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Abstract

Fine-tuning large language models (LLMs) with a collection
of large and diverse instructions has improved the model’s
generalization to different tasks, even for unseen tasks. How-
ever, most existing instruction datasets include only single in-
structions, and they struggle to follow complex instructions
composed of multiple subtasks. In this work, we propose a
novel concept of compositional instructions called chain-of-
instructions (CoI), where the output of one instruction be-
comes an input for the next like a chain. Unlike the conven-
tional practice of solving single instruction tasks, our pro-
posed method encourages a model to solve each subtask step
by step until the final answer is reached. CoI-tuning (i.e., fine-
tuning with CoI instructions) improves the model’s ability to
handle instructions composed of multiple subtasks as well as
unseen composite tasks such as multilingual summarization.
Overall, our study finds that simple CoI tuning of existing in-
struction data can provide consistent generalization to solve
more complex, unseen, and longer chains of instructions. Our
code and data are available at https://github.com/amazon-
science/chain-of-instructions

Introduction
Large language models (LLMs) have demonstrated impres-
sive performance in various tasks, from conventional NLP
downstream tasks, such as machine translation and summa-
rization, to open-ended tasks, such as writing an outline for
blog posts and giving tips for presentation, when fine-tuned
on human-like instructions (Ouyang et al. 2022; Wang et al.
2022; Conover et al. 2023; Mishra et al. 2022). These mod-
els excel at single instruction tasks, but their ability to handle
complex and compositional instructions is less explored.

A compositional instruction contains a series of sequen-
tial subtasks, as the output of one subtask becomes the input
of the next one in a chained manner as shown in Figure 1.
We call this problem as Chain-of-Instructions or shortly CoI.
We examine what subtasks can be composed more naturally
than others.

* Work was partially done during internship at Amazon.
† Work was done while at Amazon.
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Figure 1: Chain-of-Instructions (CoI) example. The summa-
rization output can be an input for a title generation subtask;
the output of the title generation can be an input for style
transfer or translation subtasks. Arrow thickness denotes the
probability of instruction composability. X means that these
subtasks cannot be composed due to format mismatch. Ik is
kth instruction and Ok is kth output.

In Figure 1, we can see that some tasks can be composed
together, such as input a summary to a title generation task,
while some tasks cannot be composed together, e.g., a sum-
mary as input for a Data-to-Text task. Some tasks have a
higher probability of being able to be composed, such as
generating a title from a summary compared to converting
numbers in a summary since sometimes a summary does
not contain a number. Figure 2 illustrates a more detailed
example of CoI. The given instruction “Generate a blog-like
title in French” can be decomposed into three chained sub-
instructions:
1. Generate a title for the given text
2. Convert the style of the title to be similar to a blog post

title
3. Translate the blog post title into French

When these sub-instructions are composed, we call it
a compositional instruction or chain-of-instructions. Our
study investigates whether LLMs can handle compositional
instructions effectively and whether models tuned with com-
positional instructions can be generalized to solve more

https://github.com/amazon-science/chain-of-instructions
https://github.com/amazon-science/chain-of-instructions


Instruction Composed Data Size Domain

Chain-of-Instructions (Ours) ✓ ✓ 18k NLP tasks

Self-Instruct (Wang et al. 2023) ✓ ✗ 52k Daily QA-like tasks
Dolly (Conover et al. 2023) ✓ ✗ 15k Daily QA-like tasks
Super-NaturalInstruct (Wang et al. 2022) ✓ ✗ 1.6k NLP tasks

Faith and Fate (Dziri et al. 2023) ✗ ✓ N/A Math, logic, programming
Compositional Semantic (Drozdov et al. 2022) ✗ ✓ N/A CFQ, COGS, Parsing
MuSiQue (Trivedi et al. 2022) ✗ ✓ 24.8k Multi-hop QA

Table 1: A comparison of our work with existing related works. As some previous works do not contribute a new dataset, the
dataset size is shown as N/A. For instruction datasets, data size refers to the number of instructions, not task instances (input-
output pair). More prior work is studied in §.
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[O2] Output 2: Delight in 
Ratatouille: Savor the Flavors 
of a Summer Farewell

[O1] Output 1: Ratatouille: 
A Taste of Summer's Farewell

Input: Ratatouille is a traditional stew made with summer 
vegetables. When cooking Ratatouille, you can imagine picking up 
fresh vegetables from your yard and ready to embrace Fall.

[O3] Output 3: Délectez-vous 
avec la Ratatouille : Savourez les 
Saveurs d'un Adieu à l'Été

[I1] Instruction 1: 
Generate a title

[I2] Instruction 2: 
Convert into a blog-style 
title

Instruction: Generate a blog-like title in French

[I3] Instruction 3: 
Translate into FrenchS
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Figure 2: An example of the Chain-of-Instructions task. The
last output is the expected output of the CoI .

complex, unseen, or longer chains of instructions. We first
create a new CoI dataset with our proposed LLM-based
compositionality checker, and then evaluate our model’s per-
formance in handling (1) traditional single instructions and
(2) compositional instructions.

Our work is closely related to other instruction-tuning
works and compositional studies in NLP, as summarized in
Table 1. Wang et al. (2023); Conover et al. (2023); Wang
et al. (2022) propose new instruction datasets, but they only
handle single instruction problems. Although our approach
draws inspiration from Chain-of-Thought (CoT) prompting
(Wei et al. 2022b) or Least-to-Most prompting (Zhou et al.
2022), our CoI is not a prompting technique but a collection
of chained instructions validated by an LLM, showing gen-
eralization in solving complex and compositional problems.
Our contributions are as follows:
• We introduce a novel task called Chain-of-Instructions

(CoI) to examine LLMs’ capabilities in following com-
positional instructions by creating a new benchmark
dataset.

• We develop a framework to automatically construct com-
posed instruction datasets with minimal human supervi-

sion. The framework leverages in-context learning on ex-
isting single-instruction datasets to create CoIs.

• We propose a method for enabling LLMs to solve com-
positional tasks in an explainable way. As an example,
a model can generate incremental outputs at each step
of a complex task chain. With CoI-tuning, step-by-step
instruction following becomes easier, especially when
dealing with instructions composed of multiple subtasks.

• We demonstrate through experiments and analysis that
the CoI-tuned model outperforms both individual in-
structions and sequential compositional instructions. By
training on CoI data, the model achieves higher perfor-
mance. This result also generalizes for unseen longer
chain test sets and downstream tasks.

Chain-of-Instructions
Formulation
Compositional instructions contain multiple subtask instruc-
tions where the output from one subtask becomes the in-
put for the next subtask similarlity to a composition func-
tion in math. Thus, we formalize the problem of chain-of-
instructions as follows:
Definition 1 (Chain of Instructions). Given a tuple of <in-
struction I , input X , output Y >, let I(X) = Y refer that
an LLM generates output Y with instruction I and input
X . A sequence of instructions {I1, ..., Ik} is a chain of in-
structions with length k if Ii+1 ◦ Ii(Xi) = Yi+1, for all
i ∈ {N : 1 ≤ i ≤ k}.

Automatic Dataset Creation Pipeline
Seed Datatsets We curate a new compositional instruc-
tion dataset from existing single task instruction dataset:
SUPER-NATURALINSTRUCTIONS (SUP-NATINS) (Wang
et al. 2022). We select SUP-NATINS as the seed dataset be-
cause it contains a wide variety of tasks (1,616 unique tasks)
from 76 categories, including text categorization, summa-
rization, and machine translation. Each category contains
many different NLP tasks. For example, under the text cat-
egorization category, there exist sarcasm detection and po-
liteness classification tasks. Each task in SUP-NATINS con-
tains human-written descriptions that can be considered as
instructions and instances as pairs of inputs and outputs. We



only select tasks with English (1,341 unique tasks) as their
input language to make sure that the chain is connected. For
our single-task instruction tuning data (CoI1), we randomly
sample 10 input-output pairs, resulting in 13,410 instances.

Instruction Composition Composing two single instruc-
tions poses a challenge due to their lengthy and specific de-
scriptions, and differing output formats. Figure 3 illustrates
a two-step process for creating a compositional instruction
dataset with the help of an LLM as elaborated in the follow-
ing paragraphs. Here we use GPT 3.5 Turbo (Ouyang et al.
2022) because of its reasonable price and at the time, we ex-
amine that the quality of the result is good enough. However,
this data creation procedure can be reproducible with other
strong LLMs as well.

Step 1: Single instruction summarization The task in-
structions in SUP-NATINS are lengthy and detailed, which
may deviate from real human-like instructions. With the
same dataset (SUP-NATINS), Yin et al. (2023) find that 60%
tokens can be removed with comparable, if not better, model
performance. Thus, we use the LLM to shorten each instruc-
tion in the SUP-NATINS dataset. This step reduces the aver-
age number of words in the SUP-NATINS descriptions from
62.19 to 14.33.

Step 2: Composability check To generate compositional
instructions from single instructions, we perform a two-step
process: (1) validity check and (2) generate the output for the
second (or third) subtask. The validity check is performed to
examine whether two subtasks are composable. We first fil-
ter out non-composable tasks with heuristics developed by
the authors’ knowledge (see Heuristics for Validity Check
in the Appendix). For example, classification tasks can only
be the last subtask when composing a pair of tasks. After ap-
plying these heuristics, we additionally check whether LLM
can generate the output for the second instruction based on
the input of the first instruction. If so, we treat the pair as
composable.1

For the pairs that pass the validity check, we generate the
new output using the first output and second instruction for
the second task. This generated output serves as the ground
truth for the second subtask in the instruction-tuning phase.
Our approach is a variation of distillation from a larger LLM
as has been done by previous works for different problems
(Gu et al. 2024; Hsieh et al. 2023; West et al. 2022). We
define compositional instructions originating from two in-
structions as CoI2 and those originating from three instruc-
tions CoI3. CoI3 is created by chaining two CoI2s if there
exists Ix◦ Iy and Iy◦ Iz , resulting in CoI3 = Ix◦ Iy◦ Iz . The
same method is applied for creating longer chains such as
CoI4 and CoI5.

To examine the quality of LLM’s composability check,
we randomly sampled 100 instances and manually inspected
which composed instructions are valid. We find that 75%
are valid composed instructions. For CoI3, similarly we ran-
domly sampled 100 instances and found that 59% are valid
compositions. Such error rates are often found in LLM-
generated data (Das et al. 2024; Wang et al. 2023).

1Prompt for this step is available in the Appendix.

chain length (σ) train test

1 13,410 -
2 2,993 588
3 2,187 480
4 - 844
5 - 355

Table 2: Dataset statistics per chain length.

CoI Dataset
Table 2 shows the data statistics of CoI datasets. In chain
length 2, we obtain 970 unique category pairs; in chain
length 3, we obtain 418 unique category triplets. In each pair
or triplet, we randomly select at most three instances and di-
vide them into training and testing sets. For the longer chains
(4, 5), we only use them for testing. Please find Appendix ??
for the detailed statistics.

Figure 4 shows a t-SNE plot when we embed subtask
instructions of frequent CoI2 instructions using Sentence-
BERT (Reimers and Gurevych 2019) with DistilRoberta
(Sanh et al. 2019).2 We find generation tasks such as para-
phrasing and question generation can be compiled as both
the first and second subtasks, except for problems involv-
ing specific input formats, such as code to text or data to
text, which can only be compiled as the second subtask. On
the other hand, close-ended problems (e.g., POS tagging or
grammar error detection) mostly appear as the second sub-
task.

Experiment Setup
CoI models We fine-tune the base models of Alpaca-
7B (Taori et al. 2023) and Mistral-7B-Instruct (Jiang
et al. 2023). Since both models are open-sourced single
instruction-tuned models which are widely used, they are
suitable to be compared with CoI-tuned models.

Baselines
• Off-the-shelf version of Alpaca-7B (Taori et al. 2023)

model and Mistral-7B-Instruct model without fine-tuning
(Base).

• The same non-finetuned Alpaca and Mistral with chain-
of-thought prompting (Wei et al. 2022b) (CoT) with
seven-shot demonstrations and least-to-most prompting
(Zhou et al. 2022) (LtM).

• Fine-tuned base models with a subset of single-
instruction SUP-NATINS dataset (CoI1).

Metrics For our evaluation metric, we report ROUGE-L
(Lin 2004), following Wang et al. (2022) and LLM (gpt-4o-
mini) as a preference judge. ROUGE can be used to assess
various text generation tasks and using LLM as a judge has
been widely adopted in NLP research (Liu et al. 2023; Fu
et al. 2024). We also have human evaluation to perform blind
pairwise comparison between the outputs from the baseline
and from our best CoI models.

2We only select instruction pairs that appear more than 7 times,
and 9 is a max number of occurrences in CoI2 dataset.

https://arxiv.org/pdf/2402.11532
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Test sets To assess the compositionality of our models, we
prepare three types of evaluation suites.
• CoI Test set For the compositional instruction evalua-

tion, we tested the models on CoI test sets with σ =
{2, 3, 4, 5} where σ is a chain length.

• BIG-Bench Hard For the single instruction test set, we
use BIG-Bench Hard (Suzgun et al. 2022), a collection
of 27 challenging tasks, such as date understanding and
evaluating the truth value of Boolean expressions, and
each task has ≤ 250 instances. BIG-Bench Hard sub-
set enables us to evaluate the model’s performance on
diverse and challenging NLP tasks with clear single in-
structions and associated input-output pairs.

• Downstream Task In addition to CoI test sets, we ex-
amine the usefulness of CoI on the downstream task
of multilingual summarization using WikiLingua (Lad-
hak et al. 2020), which is a multilingual dataset based

Mistral Alpaca
Base CoI Base CoI

Test Set: CoI2
Subtask 1 1.32 90.50 13.98 84.16
Subtask 2 2.40 49.21 7.02 45.57

Test Set: CoI3
Subtask 1 18.04 81.49 9.56 91.77
Subtask 2 6.82 68.65 2.13 71.67
Subtask 3 6.93 32.73 3.30 35.52

Table 3: ROUGE-L results on intermediate tasks. CoI models
refer to best models of CoI: CoI12 model if the test set=CoI2
and CoI123 model if the test set=CoI3.

on WikiHow3 for abstractive summarization in 18 lan-
guages. WikiHow articles provide step-by-step instruc-
tions to complete procedural tasks on different topics,
and each step includes a one-sentence summary as well.
In our experiment, we select source-target language pairs
; English-to-French (WikiLingua-en-fr) and Spanish-to-
English (WikiLingua-es-en) and randomly sample 300
test instances for each. Given an input content from
source language Lsrc, we aim to generate a summary
in target language Ltgt. This task is similar to a 2-
instruction problem as we summarize first and then trans-
late. Note that CoI training data only contains transla-
tion tasks from English to Punjabi, German, and Catalan,
thus, selected source-target pairs are unseen in CoI train-
ing set.

Results
We conduct experiments to measure the performance of CoI-
tuned models on our compositional instructions (§), and the

3https://www.wikihow.com

https://www.wikihow.com


Model
CoI2-test CoI3-test BBH

Mistral Alpaca Mistral Alpaca Mistral Alpaca

Baselines

Base 24.93 24.95 23.66 20.99 8.51 14.36
CoT 16.61 23.82 16.90 20.09 5.84 17.05
LtM 15.07 23.54 16.41 19.79 3.99 3.99
CoI1 39.72 32.32 29.62 21.75 27.68 28.74

Chain-of-Instructions Models

CoI2 60.43 62.04 48.31 48.23 10.65 12.11
CoI3 33.63 31.62 60.03 47.03 5.78 7.00
CoI12 70.76 67.50 59.84 50.23 24.44 28.80
CoI123 45.16 67.12 61.61 67.49 29.39 27.57

Table 4: ROUGE-L results on compositional instruction test
sets and BIG-Bench Hard (BBH). Base refers to the non-
fine-tuned base models, CoT = chain-of-thought prompting
on base models, LtM = least-to-most prompting on base
models. The best scores are marked as bold .

generalization capability to difficult single instructions (§),
and longer-chain instructions σ = {4, 5} (§), and the appli-
cation to an existing downstream task (§). We also conduct
an ablation study to see if the correctness of second and third
subtask outputs matter in the Table ?? in Appendix. We see
degrading performance of models fine-tuned with incorrect
outputs, showing the importance to have the correct output
for the subtasks during training.

Performance on In-domain Composite Tasks
(CoI2,3)

Automatic metric As we evaluate our CoI models’ perfor-
mance against the baselines on multi-CoI test sets, we find
that both Mistral and Alpaca fine-tuned on CoI12 instruc-
tions perform the best for CoI2-test (Table 4) 4. Similarly,
for CoI3-test, both CoI123 Mistral and Alpaca perform the
best. All models fine-tuned on compositional instructions
generally outperform the baselines, except for CoI3-tuned
Alpaca. This model performs slightly worse than the CoI1-
tuned Alpaca on CoI2 test set. We hypothesize that this hap-
pens because instructions in CoI3 become very long, thereby
it becomes harder for the model to generalize without CoI2
and CoI1 examples. As a result, models only fine-tuned on
CoI3 tend to generate long sentences with hallucinations as
in Table 5.

In the LLM-as-a-judge experiment, we evaluate the per-
formance of the best CoI models on CoI2-test and CoI3-
test against the best baseline, CoI1. On CoI2-test, the LLM
prefers 69.90% of Alpaca CoI12’s outputs and 70.92% of
Mistral CoI12’s outputs over the baseline. Similarly, on
CoI3-test, the LLM favors Alpaca CoI123’s outputs and
Mistral CoI123’s outputs over the baseline by 81.04% and
60.00%, respectively.

4Fine-tuning details in Appendix ??.
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Figure 5: Human evaluation results. "Prefer CoI" refers to
the percentage of CoI outputs preferred by humans; “none”
refers to when humans think the outputs for both first and
second subtasks are incorrect.

CoI Results per Subtasks We examine how CoI models
perform for each subtask in the compositional instruction.
To do this, we compare the results from the best version of
CoI (CoI12 for CoI2 test set, CoI123 for CoI3 test set) against
the non-finetuned baseline models. Since there is no clear
boundary to distinguish the first subtask output and the sec-
ond subtask output in the baseline’s outputs, we use an LLM
to separate the responses. Given the subtask instruction and
the output, we ask the LLM to decide which span of the out-
put text responds to the subtask instruction. To remove the
possibility of LLM’s hallucination being counted as part of
the output, we only include LLM’s output span when it ap-
pears in the baseline’s output. When LLM deems that the
output is incorrect, we assign ROUGE = 0 because this out-
put could refer to the first subtask or second subtask.

Table 3 and Table ?? show results of CoI models and base-
line on CoI2 and CoI3 test sets. In general, CoI models out-
perform the baseline for both test sets, with the best results
on the first subtask and then followed by the second subtask
and the third subtask. However, it is interesting to see that
CoI’s performance on the second subtask for CoI3 test set
is higher than CoI’s performance on the second subtask for
CoI2. We conjecture that it happens because the previous
subtasks can be easier to solve or knowing the subsequent
subtask helps improving the performance.

Human evaluation We randomly sample 200 instances
from CoI2-test and CoI3-test for both Mistral and Alpaca
and ask 8 computer science students with NLP knowledge to
rate the output. We show 25 sets of instruction, input, base-
line output, and CoI output to each annotator. The order of
the outputs is randomized. Each annotator then selects the
output they prefer. Figure 5 depicts the percentage of CoI
outputs that humans prefer vs. when none of the outputs are
preferred. Outputs from CoI-tuned models are preferred for
all test sets for both models.



Instruction: Simplify the given sentence by paraphrasing it.
and then Determine if the paraphrased sentence has proper punctuation with True or False.

Input: many of the churches work together for town-wide projects under the banner of "churches together in steve-
nage".

Correct output: Task 1 output and task 2 input: many of the churches work together for projects across the town
under the slogan of “churches together in stevenage”. Task 2 output: False

Model Output ROUGE-L

CoI1 many of the churches work together for town wide projects under the banner of “ churches 75.00
together in stevenage ”.

CoI2 Task 1 output and task 2 input: many of the churches work together for projects across the 100
town under the slogan of “ churches together in stevenage ”. Task 2 output: False

CoI3 1 output and 2 input: many of the churches work together for projects across the town under the 43.75
slogan of “ churches together in stevenage ”. 2 output and 3 input: The pronoun ’them’ refers to
the noun phrase ’many of the churches’ because the sentence states that ’they’ work together
for
projects across the town. This coreference is justified by the knowledge that the churches are
the ones that are working together. 3 output: False

CoI12 1 output and 1 input: many of the churches work together for projects across the town under the 85.71
slogan of “ churches together in stevenage ”. 2 output: False

CoI123 Task 1 output and task 2 input: many of the churches work together for projects across the town 100
under the slogan of “ churches together in stevenage ”. Task 2 output: False

Table 5: Example outputs from different CoI-tuned Alpaca on a 2-instruction test instance.
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Figure 6: ROUGE-L (x-axis) on CoI test sets σ = 2, 3, 4, 5
for various Alpaca models (y-axis). Base refers to the non-
fine-tuned Alpaca.

Generalization to Unseen Single Tasks
To assess whether adding compositional instructions helps
improve the model’s performance on unseen and difficult
single instruction tasks, we tested CoI-tuned models on BIG-
Bench Hard (BBH). CoI123-tuned Mistral performs the best
(ROUGE: 29.39) as shown in Table 4. For Alpaca, the model
fine-tuned on CoI12 is also better than the baseline and
achieves a higher ROUGE score of 28.80. This confirms that
having compositional instructions helps the model to under-
stand hard single instruction problems as well.

Generalization to Longer Chains (CoI4,5)
In this experiment, we examine whether our CoI models can
generalize to longer chains. We run inference on CoI4 and

CoI5 test sets using CoI1, CoI12, and CoI123-tuned Alpaca.5
As shown in Figure 6, longer chains (σ = 2, 3) in the train-
ing set help the model to understand unseen longer chain
(σ = 4, 5) in the test set as well. Moreover, the performance
does not drop as high as CoI1 or the baseline non-fine-tuned
models that do not learn the chaining reasoning. We posit
that the knowledge of compositional instructions in the train-
ing set, even though the length of the chain is shorter than 4
or 5, still helps the model to understand the composed tasks.

Generalization to Downstream Composite Tasks
For this experiment, we use CoI12 because it shows the high-
est ROUGE-L on 2-instruction problem. For the baseline, we
use non-finetuned Alpaca and Mistral. We evaluate the per-
formance of the models using four metrics below.

• ROUGE-L (all) the ROUGE score of the summary of the
whole generated output.

• ROUGE-L (src) the ROUGE score only from the sum-
mary in the source language.

• ROUGE-L (tgt) the ROUGE score only from the sum-
mary in the target language.

• #valid outputs number of valid summaries in the source
and the target languages are generated because some-
times the model may not generate them properly.

Table 6 shows the results for our downstream task experi-
ments. For the English-to-French summarization task, CoI12
can generate more valid target outputs than the baselines.
Moreover, CoI12 obtains higher ROUGE for both source and

5Mistral results are in Table ?? in Appendix ??.



Metric Mistral Alpaca
Base CoI12 Base CoI12

English to French
ROUGE-L (all) 8.03 10.97 5.78 8.90
ROUGE-L (src) 10.68 15.66 3.84 12.71
ROUGE-L (tgt) 7.45 10.93 5.46 7.96
#valid src outputs 206 295 126 228
#valid tgt outputs 212 295 221 228

Spanish to English
ROUGE-L (all) 11.22 12.43 7.87 10.39
ROUGE-L (src) 0.07 4.85 2.47 1.87
ROUGE-L (tgt) 11.22 12.30 7.68 7.13
#valid src outputs 1 290 80 150
#valid tgt outputs 300 290 240 150

Table 6: Results of the multilingual summarization task on
300 instances. Base refers to non-fine-tuned baseline, src is
source language, and tgt is target language.

target summaries than the baselines. For the Spanish-to-
English summarization task, CoI12 Mistral outperforms the
baseline for all ROUGE-L scores, but Alpaca fails to have
better ROUGE-L (src) and ROUGE-L (tgt) against the base-
line.

In general, CoI performs better in English-to-French sum-
marization compared to Spanish-to-English summarization
because our training instances contain a translation task
from English to other languages (Punjabi, German, and
Catalan), even though the target language of the translation
task in the training set is not French. On the other hand, we
see poor performance in Spanish summaries across all mod-
els, possibly due to the lack of Spanish as the first subtask in
training datasets. We conjecture this issue could be resolved
if we add more Spanish tasks during the fine-tuning stage.

Related Work
Instruction tuning There has been a notable surge in re-
search focused on fine-tuning LLMs using human instruc-
tions. Efrat and Levy (2020) examined LLMs’ ability to
follow natural language instructions compared to crowd-
workers. Wei et al. (2022a); Sanh et al. (2021) have trans-
formed NLP task descriptions into human-like language
instructions and showed that LLMs fine-tuned with those
instructions have generalizable capability toward unseen
tasks (Chung et al. 2024). Subsequently, many studies have
emerged to create new instruction datasets aimed at train-
ing models in instruction-tuning paradigm: some instruc-
tion datasets are fully written by humans (Wang et al. 2022;
Conover et al. 2023), the others are written with the help
of LLMs (Honovich et al. 2023; Wang et al. 2023; Taori
et al. 2023); some instructions are NLP-specific (Mishra
et al. 2022; Wang et al. 2022; Weller et al. 2020), and the
others are designed to respond to general-purpose instruc-
tions (Ouyang et al. 2022; Wang et al. 2023). These prior
studies only work on single instruction datasets, so we con-

struct a new compositional dataset upon Wang et al. (2022)’s
SUPER-NATURALINSTRUCTION. Our work is also related
to several past works which have leveraged LLMs to gen-
erate training data (Schick and Schütze 2021), and some of
them specifically use LLMs for generating instruction data
(Peng et al. 2023; Shao et al. 2023). Nevertheless, our CoI
data generation framework differs from previous works as
we use LLMs to determine the composability of individ-
ual instructions, and then generate responses for subsequent
subtask instructions.

Compositional problems in NLP Several NLP work have
investigated the capability of Transformer model on com-
positional problems including algorithm and math prob-
lems (Dziri et al. 2023), compositional semantics (Drozdov
et al. 2022), and multi-hop question-answering (QA) tasks
(Trivedi et al. 2022). Dziri et al. (2023) highlight how Trans-
former models often struggle with compositional mathemat-
ics computation or program executions (Nye et al. 2022;
Saparov and He 2022). Drozdov et al. (2022) introduce a
new prompting method which first decomposes the compo-
sitional questions or sentences (Keysers et al. 2019; Kim and
Linzen 2020), then sequentially predicts the answers to sub-
problems, and finally generating the final output. Composi-
tionality in NLP is closely related with multi-hop QA prob-
lems with compositional questions where the answers from
sub-questions are needed to answer the main question (Yang
et al. 2018; Ho et al. 2020; Trivedi et al. 2022). Qiu et al.
(2022) have shown how a model with compositional latent
structure improves large language models’ performance on
compositional generalization tasks through synthethic data
augmentation. CoI is most related to Aksu et al. (2023) as
they work on dealing with compositional tasks for dialogue
systems. However, their definition of “compositional task”
is different from ours as they do not require the output of
one subtask is shown to the next subtask. Meanwhile, in our
CoI, the outputs from the previous subtasks become the next
subtask inputs.

Conclusion and Future Work
In this work, we propose a new task called Chain-of-
Instructions and develop a dataset for building models to
solve the task. We introduce an automatic pipeline on how
to build our dataset and demonstrate the usefulness of our
CoI-tuned models on the tasks of the generated dataset and
downstream tasks. Since human language is complex and
an instruction may actually be composed of subtasks, it is
important to have a model that can deal with compositional
instructions, especially as we show that models fine-tuned
only on single instructions never outperform the CoI-tuned
models on multi-instruction tasks. For future work, we con-
sider looking into instruction decomposition in addition to
the instruction composition problem. We also recommend
trying out more tasks to be composed besides those from
SUPERNATURALINSTRUCTION.
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