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Abstract
Distributed clause-sharing SAT solvers can solve challenging problems hundreds
of times faster than sequential SAT solvers by sharing derived information among
multiple sequential solvers. Unlike sequential solvers, however, distributed solvers
have not been able to produce proofs of unsatisfiability in a scalable manner,
which limits their use in critical applications. In this work, we present a method
to produce unsatisfiability proofs for distributed SAT solvers by combining the
partial proofs produced by each sequential solver into a single, linear proof. We
first describe a simple sequential algorithm and then present a fully distributed
algorithm for proof composition, which is substantially more scalable and general
than prior works. Our empirical evaluation with over 1500 solver threads shows
that our distributed approach allows proof composition and checking within
around 3× its own (highly competitive) solving time.
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1 Introduction
SAT solvers are general-purpose tools for solving complex computational problems.
By encoding domain problems into propositional logic, users have successfully applied
SAT solvers in a plethora of relevant fields such as formal verification [1], electronic
design automation [2], and mathematics [3]. The list of applications has grown signif-
icantly over the years, mainly because algorithmic improvements have led to orders
of magnitude improvement in the performance of the best sequential solvers [4].

Despite all this progress, there are still many problems that cannot be solved
quickly with even the best sequential solvers, pushing researchers to explore ways of
parallelizing SAT solving. One approach that has worked well for specific problem
instances is Cube-and-Conquer [5, 6], which can achieve near-linear speedups for thou-
sands of cores but requires domain knowledge about how effectively to split a problem
into subproblems. An alternative approach that does not require such knowledge is
clause-sharing portfolio solving [7], which has recently led to distributed solvers [8]
achieving impressive speedups (e.g., 40–400× at 3000 cores, depending on problem
difficulty [9]) over the best sequential solvers across broad sets of benchmarks [10].

Today, distributed clause-sharing SAT solvers are some of the most powerful tools
available for solving hard SAT problems. However, there is an important caveat: unlike
sequential solvers, current distributed clause-sharing solvers cannot produce proofs of
unsatisfiability. A direct consequence is that these distributed solvers cannot be used
for proving theorems [6, 11, 12]. Even in cases where proofs are not strictly required, it
is important to be able to trust the output of an algorithm.1 For instance, in bounded
model checking [13]—a crucial verification tool and one of the most prominent appli-
cations of SAT solving—a formula’s reported unsatisfiability is interpreted as a system
behaving correctly up to the considered bound. Therefore, the safety and reliability of
crucial systems may depend on a SAT solver answering correctly.

In this sense, we argue that distributed clause-sharing solvers are lacking com-
pared to sequential SAT solvers in terms of general trustworthiness. The latter, while
complex pieces of software, not only generate verifiable proofs but are also being
rigorously tested (e.g., [14, 15]) and feature limited external interfaces. Distributed
clause-sharing solvers, on the other hand,
• are more costly (and thus more difficult) to test rigorously;
• make use of several different SAT solvers configured in many different ways [16];
• run many execution threads concurrently; and
• make use of non-trivial interfaces for data transfer such as message passing [16] and

inter-process communication [8].

All of these properties have some potential to introduce faults or correctness issues
in certain corner cases, which makes it all the more critical to be able to verify the
system’s output independently.

Although there has been foundational work in producing proofs for shared-memory
clause-sharing SAT solvers [17, 18], existing approaches are not general enough for
large-scale distributed portfolio solvers. In this work, we address this issue and present

1There are certain exceptions, such as Monte Carlo algorithms where providing some incorrect results is
an explicit part of the specification.
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the first scalable approach for generating proofs for such solvers. To construct proofs,
we maintain provenance information about shared clauses in order to track how they
are used in the global solving process, and we use the recently-developed LRAT proof
format [19] to track dependencies among partial proofs produced by solver instances.
By exploiting these dependencies, we are then able to reconstruct a single linear
proof from all the partial proofs produced by the sequential solvers. We first out-
line a simple sequential algorithm for proof reconstruction before devising a parallel
algorithm that we implement in a fully distributed way. Both algorithms produce
independently-verifiable proofs in the LRAT format. We demonstrate our approaches
using an LRAT-producing version of the sequential SAT solver CaDiCaL [20] to turn
it into a clause-sharing solver, and then modify MallobSat to orchestrate a portfolio
of such CaDiCaL instances while tracking the IDs of all shared clauses.

We evaluate our approaches from the perspective of efficiency, benchmark-
ing the performance of our clause-sharing portfolio solver against the winners of
the cloud, parallel, and sequential tracks from ISC 2022. Our approach intro-
duces overhead in terms of solving, proof reconstruction, and proof checking.
We examine this overhead in detail and show that our approach is still considerably
faster than sequential approaches. We also demonstrate that our approach substan-
tially outperforms prior work on proof production for clause-sharing portfolios [17].

Finally, we discuss the latest advances in this area. Most notably, our initial work
served as a motivation for Pollitt et al. to implement a sequential solver with full, effi-
cient LRAT support [21]. Integrating this solver and dropping the previously required
pre– and postprocessing stages now results in even better scaling behavior.

Context. The article at hand is a significantly extended version of our TACAS
2023 conference publication [22]. We integrated supplementary content from the cor-
responding author’s dissertation [23], notably a proof of correctness for our distributed
proof production approach and a more detailed analysis of experiments. Further-
more, we describe important recent developments in this topic and are able to present
significantly improved results in follow-up experiments. Since these latest results com-
plement our original results, which feature a less developed setup but more competitors
and analyses, we include both of them as important stages in our line of work.

This article is structured as follows. In Section 2, we provide the relevant back-
ground for our discussion. In Section 3, we outline the general problem of producing
proofs for distributed SAT solving and a first sequential algorithm for proof combi-
nation. In Section 4, we describe a more general algorithm for distributed-memory
setups. We discuss our original implementation in Section 5 and the according empir-
ical evaluation in Section 6, then we describe and assess our latest advances on the
topic in Section 7. We conclude with a summary and an outlook in Section 8.

2 Background
In this section, we introduce relevant preliminaries for the paper, including SAT,
proofs of unsatisfiability, and parallel and distributed SAT solving.
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2.1 The SAT Problem
A Boolean variable can only be true or false. A literal is a Boolean variable or its
negation. A clause is a disjunction of literals, i.e., a logical expression that evaluates
to true if and only if at least one of the literals in the clause is true. A Conjunctive
Normal Form (CNF) formula is a conjunction of clauses, i.e., a logical expression that
evaluates to true if and only if each of the clauses evaluates to true.

An assignment α for a logical expression F assigns values to some of the variables
occurring in F . α is partial if some variables in F are left unassigned, and α is total
otherwise. If α is total and F evaluates to true under α, then we write α |= F and
say that α is a model for F or that α satisfies F . We refer to such an assignment
as a satisfying assignment (for F ). A CNF formula F is satisfiable if and only if a
satisfying assignment to F exists. Otherwise, F is unsatisfiable.

An instance of the SAT decision problem is given as a CNF formula F . The task is
to decide whether F is satisfiable. A common extension of the SAT decision problem,
which we refer to as the constructive SAT problem, additionally requires outputting
a satisfying assignment α if F was found to be satisfiable. Likewise, we consider
the certified SAT problem as an extension of the constructive SAT problem which
additionally requires outputting an unsatisfiability certificate C if F was found to be
unsatisfiable. Intuitively, an unsatisfiability certificate is a chain of logical reasoning
that the solver used to derive unsatisfiability and that others can verify independently.

Today’s most efficient sequential SAT solvers commonly build upon the Conflict-
Driven Clause Learning (CDCL) approach [24]. Intuitively, the solver carefully
searches the space of partial variable assignments and derives conflict clauses from
encountered logical conflicts. These clauses can be useful to prune the search for a
satisfying assignment on the one hand and to derive the empty clause, demonstrating
unsatisfiability, on the other hand. Maintaining and garbage-collecting learned clauses
in a sensible manner is an important line of research in SAT solving [25, 26].

2.2 Proofs of Unsatisfiability
In contrast to the pure decision problem, the certified SAT problem requires a justi-
fication for the produced result. For the satisfiable case, this is straightforward. All
common SAT solving approaches conclude the satisfiability of a formula by construct-
ing a satisfying assignment. This assignment serves as a justification since it can be
verified in linear time by evaluating the formula on the assignment. For the unsatis-
fiable case, the usual justification is the solver’s chain of logical reasoning leading to
the empty clause, which demonstrates unsatisfiability. This chain is not necessarily
linear in the problem input, and, in fact, certain inputs require an exponentially-sized
proof when using common reasoning techniques [27, 28].

Consider a formula F and a sequence of clauses C := ⟨c1, c2, . . . , cn⟩ learned by a
CDCL solver S while processing F . The last clause cn is the empty clause, i.e., the
solver has derived unsatisfiability for F . In order to verify that the result is correct,
we can check for each i ∈ {1, . . . , n} if ci is indeed a logical implication of the prior
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Fig. 1 CNF formula and corresponding DRAT and LRAT proofs of its unsatisfiability. Headers and
separators are set in light gray, deletions begin with “d”, leading clause IDs are italicized, and hints
are underlined. Clause literals are always colored black.

formula: (
F ∪

i−1⋃
j=1

cj

) ?⇒ ci

Many clause learning and preprocessing techniques have a convenient property named
the Reverse Unit Propagation (RUP) property [29]. For any clause found with the
RUP property, the check above can always be achieved by means of unit propagation:
We assert each literal of ci to be false and then check if unit propagation leads to
a direct conflict. In this case, we showed that F ∧ ¬ci is unsatisfiable, hence ci is a
logical consequence of F and S was correct to derive it. If no conflict arises from unit
propagation, ci is not a sound RUP clause and we reject the proof. Performing this
check for the entire sequence C is a means of verifying the result of S.

Propagating each clause in C through F can be expensive, and for large derivations
we cannot keep the entirety of F ∪ C in memory. Therefore, a popular extension
of proof formats allows the deletion of clauses [30]. Whenever S deletes a clause, it
logs this deletion just like it logs learned clauses. This deletion can then be mirrored
by the proof checker traversing the proof. A proof certificate now takes the shape
C := ⟨a1, a2, . . . , an′⟩ where ai = (op, ci), op ∈ {add, delete}, and ci is a clause.

The current standard format for proofs of unsatisfiability in sequential SAT solving
is called DRAT [30], which allows for additions and deletions as outlined above. Each
added clause must adhere to the so-called RAT criterion [30], a generalization of RUP
that we do not detail. The more recent LRAT proof format [19] augments each clause
addition with hints, or dependencies, that identify the clauses that were required to
derive the current clause. This makes proof checking more efficient, and in fact the
usual pipeline for trusted proof checking is first to use a fast unverified tool (e.g., [30])
to transform a DRAT proof into an LRAT proof, and then check the resulting LRAT
proof with a formally verified proof checker [19, 31–33].

Fig. 1 shows a formula (left) and its corresponding DRAT proof (center) and
LRAT proof (right). Each proof line in the LRAT proof starts with a clause ID.
The numbering starts with ID 9 because the eight clauses of the original formula are
assigned the IDs 1 to 8. Each clause addition first lists the literals of the clause and
then the clause’s dependencies in the form of clause IDs. Clause deletions only state
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the ID(s) of the clauses to delete, as in the later deletion of clause 9. In our work, we
exploit the hints of LRAT to determine dependencies among distributed solvers.

2.3 Parallel and Distributed SAT Solving
The most common way to parallelize general-purpose SAT solving is to run a portfo-
lio of sequential (mostly CDCL) solvers in parallel and to consider a problem solved
as soon as one of the solvers finishes (c.f. [7, 16, 34–37]). Given that the solvers are
sufficiently diverse, portfolio solving is effective if all of the sequential solvers work
independently but not efficient since only a single thread contributes to the final
result. Scalability can be boosted significantly by having the solvers share information
in the form of learned clauses [7]. This approach is taken by the distributed solver
MallobSat [8, 9], which has dominated the cloud track of the International SAT
competition since 2020 [10, 38, 39]. MallobSat relies on a communication-efficient
aggregation strategy to collect the globally most useful distinct learned clauses and
reliably to filter duplicates as well as previously-shared clauses [8]. This strategy aims
to maximize the density and utility of the communicated data. As a matter of fact,
MallobSat’s clause sharing was recently shown to be the main driver of its scalabil-
ity, even if diversification is reduced to an absolute minimum, prompting its authors
to use the term clause-sharing solver going forward [9].

Producing proofs of unsatisfiability is trivial for pure portfolio solvers if each of
the employed solvers is able to output a proof itself. For clause-sharing portfolios, on
the other hand, the derivation of the empty clause can depend on a clause produced
by another solver, which may again depend on clauses from other solvers, and so on.
The full chain of reasoning for a formula’s unsatisfiability can thus be a dense and
interleaved network that features conflict clauses from all participating solvers.

Prior work on generating proofs from clause-sharing portfolio solvers is limited
to shared-memory parallelism and cannot be generalized to distributed memory in
any obvious manner. The recent shared-memory solver Gimsatul [18] is designed
specifically to support outputting DRAT proofs; however, sequential checking of these
proofs is “most likely is too slow to be run in practice” [18] and we are not aware of any
notable parallel DRAT (or LRAT) checking approaches. In terms of generic clause-
sharing portfolios, Heule et al. [17] attempted to generate proofs by having the solver
threads emit proof lines concurrently into a single proof. Clause deletion statements
can be added to the proof only after all solvers have reported deletion of the clause.
Heule et al. obtained mixed results and for the most part were not able to arrive at
proofs that are feasible to check, mostly due to the sheer size of the output and the
large number of clauses that the checker is required to keep in memory.

3 Basic Proof Production
Our goal is to produce checkable unsatisfiability proofs for problems solved by dis-
tributed clause-sharing SAT solvers. We propose to reuse the work done on proofs for
sequential solvers by having each solver produce a partial proof containing the clauses
it learned. These partial proofs are invalid in general because each sequential solver
can rely on clauses shared by other solvers when learning new clauses. For example,
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when solver A derives a new clause, it might rely on clauses from solvers B and C,
which in turn relied on clauses from solvers D and E, and so on. The justification of
A’s clause derivation is thus spread across multiple partial proofs. We need to com-
bine the partial proofs into a single valid proof in which the clauses are in dependency
order, meaning that each clause can be derived from previous clauses.

In order to produce efficiently checkable proofs in a scalable manner, we address
the following three challenges:

1. Provide metadata to identify which solver produced each learned clause.
2. Efficiently sort learned clauses in dependency order across all solvers.
3. Reduce proof sizes by removing unnecessary clauses.

Switching from DRAT to the LRAT proof format provides the mechanism to
unlock all three challenges. First, we specialize the clause-numbering scheme used by
LRAT in order to distinguish the clauses produced by each solver. Second, we use the
dependency information from LRAT to construct a complete proof from the partial
proofs produced by each solver. Finally, we determine which clauses are unnecessary
(or used only for parts of the proof) to trim the proof where possible.

3.1 Partial Proof Production
To combine the partial proofs into a complete proof, we modify the mechanism used
to produce LRAT proofs in each of the individual sequential solvers. We assign to each
clause an ID that is unique across solvers and identifies which solver originally derived
it. The following mapping from clauses to IDs achieves uniqueness across solvers:

Definition 1. Let o be the number of clauses in the original formula and let p be the
number of sequential solvers. Then the ID of the k-th derived clause (k ≥ 0) of solver
i is defined as IDi

k = o + i + pk.

Given IDi
k, we can easily determine the producing solver i using modular arithmetic.

We extend our clause sharing to send each clause together with its ID. A receiving
solver stores the clause with its ID and uses the ID in proof hints when the clause
is used locally, as it does with locally-derived clauses. Unlike locally-derived clauses,
we add no derivation lines for incoming clauses to the local proof. Instead, these
derivations will be added to the final proof when combining the partial proofs.

3.2 Partial Proof Combination
Once the distributed solver reports unsatisfiability, we have p partial proofs. The
derivations in these proofs can refer to clauses of other partial proofs, but they are
locally in dependency order. We can thus combine the partial proofs without reorder-
ing their clauses beforehand. We can simply interleave their clauses so the resulting
proof is also in dependency order, ignoring any deletions in the partial proofs.

Our combination algorithm traverses the partial proofs round-robin. At each step,
we read and output the next clause c from the current partial proof as long as all
dependencies of c have already been output. Checking whether a dependency d has
already been output is simple: We determine which solver produced d (see Def. 1) and
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Instance A

9 -3 0 5 4 0

11 -1 0 6 9 0

11 d 9 0

13 1 2 3 0 8 12 0

10 1 2 0 3 2 0

12 2 3 -4 0 7 11 0

14 0 11 10 1 0

Instance B

9 -3 0 5 4 0

11 -1 0 6 9 0

10 1 2 0 3 2 0

12 2 3 -4 0 7 11 0

14 0 11 10 1 0

Combined

9 -3 0 5 4 0

11 -1 0 6 9 0

11 d 9 0

10 1 2 0 3 2 0

14 0 11 10 1 0

Pruned

Fig. 2 Partial proofs and combined and pruned proof, colored as in Fig. 1. Arrows indicate remote
dependencies across the partial proofs.

check if the next clause of the corresponding partial proof has an ID higher than d.
Our algorithm terminates when it emits the empty clause.

Suppose that two clause-sharing solver instances, A and B, found the formula
from Fig. 1 to be unsatisfiable and emitted two partial proofs as shown in Fig. 2.
Starting with A, we can emit clause 9 (only depending on original clauses) and 11
(depending on original clauses and clause 9). We cannot emit clause 13 since it depends
on clause 12 from B. Proceeding with B, we can now emit the remaining clauses 10,
12, and 14. Since clause 14 is the empty clause, we finish with the complete proof
shown in Fig. 2 (middle right). Note that clause 13 was not added to the combined
proof as it was not required to satisfy any dependencies of the empty clause.

3.3 Proof Pruning
The combined proof our procedure produces is valid but not efficiently checkable
because (1) it can contain superfluous clauses and (2) it does not contain deletion
lines, meaning that a proof checker must maintain all learned clauses in memory
throughout the checking process. To reduce size and improve checking performance,
we prune our combined proof to contain only necessary clauses, and we add deletion
statements for clauses as soon as they are not needed anymore.

Our pruning algorithm walks the combined proof in reverse to find all transitive
dependencies of the empty clause, similar to backward checking of DRAT proofs [40].
We maintain a set R of clause IDs required in the proof, initialized to the ID of the
empty clause alone. We then read all clauses in reverse order, including the empty
clause. Clauses that are not required are ignored. When encountering a clause deriva-
tion whose ID is in R, we check for each of its dependencies whether this is the first
time (from the proof’s end) we see this dependency. In such cases, we can emit a dele-
tion line for the dependency since it is the last time the clause is used in the proof.
After checking all its dependencies, we output the required clause derivation and add
its dependencies (except for original clauses) to R. The final output of the algorithm
is a proof in reversed order, where each clause is required for some derivation and
deleted as soon as it is no longer required. Reversing this output line by line yields a
sound and compact proof.

Consider the combined proof in Fig. 2. Working backward from clause 14, with
clause IDs 11 and 10 added to R, we determine that clause 12 is not required, so it
is ignored. Additionally, prior to clause 11, clause 9 is not in R, so it can be deleted
after the derivation of clause 11. As such, we arrive at the pruned proof in 2.
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On realistic proofs, we show in Section 6 that pruning can sometimes reduce the
proof size by several orders of magnitude.

4 Distributed Proof Production
The proof production as described above is sequential and may process huge amounts
of data, all of which needs to be accessible from the machine that executes the pro-
cedure. In addition, maintaining the required clause IDs during the procedure can
require a prohibitive amount of memory for large proofs. In the following, we propose
an efficient distributed approach to proof production that addresses these scalability
issues by exploiting some key properties of periodic all-to-all clause sharing.

4.1 Overview
Our sequential algorithm first combines all partial proofs into a single proof and then
prunes unneeded proof lines. In contrast, our distributed algorithm first prunes all
partial proofs in parallel and only then merges the required lines into one file.

As our distributed execution environment, let us assume a two-level hierarchy
where we have m processes which run c ≥ 1 solver threads each, amounting to a total of
p = mc solvers. Furthermore, we assume that clauses are shared in an all-to-all fashion
(i.e., every solver may receive clauses from every other solver) in periodic intervals.
Both of these assumptions hold for the popular distributed systems HordeSat [16]
and MallobSat [8]. We refer to the intervals between subsequent sharing operations
as epochs. Consider Fig. 3 (left): Clause 118 was produced by S2 in epoch 1. Its
derivation may depend on local clause 114 and on any of the 11 clauses produced in
epoch 0, but it cannot depend on, e.g., clause 109 or 111 since these clauses have been
produced after the last clause sharing. More generally, a clause c produced by solver
i during epoch e can only depend on (1) earlier clauses by solver i produced during
epoch e or earlier, and (2) clauses by solvers j ̸= i produced before epoch e.

Using this knowledge, we can rewind the solving procedure. Each process reads
its partial proofs in reverse, outputs each line that adds a required clause, and adds
the line’s dependencies to the required clauses. Required remote clauses produced in
epoch e are transferred to their origin before any process begins to read proof lines
from epoch e. As such, whenever a process reads a proof line, it knows if the clause is
required. We later explain how the outputs of all processes can be merged.

4.2 Clause ID Alignment
To synchronize the reading and redistribution of clause IDs in our distributed pruning,
we need a way to decide from which epoch a remote clause ID originates. However,
solvers generally produce clauses with different speeds, so the IDs by different solvers
will likely be in dissimilar ranges within the same epoch over time. For instance, in
Fig. 3 (left) solver S3 has no way of knowing from which epoch clause 118 originates.
To solve this issue, we propose to align all produced clause IDs after each sharing.
During solving, we add a certain offset δe

i to each ID produced by solver i in epoch e.
As such, we can associate each epoch e with a global interval [Ae, Ae+1) that contains
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Fig. 3 Four solvers work on a formula with 99 original clauses, produce new clauses (depicted by
their ID) and share clauses periodically, without (left) and with (right) clause ID alignment.

all clause IDs produced in that epoch. In Fig. 3 (right), A0 = 0, A1 = 116, and
A2 = 128. Clause 118 on the left has been aligned to 122 on the right (δ1

2 = 4) and
due to A1 ≤ 122 < A2 all solvers know that this clause originates from epoch 1.

Initially, δ0
i := 0 for all i. Let Ie

i be the first original (unaligned) ID produced by
solver i in epoch e. With the sharing that initiates epoch e > 0, we want to define
the common start of epoch e, Ae, to be larger than all aligned clause IDs from epoch
e − 1 but no larger than any aligned clause ID from epoch e. We align each solver’s
first ID from epoch e via the prior offset: Ie

i + δe−1
i . We then normalize each such ID

by subtracting the solver’s individual offset i. Since two subsequent unaligned clause
IDs always differ by p (the total number of solvers) and since i < p, we know that
Ie

i + δe−1
i − i is larger than the last ID solver i produced in epoch e − 1. We thus

compute Ae as the maximum of these values: Ae := maxi{Ie
i + δe−1

i − i}. Next, we
want to compute new offsets δe

i in such a way that the first aligned clause ID of solver
i in epoch e, Ie

i + δe
i , is equal to Ae + i. Consequently, we set δe

i := Ae + i − Ie
i .

If we export a clause produced in epoch e by solver i, we add δe
i to its ID, and if

we import shared clauses to i, we filter any clauses produced by i itself. Note that we
do not modify the solvers’ internal ID counters nor the proofs they output, and there
is no need to block or synchronize the solver threads at any time. Later, when reading
the partial proof of solver i at epoch e, we need to add δe

i to each ID originating from
solver i. All remote clause IDs in the partial proofs are already aligned.

4.3 Rewind Algorithm
Assume that solver u ∈ {1, . . . , p} has derived the empty clause in epoch ê. Each pro-
cess has a frontier Ri for each process-local solver i. Each Ri features the required
clauses produced by i. In addition, each process has a backlog B of remote required
clauses. B and Ri are maximum-first priority queues of clause IDs. Initially, Ru con-
tains the ID of the empty clause while all other frontiers and backlogs are empty.
Iteration x ≥ 0 of our algorithm processes epoch ê − x and features two stages:

1. Processing: Each process continues to read its partial proofs in reverse order
from the final derived clause of the current epoch. If a line from solver i is read whose
clause ID is at the top of Ri, then the ID is removed from Ri, the line is output, and
each clause ID hint h in the line is treated as follows:
• h is inserted in Rj if local solver j (possibly j = i) produced h.
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• h is inserted in B if a remote solver produced h.
• h is ignored if h is an ID of an original clause of the problem.

Reading stops as soon as a line’s ID precedes epoch e = ê − x. Each Ri as well as B
now only contain clauses produced before e.

2. Task redistribution: Each process extracts all clause IDs from B that were
produced during ê − x − 1. These clause IDs are aggregated among all processes.
In our concrete implementation, we reuse MallobSat’s compact clause exchange
operation [9], adjusted to aggregate clause IDs instead of clauses. This also allows us
to eliminate duplicates among the redistributed IDs. Each process then traverses the
aggregated clause IDs, and each clause produced by a local solver i is added to Ri.

Our algorithm stops in iteration ê after the processing stage, at which point all
frontiers and backlogs are empty and all relevant proof lines have been output. The
result is one partial proof per solver, with each partial proof containing the lines
output by the corresponding solver.

4.4 Correctness
We now establish the correctness of our proof production. First, we show that our
clause ID alignment works as intended:

Lemma 1. The alignment of clause IDs as described above results in a sequence
A0, A1, A2, . . . , Aê such that for any clause with unaligned ID j produced by the i-th
solver, Ae ≤ j + δe

i < Ae+1 holds if and only if j was produced in epoch e.

Proof. We perform induction over epoch e in which a clause was produced.
For e = 0, we set A0 = 0. The first sharing defines A1 = maxi{I1

i + δ0
i − i} =

maxi{I1
i − i}. I1

i is the first clause ID the i-th solver produced in epoch 1 and i is
smaller than the difference p between two of its subsequent clause IDs. Therefore,
I1

i − i is larger than any ID it produced in epoch 0. Consequently, A1 is larger than
any ID produced in epoch 0 by any solver. It follows that a clause with ID j was
produced in epoch 0 if and only if A0 = 0 ≤ j < A1.

Assuming that the lemma holds for clauses produced in epochs 0, . . . , e, we show
that the lemma also holds for clauses produced in epoch e + 1.

Due to induction, a clause from the i-th solver with unaligned ID j was produced
in epoch e if and only if Ae ≤ j + δe

i < Ae+1. We need to show that a clause with
unaligned ID j was produced in epoch e + 1 if and only if Ae+1 ≤ j + δe+1

i < Ae+2.
The induction prerequisite enforces that Ae+1 exactly separates the aligned clause

IDs produced in epoch e from the aligned clause IDs produced in later epochs.
Therefore, Ae+1 ≤ j + δe+1

i if and only if j was produced in epoch e + 1 or later.
Concerning the upper bound, our procedure defines Ae+2 = maxi{Ie+2

i + δe+1
i −

i} = maxi{Ie+2
i + (Ae+1 + i) − Ie+1

i − i} = Ae+1 + maxi{Ie+2
i − Ie+1

i }. Since δe+1
j =

Ae+1 + i − Ie+1
i , it follows that j + δe+1

i < Ae+2 holds if and only if j + i − Ie+1
i <

maxi{Ie+2
i − Ie+1

i }, which is equivalent to (A) j < Ie+1
i + maxi{Ie+2

i − Ie+1
i } − i.

Since the first clause ID produced by the i-th solver in epoch e + 2 is Ie+2
i ≥ Ie+1

i +
maxi{Ie+2

i − Ie+1
i }− i, (A) holds if and only if j was produced before epoch e+2.

11



Next, we need to formally define a partial proof for an individual solver thread.

Definition 2. Let S be a sequential solver that runs within a distributed clause-
sharing solver. A partial proof for CNF formula F is a sequence P = ⟨l1, . . . , ln⟩
of LRAT proof lines output by S without any clause deletions, where for each line
li = (j, c, D) with ID j, clause c, and dependencies D, (i) and (ii) hold:
(i) Each dependency d ∈ D references either (a) an original clause in F or (b) a clause
derived in an earlier line lj (j < i) or (c) a clause from another partial proof for F .
There must not be any cyclic dependencies.
(ii) li constitutes a valid LRAT derivation of c if given the referenced dependencies.

The following theorem states the correctness of our proof production under the
assumption that the individual solvers output valid partial proofs.

Theorem 1. Let P1, . . . , Pm be the partial proofs for an unsatisfiable CNF formula
F of a completed run of a distributed solver that performs all-to-all clause sharing
with clause ID alignment as outlined above. Let O := ⟨O1, . . . , Om⟩ be the proof line
output of each solver thread from our rewind procedure, and let Õ be a flat sequence
of all proof lines in O sorted by ID in ascending order. Then Õ constitutes a sound
LRAT proof for F .

Proof. First, we state that Õ contains the empty clause due to construction: Since
F is unsatisfiable and the distributed solver’s run completed, the empty clause has
been found by at least one solver and is consequently output by some solver at the
beginning of the rewind procedure.

Next, we show for any line l = (j, c, D) ∈ Õ that a linear pass through Õ establishes
all dependencies d ∈ D before l itself is reached. Since l ∈ Õ, there is a solver i whose
partial proof Pi contains l in epoch e and where j is considered required such that l
is output. We distinguish three cases:

(a) If d references an original clause in F , the dependency is trivially established.
(b) If d references an earlier clause derived in Pi, then dependency d is inserted

in Ri as l is read from Pi. We know that d < j: Each solver assigns clause IDs in a
strictly monotonic manner and the alignment of clause IDs preserves this property.
Since the derivation of d is contained in Pi and since the IDs in Pi are processed in
decreasing order, the line deriving d is read from Pi at some later point in time.
At this point, d must be at the top of Ri for the following arguments. IDs extracted
from Ri are monotonically decreasing because Ri functions as a maximum-first pri-
ority queue and because each ID inserted in Ri is necessarily smaller than the last
ID extracted from Ri. If a higher ID d′ > d is at the top of Ri, then the required
dependency d′ was not matched with any former line in Pi and, due to the processing
order of IDs in Pi, is not matched with any later line either. As our procedure ensures
that Ri only contains IDs produced by solver i, this constitutes a contradiction to Pi

being a valid partial proof. If a lower ID is at the top of Ri or if Ri is empty, then d
was removed from Ri earlier, which means that d can be matched with several lines
from Pi—a contradiction to the uniqueness of derived clause IDs in Pi.
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Since d is at the top of Ri as its derivation is read from Pi, d is considered required
and thus output. Due to d < j, dependency d is in fact established before l is reached.

(c) In the third case, d references a clause c′ from another solver’s partial proof
P ′. Due to the structure of clause sharing, any such remote clause c′ originates
from a strictly smaller epoch e′ than the epoch e from which l itself originates.
Our clause ID alignment (Lemma 1) hence ensures that the ID d of c′ is strictly
smaller than j and that d would be featured in Õ earlier than l.
It remains to be shown that Õ does contain d. Since l is output, the remote depen-
dency d is inserted either in backlog Bi (if d originates from a different process) or
directly in the producing solver’s frontier R′. In the former case, before epoch e′ is
processed, d is extracted from Bi, redistributed to the producing solver, and then
inserted in that solver’s frontier R′. During the processing of epoch e′, the derivation
of d is read from P ′. At this point in time, the ID d must be at the top of R′ for
exactly the same arguments as in case (b) for Ri. Since d is at the top of R′, d is
considered required and therefore output as well.

All in all, Õ is a sequence of valid LRAT derivations in dependency order that
eventually features the empty clause. Therefore, Õ constitutes a sound LRAT proof
of unsatisfiability for F .

To complement Theorem 1, we can also argue that any proof line l ∈ Õ is necessar-
ily a transitive requirement of the empty clause and that, therefore, Õ is minimal in
the sense that all lines in Õ are in some way required for the proof at hand. There can
still be ways to achieve smaller proofs for F . For instance, the same clause c may be
featured multiple times with different IDs in Õ or there may be an entirely different,
shorter chain of reasoning leading to the empty clause.

4.5 Analysis
In terms of total work performed, all partial proofs are read completely. For each
required clause we may perform an insertion into some B, a deletion from said B,
an insertion into some Ri, and a deletion from said Ri. If Vin is the combined size
of all partial proofs, Vout is the size of the output proof, and we assume logarith-
mic work for each insertion and deletion, then the work for these operations is in
O(Vin + Vout log Vout). In addition, due to the redistribution of clause IDs we have
ê iterations of communication whose overall cost is bounded by the communication
done during solving. In fact, since only a subset of shared clauses is required and we
only share 64 bits per clause, we expect strictly less communication than during solv-
ing. In addition, Ae must be computed for each epoch e during solving, each of which
requires the aggregation and broadcast of O(1) data. For the case of MallobSat, this
computation can be integrated into the all-reduction of the clause filtering bitset [9]
and is therefore fully negligible.

In terms of memory usage, the size of each B and each Ri can be proportional to
the combined size of all required lines of the according partial proofs. This memory
requirement may become problematic for large-scale runs. We thus suggest to employ
external-memory priority queues (e.g., [41]) which keep most of their data on disk.
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Fig. 4 Left: Proof merging with seven processes and 14 solvers. Each box represents a process with
two local proof sources. Dashed arrows denote communication. Right: Example of merging three
streams of LRAT lines into a single stream. Each number i represents an LRAT line describing a
clause of ID i.

4.6 Merging Step
For each partial proof processed during the pruning step, we have a stream of
proof lines sorted in reverse chronological order, i.e., starting with the highest clause
ID. The remaining task is to merge all these lines into a single, sorted proof file.
We arrange all processes in a k-ary tree as shown in Fig. 4 (left) for k = 2. At each
node of this tree, we can easily merge a number of sorted input streams into a single
sorted output stream by repeatedly outputting the line with the highest ID among
all inputs (Fig. 4 right). This way, we can hierarchically merge all streams along the
tree. At the tree’s root, the output stream is directed into a file. This is a sequential
I/O task that limits the speed of merging. Finally, since the produced file is in reverse
order, a buffered operation reverses the file’s content.

In general, there may be more scalable ways to sort the available proof information
(e.g., [42]), especially if we allow several processes to output slices of the final sorted
proof in parallel. However, our algorithm assumes that (a) we require a single proof file
on a single process and (b) the proof volume is so large that we need to stream it from
disk memory. Moreover, since other steps in our pipeline (postprocessing and proof
checking, see Section 6.1) process the final proof sequentially, our merging approach
does not constitute a bottleneck in and of itself.

A final challenge is to add clause deletion statements to the final proof. Before a
line is written to the combined proof file, we can scan its hints and output a deletion
line for each hint we did not encounter before (see Section 3.3). However, implementing
this in an exact manner requires maintaining a set of clause IDs which scales with
the final proof size. Since clause deletions are inserted for efficiency and do not affect
soundness, we can use an approximate membership query (AMQ) structure with fixed
size and a small false positive rate, e.g., a Bloom filter [43].

5 Base Implementation
We now outline our implementation as in our original conference paper [22].
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We employ a solver portfolio based on the sequential SAT solver CaDiCaL [20].
We modified CaDiCaL to output LRAT proof lines and to assign clause IDs as
described in Section 3.1. To ensure sound LRAT proof logging, we need to turn
off some features of CaDiCaL, such as bounded variable elimination, hyper-ternary
resolution, and vivification. Similarly, MallobSat’s original portfolio of CaDiCaL
configurations features several options that are incompatible with our CaDiCaL as
of yet. We thus created a smaller portfolio of “safe” configurations that include shuf-
fling variable priorities, adjusted restart intervals, and disabled inprocessing. We also
use different random seeds and sparse random variable phases.

Throughout this work, we use the distributed clause-sharing solver MallobSat [9]
(see Section 2.3) both as a basis for our approach and also as a primary competitor for
experiments involving non-proof-producing approaches. We modified MallobSat [44]
to associate each clause with a 64-bit clause ID. For consistent bookkeeping of sharing
epochs, we defer clause sharing until all processes have fully initialized their solvers.
While several solvers may derive the empty clause simultaneously, only one of them
is chosen as the “winner” whose empty clause will be traced. The distributed proof
production features communication epochs similar to MallobSat’s clause sharing.
To keep memory requirements of our proof assembly manageable even for huge proofs,
we implement the clause ID priority queues Ri and B with a simple semi-external
data structure based on an in-memory priority queue Q for the current epoch and
one external-memory stack Ee for each epoch e still to be processed. Upon reaching
a new epoch e, all clause IDs from e are read from Ee and inserted into Q to allow
for efficient polling and insertion.

To merge the pruned partial proofs, we use point-to-point messages to query and
send buffers of proof lines between processes. We perform pruning and merging simul-
taneously to avoid writing the pruned partial proofs to disk. We use a fixed-size Bloom
filter to add deletion lines to the final proof.

6 Base Evaluation
In this section, we present an evaluation of our proof production approaches with our
base implementation. We provide all software and experimental data online.2

6.1 Experimental Setup
Supporting proofs introduces several kinds of performance overhead for clause-sharing
portfolios in terms of solving, proof reconstruction, and proof checking. We wish to
examine how well our proof-producing solver performs against (1) state-of-the-art
(massively) parallel solvers that do not produce proofs, (2) previous approaches to
proof-producing parallel solvers, and (3) state-of-the-art sequential solving with and
without proof production. We analyze the overhead introduced by each phase of the
process, and we discuss how and where future efforts might improve performance.

We use the following pipeline for our proof-producing solvers: First, the input for-
mula is preprocessed via exhaustive unit propagation—a necessity due to a technical
limitation of our LRAT-producing modification of CaDiCaL. Second, we execute

2https://doi.org/10.5281/zenodo.10184679
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our proof-producing variant of MallobSat on the preprocessed formula. Third,
we prune and combine all partial proofs, using either our sequential proof pro-
duction or our distributed proof production. Fourth, we merge the preprocessor’s
proof and our produced proof, compressing all clause IDs into a compact domain.
Fifth and finally, we run lrat-check3 to check the final proof. Only steps two and
three of this pipeline are parallelized (step three depending on the particular experi-
ment). We refer to the first two steps as solving, the third step as assembly, the fourth
step as postprocessing, and the fifth step as checking.

To analyze solving performance, we compare our parallel (MallobSatP64)
and cloud (MallobSatP1600) solvers with proof production to several
other solvers. First, we include the winners of the ISC 2022 cloud track
(MallobSat1600-KCLG [44], see Section 2.3, using Kissat, CaDiCaL,
Lingeling, Glucose), parallel track (ParkissatRS [45], using Kissat), and sequen-
tial track (KissatMABHyWalk [46]), as well as the recent shared-memory parallel
solver Gimsatul4 which also supports proof production. In addition, we reconfigured
MallobSat1600-KCLG to use only CaDiCaL (its original version, i.e., without
LRAT capabilities) with the restricted configuration options used by Mallob-
SatP1600 and MallobSatP64. We run this solver on a parallel (MallobSat64-C)
and cloud (MallobSat1600-C) scale.

Since prior work on proof production for clause-sharing portfolios [17] is no longer
competitive in terms of solving time, we only compare proof-checking times. Specifi-
cally, we measure the overhead of checking un-pruned DRAT proofs as produced by
the earlier approach [17]. As such, we can get a picture of the performance of the ear-
lier approach if it was realized with today’s solving techniques. We generate un-pruned
DRAT proofs from the original (un-pruned) LRAT proof by stripping out dependency
information and adding delete lines for the last use of each clause.

We ran our experiments in Amazon Web Services (AWS) infrastructure. Specif-
ically, following the ISC setup, each cloud solver runs on 100 m6i.4xlarge EC2
instances (16 hardware threads, 64 GB RAM), each parallel solver runs on a single
m6i.16xlarge EC2 instance (64 hardware threads, 256 GB RAM), and the sequential
KissatMABHyWalk runs on a single m6i.4xlarge EC2 instance. We use all 400
benchmark instances from ISC 2022. We set the timeout for the solving step to 1000 s
and the timeout for all subsequent steps put together to 4000 s.

6.2 Results
First we examine the performance overhead of changing portfolios to enable proof
generation (see Section 5) regarding solving times only. Fig. 5 and Table 1
show this data. Our CaDiCaL portfolio MallobSat64-C drastically outperforms
KissatMABHyWalk as well as Gimsatul and is almost on par with ParkissatRS.
Similarly, MallobSat1600-C solves eight instances less than MallobSat1600-
KCLG but performs almost equally well otherwise. In both cases, we have constructed
solvers that are almost on par with the state of the art.

3https://github.com/marijnheule/drat-trim
4We use 2022 competition data, where Gimsatul [18] was still in an early stage of development (cf. [47]).
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Table 1 Performance of (S)equential, (P)arallel, and (C)loud solvers in terms of
solved instances (#), also divided in satisfiable and unsatisfiable instances, and
PAR-2 score, i.e., the arithmetic mean running time where timeouts are counted
as solved in twice the time limit.

Type Solver # # SAT # UNSAT PAR-2

S KissatMABHyWalk 218 118 100 1065.7

P

ParkissatRS 300 155 145 603.0
Gimsatul 216 119 97 1058.0
MallobSat64-C 292 145 147 641.6
MallobSatP64 (Seq.) 279 140 139 719.8
MallobSatP64 (Par.) 276 141 135 731.4

C
MallobSat1600-KCLG 341 165 176 344.8
MallobSat1600-C 333 163 170 378.0
MallobSatP1600 316 159 157 480.5

For our proof-producing solvers MallobSatP64 and MallobSatP1600, we
noticed a more pronounced decline in solving performance. Note that a later version
of our system overcomes most of the underlying technical issues, resulting in better
performance (Section 7). That being said, the proof-producing solvers discussed at
this point do already outperform all of the solvers at a lower scale.

Next, we examine statistics on proof reconstruction and checking, showing results
in Table 2. Since we want to investigate our approaches’ overhead compared to pure
solving, we measure running times as a multiple of the solving time. Table 3 shows
results in terms of absolute running times. The suffix “Seq.” denotes MallobSatP64
with sequential proof production, “Par.” denotes MallobSatP64 with distributed
proof production run on a single machine, and “Cld.” denotes MallobSatP1600
with distributed proof production.
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Fig. 5 Solving times of considered solvers (higher is better). MallobSatP1600, MallobSatP64,
and KissatMABHyWalk output proof information during solving.
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Table 2 Statistics on proof production and checking, considering a prior
DRAT-based approach [17] (64 threads), our approach at 64 threads with
sequential (Seq.) and parallel (Par.) proof production, and our approach at the
cloud scale (Cld., 1600 threads). All properties except for file sizes and pruning
factor are given as a multiple of the solving time. We list minima, maxima,
medians, means, and the 10th and 90th percentiles—using the arithmetic mean for
proof sizes and the geometric mean for all ratios.

Property # min p10 med mean p90 max

DRAT check 81 0.512 1.725 7.442 10.370 67.065 169.869

Seq. assembly 139 0.019 0.305 1.376 1.387 5.747 13.289
Seq. postprocessing 139 0.001 0.012 0.131 0.112 0.790 2.218
Seq. checking 139 0.007 0.043 0.572 0.469 3.970 10.980
Seq. asm+post+chk 139 0.037 0.412 2.110 2.129 10.834 26.487

Par. assembly 135 0.059 0.080 0.365 0.408 2.227 7.475
Par. postprocessing 135 0.001 0.016 0.156 0.128 0.861 2.300
Par. checking 135 0.007 0.042 0.622 0.471 3.540 11.645
Par. asm+post+chk 135 0.067 0.167 1.097 1.062 6.611 21.420

Cld. assembly 157 0.121 0.194 1.680 1.204 5.348 43.853
Cld. postprocessing 157 0.003 0.051 0.744 0.634 4.744 35.667
Cld. checking 157 0.032 0.215 3.391 2.499 21.908 135.737
Cld. asm+post+chk 157 0.162 0.579 5.174 4.819 31.968 215.257

DRAT proof size (GB) 139 0.012 0.366 1.236 3.246 8.395 29.308
Seq. proof size (GB) 139 0.016 0.223 2.379 5.384 16.082 46.986
Par. proof size (GB) 135 0.006 0.173 2.034 5.345 13.164 57.739
Cld. proof size (GB) 157 0.016 0.269 4.595 11.138 34.457 92.276

Cld. pruning factor 157 2.080 5.312 16.472 28.319 299.858 8415.070

Table 3 Statistics on proof production and checking given in seconds.

# min p10 med mean p90 max

DRAT check 81 24.564 161.947 636.053 1025.771 2675.848 3399.476

Seq. assembly 139 6.141 37.998 158.011 277.023 747.614 1571.190
Seq. postprocessing 139 0.120 1.695 13.776 31.376 87.583 231.958
Seq. checking 139 0.716 7.627 60.587 140.934 368.082 1200.319
Seq. asm+post+chk 139 7.924 62.542 242.040 449.334 1208.350 2831.480

Par. assembly 135 2.196 10.763 41.781 96.167 231.383 1054.070
Par. postprocessing 135 0.202 1.552 16.708 34.587 82.215 338.245
Par. checking 135 0.867 5.157 59.240 148.206 377.040 1469.763
Par. asm+post+chk 135 3.406 18.492 113.739 278.960 697.353 2862.080

Cld. assembly 157 1.474 11.008 61.019 108.122 277.119 848.708
Cld. postprocessing 157 0.249 2.944 31.703 87.176 266.439 690.279
Cld. checking 157 1.141 9.564 130.755 347.430 1006.636 2626.983
Cld. asm+post+chk 157 3.626 36.400 217.736 542.728 1526.270 4165.970
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Fig. 6 Overhead of proof-related stages (assembly, postprocessing, checking, and overall) relative
to solving time, for MallobSatP64 with parallel proof production (left) and for MallobSatP1600
(right). Note the logarithmic scaling.

DRAT checking succeeded in 81 out of 139 cases and timed out in 58 cases. For the
successful cases, DRAT checking took 10.4× the solving time5 whereas our sequential
assembly, postprocessing and checking combined succeeded in 139 cases and only took
2.1× the solving time. This result confirms that our approach successfully overcomes
the major scalability problems of earlier work [17]. In terms of uncompressed proof
sizes, our LRAT proofs can be about twice as large as the DRAT proofs, which seems
more than acceptable considering the dramatic difference in performance. Given that
DRAT-based checking was ineffective at the scale of parallel solvers, we decided to
omit it in our distributed experiments that feature even larger proofs.

The parallel proof production of MallobSatP64 reduces proof assembly times
from 1.4× down to 0.4× the solving time, which also significantly reduces the overall
overhead of proof production and checking (2.13× down to 1.06× the solving time).
Fig. 6 (left) illustrates these relative overheads (y direction, as multiples of solving
time) in relation to the actual solving time (x direction).

The results for MallobSatP1600 demonstrate that our proof assembly is feasible,
still taking only around 1.2× the solving time on average. In contrast, the sequential
stages of postprocessing and checking do not scale and therefore become more notice-
able relative to the solving time (see Fig. 6 right). The proofs produced are about
twice as large as for MallobSatP64. Considering that the proofs originate from 25
times as many solvers, this increase in size is quite modest, which is partly due to our
proof pruning. We captured the pruning factor—the number of clauses in all partial
proofs divided by the number of clauses in the combined proof—for each instance.
Our pruning reduces the derived clauses by a mean factor of 28.3 (median 16.4) and
by a factor of 300 or more for 10% of all instances. This underlines that our pruning

5Throughout this discussion, we use the geometric mean if we refer to a mean of ratios.
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Table 4 DRAT-trim proof checking overhead of KissatMABHyWalk as recorded in
the SAT Competition 2022, in terms of multiples of its solving time (“Ratio”) and in
terms of absolute running times (“Time”).

# min p10 med (g/a)mean p90 max

Ratio 146 0.137 0.269 1.109 1.208 6.394 66.494
Time 146 8.978 59.325 576.400 2675.813 5246.770 (Timeout)

Table 5 Speedups of our approach over KissatMABHyWalk when only considering their solving
times (top) and when considering their entire trusted solving and checking pipelines (bottom).

# min p10 med gmean p90 max total

Solve only
Seq. (64×) 263 0.028 0.742 3.869 3.806 23.224 122.854 4.429
Par. (64×) 260 0.051 0.865 3.786 3.831 21.147 901.653 4.599
Distr. (1600×) 283 0.100 2.179 10.887 11.253 64.624 1235.170 13.336

Solve+Check
Seq. (64×) 263 0.028 0.572 3.275 3.234 21.665 127.707 5.385
Par. (64×) 260 0.051 0.866 4.120 3.851 21.217 901.654 6.472
Distr. (1600×) 283 0.101 1.093 6.362 6.818 60.380 1235.170 7.226

is a crucial technique feasibly to combine and check proofs. We also managed to pro-
duce and check a proof of unsatisfiability for a formula whose unsatisfiability has not
been verified before to our knowledge (PancakeVsInsertSort 8 7.cnf).

To compare our approaches with the state of the art in sequential solving, we
analyzed drat-trim checking times of KissatMABHyWalk (Table 4), kindly pro-
vided by the competition organizers, and arrived at a mean overhead of 1.2× its
own solving time. Using this data, we computed the speedups of our parallel trusted
approaches over KissatMABHyWalk—once where both the sequential and the par-
allel approach perform solving only and once where both approaches perform solving,
proof production, and checking. To compute speedups, note that we use a conserva-
tive but clean approach where we only consider instances which both the sequential
and the parallel solver were able to solve [9]. Also note that the sequential solvers in
the ISC are executed on different hardware than the parallel solvers; as such, these
speedup measures are not fully reliable and only meant to give a rough impression.

Table 5 shows these speedups. The mean speedup in terms of pure solving times
is about 4 with 64 solvers and about 11 with 1600 solvers—still comparable to the
speedups which have earlier been reported by MallobSat’s precursor HordeSat
(with no proof production capabilities) at similar scales [16]. In terms of the full
trusted solving pipeline, our parallel proof production with 64 solvers actually achieves
slightly larger speedups than if we consider only pure solving times—indicating that
our LRAT-based proof production and checking pipeline is highly efficient and prac-
tical when compared to a sequential DRAT-based proof pipeline. The speedup at
a distributed scale, by constrast, drops by roughly 40% when also considering the
production and checking of proofs. As analyzed above, this is in large part due to
the sequential and therefore non-scalable postprocessing and checking steps in our
pipeline. While pre- and post-processing is a technical necessity in this setup, large
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portions of it can be eliminated with further engineering, as we outline in the following
section. All in all, while the reported speedups of our base setup are still considerably
below speedups achieved without proof production due to different kinds of overhead,
they have served as encouraging results towards efficient trusted general-purpose SAT
solving in distributed environments.

7 Follow-Up
Since our original implementation (Section 5) and evaluation (Section 6), which remain
an important point of reference, we have integrated further improvements in our
system that we outline and assess in the following.6

7.1 Improvements
Motivated by our original publication, Pollitt et al. [21] recently presented a new
version of CaDiCaL supporting full LRAT proof output. Updating MallobSat’s
CaDiCaL backend accordingly improves general solver performance, allows all
of CaDiCaL’s configuration options, and, most importantly, simplifies our proof
production pipeline. Specifically, we can remove the previously-required sequential
preprocessing step, which exhaustively performs unit propagation on the input,
because CaDiCaL is now able to handle this natively. As a consequence, we no longer
need to produce and prepend a proof for this preprocessing, and our proof production
now directly emits a valid proof for the input formula’s unsatisfiability.

Our original setup featured postprocessing where the inverted combined proof is
un-inverted and syntactically transformed to feature a compact domain of IDs. This
step was required because of relatively poor tool support for the kind of LRAT proofs
our approach emits (albeit perfectly valid in principle). Specifically, lrat-check from
the drat-trim toolbox is not able gracefully to handle large gaps between subsequent
clause IDs. The more recent checker lrat-trim [21] operates on 32-bit IDs and is
hence not suitable either. We believe that formally verified LRAT checkers [32, 33]
come with similar practical pitfalls. Our work thus raises demand for a well-engineered
verified LRAT checker that is robust, fast, and comes with little opportunity cost over
less reliable tools. While devising and verifying such a tool is out of scope for the work
at hand, we make a first step by introducing a fast (unverified) LRAT checker that
uses a robust hash table to handle arbitrary gaps in between clause IDs and that can
be configured to operate directly on the compressed and inverted proof. Using this
checker, our pipeline involves three steps: solving the original formula, assembling a
combined proof, and checking the combined proof. Disk I/O is consequently reduced
to writing and reading the combined proof only once.7 Due to the proof’s reversal,
this single buffering step remains a strict requirement unless we assume that the entire
proof can fit into main memory.

Lastly, following a suggestion by Peter Sanders, we introduce the notion of SABs
(satisfying assignment boosters). In a computation that is expected to yield an
independently-verifiable proof of unsatisfiability, solvers are usually made compliant

6Some of these improvements have been outlined in ref. [48], forward-referencing the work at hand.
7Our reverse file parser uses buffering to reverse-read roughly as fast as usual forward reading.
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by allowing only proof-producing operations. On satisfiable instances, however, this
overhead turns out to be in vain. A SAB is a solver thread in such a computation
that does not produce proof information and, consequently, cannot export learned
clauses. It can, however, import shared clauses and find satisfiable assignments (and
sometimes faster than its proof-producing peers). We include a small number of SABs
in our setup (1 in 38 solver threads), mainly running Lingeling’s YalSAT local
search solver [49] and occasionally Kissat [47] with SAT presets. In the case where a
SAB happens to find unsatisfiability, we discard this result, waiting for a proof-backed
result instead.

7.2 Setup
We test our updated setup on an HPC cluster named HoreKa. Each compute node
we use features two Intel Xeon Platinum 8368 sockets, each with 38 physical cores (76
hardware threads), and 256 GB of RAM. Fast proof writing is enabled by a 960 GB
NVMe SSD at each node. Nodes are connected via an InfiniBand interconnect.

We again use the 2022 competition instances and test three different configurations
of the latest version of MallobSat: our latest parallel/distributed proof-producing
approach including 1/38 SABs and with one sharing per second (as in our base eval-
uation); the very same configuration except for disabling LRAT output and proof
production; and the best currently known configuration (equal parts of Kissat,
CaDiCaL, and Lingeling, and two sharings per second). We run each configuration
at one (76 cores) and 20 compute nodes (1520 cores)—roughly on the levels of the
parallel and distributed scales in our base evaluation. We also test the latest version of
Gimsatul, at only one socket (38 cores) and at both sockets at once (76 cores), using
drat-trim for proof checking. In order to save computational resources, we limit run-
ning times to 300 s for solving and 1500 s for producing and checking a proof across
all runs. Lastly, we run sequential solver KissatMABHyWalk for up to 22 800 s
(6 1

3 h, matching the CPU resources of a 300 s 76-core run) to compute speedups. We
refrain from storing and checking the DRAT proofs emitted by KissatMABHyWalk,
instead directing them to /dev/null and assuming that checking times are similar to
solving times (as indicated by the 2022 competition data).

7.3 Results
As in Section 6, we first consider solving times only. Fig. 7 and Tab. 6 show according
results. In terms of absolute running times, the MallobSat system (“Best”) per-
forms considerably better than MallobSat1600-KCLG in our original experiments
(10.5% PAR-2 improvement and +6 solved instances at a consistent time limit of
300 s), notably on different hardware. More importantly, the margins between the best
approach and our proof-producing approach have diminished. The respective mean
slowdown of our approach is 38.7% at 76 cores and 53.8% at 1520 cores. Furthermore,
we note that most of this overhead is not due to outputting proofs but rather due to
the deviating solver and sharing configuration. Compared to the same configuration
without emitting proof information (“Proof-like”), the slowdown of our approach is
only 7.8% at 76 cores and 14.3% at 1520 cores. Gimsatul also performs better than
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Fig. 7 Pure solving times (excluding proof assembly and checking times; higher is better), where
“Best” denotes the currently best performing configuration of MallobSat and “Proof-like” is equiv-
alent to our proof-producing configuration (“Proof”) except that LRAT output and proof production
themselves are kept disabled. Proof-producing approaches are underlined.

in 2022 but is still not on par with MallobSat. Our SAB threads were the first and
only threads to report satisfiability in 21 cases (both at 76 cores and at 1520 cores).
This confirms that SABs can constitute effective accelerators for satisfiable instances,
although further experiments would be needed to assess the opportunity cost in terms
of UNSAT performance.

Let us now discuss the relative overheads incurred by proof assembly and checking,
shown in Tab. 7 and Fig. 8. The mean overhead incurred by proof assembly is 43.8% at
76 cores and 108% at 1520 cores—similar to the data in our base experiments (40.8%
and 120% respectively). Checking overhead is reduced to 36.7% at 76 cores (from 47%)
and 168% at 1520 cores (from 250%). Postprocessing is eliminated completely. As
such, our large-scale distributed approach now only takes around 3× its own solving
time to assemble and check a proof, while also achieving much better solving times in

Table 6 Solver performance within 300 s of running time in terms of solved instances, PAR-2
score, and geom. mean speedup over KissatMABHyWalk w.r.t. commonly solved instances.

Nodes Solver # # SAT # UNSAT PAR-2 Speedup

seq. KissatMABHyWalk 169 101 68 390.8 1.0

1

Gimsatul 38-core 238 128 110 275.8 6.6
Gimsatul 76-core 241 132 109 268.6 7.4
Proof 281 144 137 216.8 8.4
Proof-like 287 147 140 207.7 8.7
Best 293 149 144 194.9 10.8

20
Proof 318 156 162 152.2 17.5
Proof-like 321 157 164 146.8 20.3
Best 331 162 169 126.9 26.9
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Table 7 Statistics on proof production and checking. Ratios are given as a multiple of the
solving time. We list minima, maxima, medians, means, and the 10th and 90th
percentiles—using the arithmetic mean for absolutes and the geometric mean for ratios.

Property # min p10 med mean p90 max

R
at

io
1 node

assembly 138 0.014 0.111 0.395 0.438 1.941 7.026
checking 138 0.010 0.051 0.422 0.367 1.849 6.534
asm+chk 138 0.066 0.249 0.783 0.870 3.587 13.560

20 nodes
assembly 162 0.018 0.196 0.971 1.085 5.620 35.202
checking 157 0.019 0.130 2.489 1.681 10.155 86.608
asm+chk 157 0.148 0.412 3.584 2.906 15.872 121.810

38-c. Gims. checking 68 0.272 1.283 7.057 12.186 159.859 279.848

A
bs

ol
ut

e

1-node proof size (GB) 138 0.000 0.065 0.801 2.764 9.132 49.533
20-node proof size (GB) 163 0.000 0.214 3.126 11.645 30.957 233.880
38-c. Gims. proof size (GB) 110 0.000 0.191 0.702 1.784 5.029 10.804

1-node pruning factor 138 1.439 1.816 5.368 10.334 134.032 591.218
20-node pruning factor 162 1.884 5.375 28.366 36.377 400.098 7124.047
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Fig. 8 Overhead of proof-related stages (assembly, checking, and overall) relative to solving time,
for our proof-producing approach at one and 20 nodes. Note the logarithmic scaling.

the first place. Generously assuming that checking KissatMABHyWalk’s proofs is
exactly as fast as solving, the mean speedup of our proof-producing approach including
proof assembly and checking is 11.5 at 76 cores and 15.5 at 1520 cores.

Our approach at 1520 cores produced five proofs that our LRAT checker was
unable to check within 1500 s (25 min). The largest one among these is 234 GB in size8

and attempting to check it without imposing any limits resulted in an out-of-memory

8belonging to cliquecoloring n18 k6 c5.cnf
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error on the machine with 256 GB of RAM after 1.6 h. The other four proofs, up to
179 GB in size, can be checked successfully in 28–34 min each.9 We believe that proofs
of this size degenerate the Bloom filter we use for detecting duplicates, which results
in missing deletion statements and thus higher memory requirements than necessary.
We experimented with exact techniques for adding deletion statements but found
them to degrade proof merging performance. Further research along this direction is
needed, as is further improvement to our checker’s memory efficiency.

Since proof size and complexity increases with the number of solver threads
(“rings”) of Gimsatul, we only gathered data for the more favorable 38-core con-
figuration. Only 68 out of 110 complete proofs output by Gimsatul were checked
successfully within 1500 s. Even for these 68 (relatively simple) checked proofs, the
mean overhead of checking over solving is 1220%, which confirms the limited viability
of using current DRAT checkers to validate proofs produced by Gimsatul [50].

8 Conclusion
Distributed clause-sharing solvers are currently the fastest tools for solving a wide
range of difficult SAT problems. However, their inability to produce proofs of unsatis-
fiability gravely impacts their trustworthiness and renders them unsuitable for critical
applications. In the presented work, we examine mechanisms to add efficient support
for proof generation to clause-sharing portfolio solvers. We introduce a distributed sys-
tem with reasonable SAT solving performance that, in its current state, takes about
three times its own solving time (at competitive solving performance) to assemble
and check a proof of unsatisfiability based on partial proofs generated during solving.
As such, our results demonstrate that it is feasible to make distributed clause-sharing
solvers fully trustworthy and therefore viable for critical applications.

Following our research, it might be possible to generalize our approach to DRAT-
based solvers by adding additional metadata, and this might allow easier retrofitting
of the approach onto larger portfolios of solvers. Furthermore, it may be promising
to investigate producing proofs in Mallob for the case where several MallobSat
instances run concurrently and are rescaled dynamically [51] (cf. [48]). Other directions
involve distributed combination and pruning algorithms for solvers that are not epoch-
based.
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