mel filter bank energy feature
(LFBE), given a large amount of training data [1]. However, the
deeper structure of such an audio input DNN makes an optimization
problem more difficult, which could easily fall in one of the local
minimum solutions. In order to alleviate the problem, we propose a
new HW network with a time-delayed bottleneck layer (TDB-HW).
Our TDB-HW networks can learn a bottleneck feature representation
through optimization based on the cross-entropy criterion without
stage-wise training proposed in [1]. Moreover, we use the complex
DFT feature as a method of pre-processing. Our experimental results
on the real data show that the TDB-HW network with the complex
DFT feature provides significantly lower miss rates for a range of
false alarm rates over the LFBE DNN, yielding approximately 20 %
relative improvement in the area under the curve (AUC) of the detec-
tion error tradeoff (DET) curves for keyword spotting. Furthermore,
we investigate the effects of different pre-processing methods for the
deep highway network.

Index Terms— Keyword Spotting, Highway Networks, Audio
Input Acoustic Modeling

1. INTRODUCTION

Wake-word (WW) detection is the first important step before inter-
actions through distant speech recognition [2-9]. WW detectors typ-
ically employ signal-processing techniques to obtain a compact fea-
ture representation such as LFBE [4-10] and tandem features [11].

Recently, there has been a great deal of attention paid to a fully
trainable DNN front-end because of its scalability for large data
sets. Several types of DNN architecture have been proposed to cap-
ture time-frequency characteristics of speech and model dynamics
of speech features directly from raw features. Such DNN structures
can fall into one of the following categories: Feed forward DNN
using stacked bottleneck features from raw audio features [1, 12],
Network-in-network DNN with supplemental signal statistics of hid-
den layer outputs [13], Convolutional layers with long short-term
memory (LSTM) layers [14], Complex linear prediction (CLP) layer
with LSTM layers instead of time-domain convolution [15].

While majority of the systems are focused on large-scale neural
network models, little research has been done on designing a com-
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pact model for embedded platforms, which can directly model the
raw feature input. In our previous work, we proposed a time-delay
neural network (TDNN) [16] with a bottleneck layer between two
sets of fully connected layers [1]: one for feature extraction, and
the other for acoustic modeling. The resultant DNN becomes very
deep. Such a deep structure suffers from the vanishing and explod-
ing gradient problems. it can also easily converge to local minimum
points. The three-stage training procedure described in [1] is very
time consuming.

In order to alleviate the issues, we propose a unified highway
(HW) network [17] with a time-delayed bottleneck (TDB) layer in
the middle. Our TDB-HW network also has two parts: a feature ex-
tractor and a phone classifier. Each of them consists of stacked high-
way blocks, which can control the information flow between layers
and make it feasible to train a very deep neural network. The HW
networks have also been proven to be very efficient to reduce the
size of the networks without sacrificing the recognition accuracy for
small-footprint ASR [18]. Similarly, we adopt a thinner and deeper
HW structure in this work. The bottleneck layer can force the net-
work to learn the most salient features and can also greatly reduce a
network size as well as computation cost. Moreover, the TDB-HW
network can be trained from scratch, which can reduce an amount of
training time by nearly 60 % of the stage-wise training. For the fea-
ture input, we use the discrete Fourier transform (DFT) as a method
of signal normalization and generate the complex DFT features. Es-
sentially, this is the same method presented in Variani’s work [15].
Since the row vector of the input layer functions as a band-pass filter
for raw audio DNN model as shown in [1, 12], DFT DNNs should
decrease a chance of converging into a trivial local solution.

Notice that this work only focuses on feature extraction on the
single channel audio after beamforming [3, 19] in contrast to the
multi-channel audio DNN work [15, 20, 21] where the beamform-
ing and feature extraction layers are trained directly from the multi-
channel data. We will show that a significant improvement can be
achieved with the single channel data only.

The balance of the paper is organized as follows. Section 2 de-
scribes our baseline WW system with the LFBE feature, including
the DNN-HMM based WW detection. Section 3 presents our deep
highway network architecture with the DFT input. In Section 4, WW
detection results are described. Section 5 concludes this work.

2. BASELINE WW SYSTEM

In this paper, our keyword spotting task refers to the application on
wake-word (WW) detection. We will use the term WW. We em-
ploy the HMM-based approach with the WW and filler/background
HMMs [10].
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Fig. 2. Baseline WW DNN with the LFBE feature.

Figure 1 illustrates an example of the finite state transducer
(FST) at a phone level for a WW ‘Alexa’, with six phones in its
pronunciation. In our experiments 3-state HMMs are used to model
‘Alexa’ phones. For simplicity, only one-state HMMs are plotted
in Figure 1. The HMM state is associated with a DNN. The output
layer of the DNN models the HMM states of the keyword(s) of
interest (i.e., WW-specific phone state distributions) and the two
1-state background phones (speech and non-speech); also see [9] for
a WW system with more generic background phones.

Figure 2 shows a schematic view of the baseline DNN system.
Our baseline system first computes the LFBE feature from the en-
hanced speech [10]. In our system, an audio signal is divided into
overlapping frames of 25 ms with a frame shift of 10 ms. The
LFBE features concatenated over multiple frames are then fed into
the acoustic modeling DNN. The DNN consists of several layers of
affine transform and sigmoid activation components. In addition to
those layers, we put two separate branches for WW and ASR tasks
so as to jointly classify the WW-specific phones and the context-
dependent phones (LVCSR senones) based on our previously pro-
posed multi-task training technique [10]. After the DNN is pre-
trained layer-wise in a supervised fashion using a small subset of
the training data, the entire DNN is further optimized with a dis-
tributed, asynchronous, stochastic gradient descent (SGD) training
method [22] over the full dataset.

As illustrated in the FST of Figure 1, the WW hypothesis is gen-
erated when the final state of the WW FST is reached. We tune
transition parameters and exit penalties in the WW and background
HMMs for better accuracy, and a detection error trade-off (DET)
curve can be obtained by plotting the lowest achievable false alarm
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Fig. 3. Whole WW Highway DNN with the DFT input.

rate (FAR) at a given miss rate (MR) or false reject rate (FRR).

3. DFT-INPUT HIGHWAY NETWORKS

In this section, we will introduce the highway blocks, and show the
structures of the proposed TDB-HW networks. We will also list dif-
ferent structures to be compared.

3.1. Highway Blocks

Highway networks were first proposed by [17], and their basic ele-
ment is the highway block. In the highway block, the output at the
I-th layer is controlled by two gating functions: a carry gate C'(h;_1)
that controls the information flow directly from the previous hidden
layer h;_1, and a transform gate 7' (h;_1) that controls information
from the hidden activation f(h;_1). The final output is defined by:

h; = f(hy-1) - T(hy—1) + hy—1 - C(hy—q) (1)

Both carry and transform gate functions are defined by a nonlin-
ear layer with Sigmoid function:

T(hi—1) = o(Wrhi—1+br), (2)
Chi—1) = o(Weghi—1 +be), 3)
f(hlfl) = O’(Wlhlfl + bl) (4)

From our preliminary experiments, we observed that the HW
network was easier to train without a bias vector. Therefore, we do
not use the bias vector in the gate function. Moreover, in contrast
to [17], we do not impose any constrain on two gates. The high-
way blocks can control information flow and gradient propagation
between layers, which makes it feasible to train a very deep neural
network and can also speed up the convergence rate.

3.2. Highway networks with the time-delayed bottleneck layer

In order to make the DNN learn the feature representation from com-
plex DFT features generated from the linear signal normalizer, we



first use 4 stacked HW blocks and a bottleneck layer as the feature
extractor. The bottleneck layer can reduce the large dimensional-
ity of the input features (concatenated complex DFT coefficients),
which may force the network to learn the most salient representa-
tion. The design of the bottleneck layer can also significantly reduce
the network size, which makes it feasible for resource-constrained
conditions. In this architecture, we use a linear bottleneck layer
since our experimental results indicate that a linear layer performs
slightly better than a non-linear layer. After the bottleneck layer, we
use a time-delayed window to splice the bottleneck features from
several past and future frames so as to capture the temporal informa-
tion for phone classification. For the classification DNN, we use 6
HW blocks stacked together. Figure 3 illustrates our entire highway
DNN architecture with the DFT normalizer for WW.

For the bottleneck layer, we use 28 output dimension. For the
time-delayed window, we select 20 left and 10 right contexts from
the bottleneck layer output. For back-propagation, the weights are
updated when the gradients are accumulated from all the contexts in
the window. In order to reduce the number of parameters, we tie the
two gate weights of each layer inside the feature extraction DNN and
also inside the classification DNN. The entire DNN is also optimized
based on the multi-task cross-entropy criterion. The TDB-HW net-
works are directly trained from scratch with random initialization.
Here random initialization refers to light supervised pre-training in
a layer-wise manner on a small subset of training data.

3.3. Comparing architectures

In this paper, we will compare the TDB-HW networks with TDB-
DNNs using complex DFT features. For the TDB-DNNs, we follow
the same three-stage training procedure as described in [1]; first, we
train a feature extraction DNN with a bottleneck layer on top. Then,
we use a context window to splice the bottleneck features across sev-
eral frames and use the stacked features to train the acoustic mod-
eling DNNs. Finally, we joint optimize the feature extraction and
acoustic modeling DNNS, by training the unified network as a DNN
with a time-delayed bottleneck layer in the middle. We will also
compare the complex DFT systems with LFBE systems. In order to
have a fair comparison, besides the feed-forward DNN baseline sys-
tem described in section 2, we also design a regular HW network (tie
the two gate weights for each layer) using LFBE. All the networks
compared in this paper have the same depth (11 layers) and similar
number of parameters (around 3 M).

4. EXPERIMENTS AND RESULTS

Here, all the results are shown in the form of DET curves along with
area under the curve (AUC) numbers. All the DET curves in this
paper only show false alarm rates up to a multiplicative constant be-
cause of the sensitive nature of this information. The DET curves
and AUC numbers presented here therefore indicate the relative im-
provement or degradation against the baseline system.

The training data used in this work consist of several thousand
hours of the real far-field data captured in various rooms. This con-
tains approximately several hundred thousand subjects. In order to
improve the robustness against noise unseen in the training data, the
training data are artificially corrupted and the SNR is adjusted from
0 to 40 dB uniformly. Our test set contains over several thousands
of speech segments uttered by hundreds of subjects. The test data
contain approximately 26,000 WW instances. The captured far-field
array data are processed with beamforming and acoustic echo can-
cellation [3,19].

4.1. Comparison of different DNN architectures

Figure 4 shows the DET curves obtained with the LFBE DNN, LFBE
HW, DFT TDB-DNN and DFT TDB-HW on the test set with differ-
ent amounts of training data. In order to generate the DET curves for
Figure 4, we choose the best FST parameters with 4 HMM thresh-
olds. Since we choose the FST parameters from the same pool of
the FSTs, this result comparison is still fair. Those DET curves on
the test data indicate the best possible WW performance without the
grammatical language constraint.

It is clear from Figure 4 that the HW-based networks provide
better accuracy than the DNN-based networks with both LFBE and
DFT features. The effect of HW blocks is very prominent on train-
ing a deep network, especially under the 30%-training-data condi-
tion. As the amount of training data increases, the difference be-
tween the regular HW networks and DNNs becomes smaller for the
LFBE system. This indicates that the hard optimization problem of
deep network can be alleviated by a large amount of training data.
For the DFT systems, the improvement of TDB-HW networks is
still significant compared with TDB-DNN, even when trained on a
large amount of data. The good performance of the TDB-HW net-
works may be a result of its ability of training a unified structure from
scratch. By joint optimizing the feature extractor and phone classi-
fier using HW blocks from scratch, the TDB-HW networks are able
to learn the most useful features, which are also highly optimized for
phone classification. In contrast, the TDB-DNN’s three-stage train-
ing procedure may not be able to achieve such a global optimization.
Overall, the proposed DFT system provides better performance than
LFBE systems. From the AUC numbers in Figure 6 we can observe
that, using full training data, the proposed DFT TDB-HW networks
can outperform the baseline system (LFBE DNN) by 19.4%.

4.2. Effect of different feature inputs

From the speech feature extraction point of view, it could be interest-
ing to investigate the effect of different features as the HW network
input. Figure 5 shows the DET curves of the HW-based networks
obtained with the LFBE (LFBE HW), DFT coefficients (DFT TDB-
HW), raw audio (AUDIO TDB-HW) and log-power spectrum (LPS
TDB-HW) features. Figure 7 shows the AUC graphs that correspond
to Figure 5. It is clear from Figure 5 and 7 that, when using 30% of
training data, the LFBE, DFT and LPS features have similar perfor-
mance. As the number of training data increase, the DFT coeffi-
cients start to provide the best performance, which is slightly better
than LPS features and significantly better than raw audio and LFBE
features. The results suggest that the phase information can pro-
vide slightly improvement for acoustic modeling and a fully train-
able front-end can provide significant improvement compared with
auditory-based hand-crafted features (LFBE). The AUC numbers in
7 shows that the DFT TDB-HW network gives more than 16% im-
provement compared with LFBE HW network, when using 60% or
100% of training data.

The DFT TDB-HW network uses the linear-normalized raw au-
dio input, without any non-linear pre-processing based on auditory
knowledge. While the LPS feature’s computation involves the non-
linear process which takes more computation. For the raw-audio-
input condition, we believe that the raw audio DNN may easily con-
verge to trivial local minima due to absence of adequate normaliza-
tion also as indicated in Bhargava’s work [12].
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5. CONCLUSION

In this paper, we have proposed the novel highway network with
a time-delayed window component on the bottleneck layer. The
proposed network can directly model the audio signal by cascad-
ing a DFT-based linear normalizer. Through the WW experiments
on the real far-field data, we have demonstrated that our TDB-HW
networks with the complex DFT feature reduced the AUC of ap-
proximately 20 % relative to the feed-forward DNN with the LFBE
feature in the case that a large amount of training data was available.
We also investigated different pre-processing methods in feature ex-
traction for the deep highway network. It turned out that DFT-based
normalization on the audio signal could provide better performance

30% of Training Data 60% of Training Data Full Training Data

Fig. 7. AUCs calculated from figure 5

than direct audio-input given the same amount of training data. It
should be noted that this DFT normalization process does not result
in an increase in computational complexity during decoding because
the cascade of the linear operations from the DFT to the input layer
can be represented as a single affine transform; This is indeed an
advantage against feature extraction including non-linear processing
such as log-power spectrum.
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