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Abstract—Self-supervised pretraining has transformed speech
representation learning, enabling models to generalize across
various downstream tasks. However, empirical studies have
highlighted two notable gaps. First, different speech tasks require
varying levels of acoustic and semantic information, which are
encoded at different layers within the model. This adds the
extra complexity of layer selection on downstream tasks to reach
optimal performance. Second, the entanglement of acoustic and
semantic information can undermine model robustness, particu-
larly in varied acoustic environments. To address these issues,
we propose a two-branch multitask finetuning strategy that
integrates Automatic Speech Recognition and transcript-aligned
audio reconstruction, designed to preserve and disentangle se-
mantic and acoustic information in a final layer of a pretrained
model. Experiments with the pretrained Wav2Vec 2.0 model
demonstrate that our approach surpasses ASR-only finetuning
across multiple downstream tasks, and it significantly improves
ASR robustness in acoustically varied (emotional) speech.

Index Terms—Large Speech Models, Speech Representation,
Factorization

I. INTRODUCTION

Advancements in Large Speech Models through self-
supervised pretraining have significantly improved the efficacy
and generalizability of learned speech representations [1].
These pretrained speech models can produce general speech
representations, which can be applied to a wide array of speech
tasks, often approaching or even outperforming small models
trained on individual tasks [2]. Recently, representations from
prominent models such as Wav2Vec 2.0 [3] and HuBERT [4]
have frequently been used as baselines when exploring new
speech applications. However, Large Speech Models vary in
their performance across tasks, and creating robust, re-usable
representations that can generalize across many tasks remains
an ongoing challenge [2, 5].

Various self-supervised tasks have been used for learning
speech representations, including reconstructing the original
audio signal (VQ-VAE [6]), contrastive next-token prediction
(CPC [7], Wav2Vec [8]), masked token prediction (Wav2Vec
2.0 [3], HuBERT [4], WavLM [9]), among others. Though
these pretraining tasks rely solely on the raw audio signal to
construct the prediction target, the contextualized nature of
these tasks enables models to capture higher-level semantic
information from low-level acoustic patterns. This enables
downstream adaptation for semantic tasks like Automatic
Speech Recognition (ASR) [3]. To more directly inject seman-
tic information into the model, subsequent finetuning on ASR

is often deployed as a second phase of the pretraining (we refer
to this phase as “ASR finetuning”), significantly improving the
performance on semantic tasks [3,4].

Speech understanding is inherently complex, as different
tasks require different amounts of lexical and para-linguistic
information. For instance, speaker recognition depends heavily
on local acoustic features, enabling models to identify voices
from brief audio snippets, while tasks like ASR necessitate
higher-level abstractions focused on the semantic content.
Previous work investigating the localization of acoustic and
semantic information within the layers of speech models
has shown that early layers in pretrained models typically
capture more general acoustic characteristics, while semantic
information emerges in the middle and later layers [10, 11].
The information encoded in the last layer is dominated by
the last seen task. For instance, ASR finetuning encourages a
better preservation of semantic information in the Wav2Vec 2.0
model, but it causes a significant loss of acoustic information
in the final layer: finetuning Wav2Vec 2.0 with 100 hours
and 960 hours of ASR data reduces acoustic information
preservation by about 50% and 75%, respectively [11]. As
a result, downstream applications often have to handle the
extra complexity of model and layer selection for optimal
performance [12], where the optimal layer is specific to
individual model, task and dataset [10]. It remains unclear
whether this acoustic-semantic trade-off is inherent to the
tasks themselves, or can be mitigated through novel training
techniques.

Moreover, semantic and acoustic information are entangled
in the representations at each layer, which reduces model
robustness when acoustic variations or text domain shift occur.
For example, emotional speech often contains acoustic varia-
tions (e.g. change of pitch or tone) that can cause extra chal-
lenges for ASR systems [13]. Factorization techniques have
been helpful in many speech tasks, where learning benefits
from disentangling one or more information components. For
instance, i-vectors and x-vectors are well-known methods for
factorizing speaker representations [14, 15]. More applications
include target speaker extraction [16], speech recognition [17],
voice conversion [18], and even learning version-invariant
music features [19], beyond speech. However, factorization
has not been sufficiently explored in learning general speech
representations.

To address the challenge of preserving both acoustic and



TABLE I: Summary of downstream evaluation tasks.

task dataset metric ~ #train/#test Ir #steps

SID Voxcelebl ACC 149k/5k 0.01 50k

SER IEMOCAP CCC 6k/2k 0.01 5k

E-ASR IEMOCAP WER /10k / /
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semantic information in speech representations, we propose a
factorized (two-branch) multitask finetuning framework. This
framework is built on top of the Wav2Vec 2.0 model but
can be easily adapted for other speech representation mod-
els. Our approach simultaneously performs ASR and audio
reconstruction, utilizing a novel design that factorizes semantic
and acoustic information into two separate representations at
the last layer of the speech model. Specifically, the semantic
branch follows the traditional ASR finetuning approach, while
the acoustic branch is tailored to capture the rich, non-semantic
features of speech by reconstructing the audio signal based on
the output of the semantic head, which we call “transcript-
aligned audio reconstruction”. By leveraging this two-branch
architecture, we ensure that each branch specializes in different
aspects of the speech signal, encouraging the separation and
preservation of both types of information. Experiments demon-
strate that our method benefits both semantic and acoustic
tasks, surpassing both the base and ASR-finetuned model on
three out of four downstream tasks. This indicates a good
preservation of both semantic and acoustic information as well
as enhanced robustness.

Together, our work highlights two key contributions: 1) we
show the feasibility of preserving both semantic and acoustic
information in the same layer of a speech model through multi-
task training, and 2) we show the promise of factorization for
more robust general speech representation learning, benefiting
various downstream tasks.

II. TASKS AND DATASETS

A. Upstream Finetuning

Automatic Speech Recognition (ASR) The Librispeech
dataset consists of read English speech from audiobooks, along
with rich labels including transcripts and speaker information.
The full version contains 960 hours of speech (and has been
used in Wav2Vec 2.0 pretraining). We use its 100 hour train-
clean split for finetuning our upstream model.

B. Downstream Evaluation

We evaluate our learned semantic and acoustic representa-
tions on several downstream tasks. Details of the downstream
datasets and finetuning setups are summarized in Table L.
Speaker Identification (SID) SID aims to classify a given
audio into one of many previously-seen speakers, and we use
this task to evaluate the preservation of acoustic information
in our representations. We use the VoxCelebl dataset [20],
which contains over 100,000 utterances from 1,251 celebrities

extracted from Youtube Videos. We follow the train-validation-
test split provided in its official release. The performance is
measured by Accuracy (ACC).

Speech Emotion Recognition (SER) Emotional Activation
is a measure of emotion, ranging from calm to excited. It is
highly linked to acoustic signals in speech [21]. Therefore, we
use the Activation regression task to measure the preservation
of acoustic information. We use the IEMOCAP dataset [22],
which contains approximately 12 hours of speech data and
emotion activation labels annotated on a 5-point scale. We use
Concordance Correlation Coefficient (CCC) as the evaluation
metric, which assesses the agreement between predicted and
true levels. The dataset contains five recording sessions, and
we follow previous work [23] to run cross validation and report
CCC mean and standard deviation across sessions.

ASR for Emotion Speech (E-ASR) To evaluate the robustness
of semantic representations in acoustically challenging situa-
tions, we compare the ASR performance on emotional speech
using speech transcripts from IEMOCAP, using Word Error
Rate (WER) as the metric. Note that the models are trained
to perform ASR, so no extra downstream training is involved.
Keyword Spotting (KS) KS is a semantic-dominant speech
task that involves detecting specific keywords or phrases
within an audio. We use the Speech Commands dataset [24]
v0.01, which has speech utterances containing 31 words such
as “bird”, “house”. ACC is used as the evaluation metric.

III. MODEL

We propose a two-branch multitask framework to learn
factorized acoustic and semantic representations of speech,
illustrated in Figure 1la.

Semantic Branch and ASR Supervision The orange
blocks show our semantic branch, which is also the baseline
ASR-only finetuning approach as used in the Wav2Vec 2.0
model [3]. The output frame-level representations from the
base model are fed into a linear layer with layer normalization
to obtain the semantic representations. Then, another linear
classification head is applied as a simple decoder to predict
the logits. The ASR head is trained with a Connectionist
Temporal Classification (CTC) Loss [25]. Given a batch of
target sequences y and predicted sequences of logits x,
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S(y;) is the set of all possible alignments of y; with z;. Note
that pretrained Language Model decoders have been applied
and can achieve better results on ASR [3]. However, since
our goal here is to preserve more information in the semantic
embedding rather than the decoder, we use a simple linear
layer as the decoder.

Acoustic Branch and Reconstruction Supervision Sim-
ilarly, we obtain the acoustic representations with a linear
layer from the base model output. To supervise the learning of
acoustic information, individual tasks may pay more attention
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Fig. 1: Model Structure.

to certain aspects like voice characteristics (Speaker Identifi-
cation) or prosody (Emotion Recognition), but non-semantic
audio components themselves are multi-faceted and difficult to
define. In order to give a comprehensive representation of the
acoustic information, we design the task of transcript-aligned
audio reconstruction. As shown in Figure 1a, the acoustic em-
beddings (output of the acoustic branch) are concatenated with
the output character logits from the ASR head, and are together
used to reconstruct the audio signal through a reconstruction
decoder. The idea is that the acoustic representations need to
embed all information about the original speech other than the
semantic information, which can be learned from the character
logits. For the acoustic decoder, we use a stack of two linear
layers with normalization and GeLU activation [26].
Reconstruction Target Another design choice of the re-
construction head is what to use as the reconstruct target.
One straightforward approach is to reconstruct the original
waveform or spectrogram [27]. However, doing this usually
involves a much more complicated decoder to handle the sam-
pling rate mismatch between the features and original signals,
which adds to the model complexity and the difficulty of
learning. Another natural approach is to continue the masked
prediction pretraining task to recover local acoustic features,
but that has the drawback that it is model-dependent: for
example, Wav2Vec 2.0 is pretrained to reconstruct low-level
local acoustic features learned by its CNN feature extractor [3],
while HUBERT [4] uses more intermediate codebooks learned
by two-phase clustering. If we simply keep the pretrain task as
another head, the learned representations may not be consistent
in terms of abstraction levels across models. Therefore, we
chose Encodec [28], an off-the-shelf model-agnostic audio
signal representation as our reconstruction target. Encodec
is a neural audio codec model that compresses audio into
sequences of discrete class tokens. We use its 6kbps model,
which learns to quantize and represent each frame with tokens
in eight codebooks, each of size 1024. Since Encodec provides
trained encoder and decoder and has good reconstruction per-
formance, being able to predict the Encodec tokens indicates

sufficient information for reconstructing the audio.

Therefore, the reconstruction loss on each frame of sample
1 at frame t is a Cross Entropy Loss between the actual and
predicted class, summed across C' codebooks.
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The reconstruction loss weighs each frame equally and is
averaged across sequence lengths T and batch size N:
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Together, we train the model with a weighted sum of the
ASR loss and Reconstruction loss:

L= »CAS'R + )\»CREC (4)

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

Training. We use the pretrained base Wav2Vec 2.0 check-
point provided in the transformers library!. The acoustic and
semantic branch each has hidden size of 768. We finetune the
base model with our multitask factorization head with A =1
and an AdamW optimizer (learning rate = le-4) for 10,000
steps with a batch size of 128. We select the model with the
lowest WER on the Librispeech dev-clean set.

Downstream evaluation. For the E-ASR task, we directly
run model inference with the upstream model and decode the
output logits from the semantic branch. We use the output
from the acoustic branch for the SID and SER, and the output
from the semantic branch for the semantic-focused task KS.
For all utterance-level tasks (SID, SER, KS), we use a simple
pooling layer followed by a linear classification head as the
downstream mode, following previous approach [2]. The up-
stream model is frozen during evaluation. All representations

Ihttps://huggingface.co/facebook/wav2vec2-base



TABLE II: Performance on downstream tasks. mtt.- multitask, fct. - factorization. The best performance across all models
are highlighted in bold. Underscore indicates the better performance with or without factorization. The “#p_train” column

shows the number of trainable parameters in upstream finetuning, while *

_inference” indicates the number of parameters

for inference, to obtain the representations (excluding task-specific head).

#p_train _inference E-ASR (WER|) SER (CCCtT) SID (ACCtT) KS (ACCY)
w2v2-base / 94.4M / 0.462+0.010 0.366 0.805
w2v2-100h 90.2M 94.4M 43.29% 0.406+0.009 0.134 0.874
ours, mtt.+fct. 114.0M 95.6M 40.90% 0.500+0.011 0.387 0.869
ours, mtt.-only  113.4M 95.0M 41.63% 0.485%0.006 0.335 0.852

TABLE III: Performance on upstream tasks. mtt. - multitask;
fct. - factorization. ’/’ indicates that the model is not trained
on and thus unable to perform the task.

ASR (WERJ) Reconstruction (ACCT)
test-clean  test-other test-clean test-other
w2v2-100h 6.10% 13.3% / /
ours, mtt. + fct. 5.65% 13.90% 0.349 0.286
ours, asr-only 5.81% 14.33% / /
ours, rec-only / / 0.372 0.319
ours, mtt. only 5.68% 13.84% 0.348 0.285

we evaluate have the same dimension of 768. We tune the
number of training steps and learning rate for each task to
ensure convergence, and the optimal setups we report are
detailed in Table I.

B. Downstream Results

We compare our model to the pretrain-only Wav2Vec2
model (w2v2-base) and the same model finetuned on 100 hour
of speech (w2v2-100h) on downstream tasks (E-ASR, SER,
SID and KS) in Table II. Note that the base model represents
a stronger baseline for acoustic tasks while the 100h model
is stronger at semantics [11]. As an ablation study, we also
include a multitask-only model, where only one branch is
trained with both heads.

First, the performance of baseline models (w2v2-base,
w2v2-100h) verifies our assumption that ASR-only finetuning
does cause a loss of acoustic information. Performance on
acoustic tasks (SER and SID) both see a significant drop after
finetuning with 100 hour of ASR data. On the other hand, the
semantic task KS is improved by the finetuning, showing a
trade-off between acoustic and semantic information.

Then, our model outperforms both baseline models on both
acoustic tasks (SER ours 0.500 vs. base 0.462, SID ours 0.387
vs. base 0.366). On the downstream semantic task KS, our
model approaches the better performance (ours 0.869, base
0.805, 100h 0.874). Those results indicate that our model can
successfully preserve both acoustic and semantic informa-
tion in the last layer of a speech model. What’s more, the
factorization design provides an extra bump in the models
performance: it performs better across all four downstream
tasks compared to multitask-only finetuning. Notably, on the
challenging task of E-ASR, where semantic extraction can be
biased by acoustic variations, using factorized representation

further reduces WER from 41.63% to 40.90%, indicating
enhanced robustness. Further, we note that our approach only
adds a small computation overhead (1.3% more parameters)
for downstream inference, compared to the baseline models.

C. Upstream Analysis

Although our goal is to learn a general representation
that benefits various downstream tasks, we also analyze the
upstream tasks’ performance to better understand the model’s
behavior.

As shown in Table III, our model can achieve reasonable
reconstruction performance without hurting ASR perfor-
mance, compared to the model solely finetuned on ASR. On
the clean speech test set (the same domain as training data),
our model gets 5.65% WER- lower than the semantic-only
baseline (5.81%) and the w2v2-100h model (6.10%). It has a
slightly worse but comparable performance on the noisier test-
other set, despite not being trained with data augmentation
(ours 13.90%, wav2vec2 13.30%), outperforming the ASR-
only model (14.33%). Comparing the multitask model with
models trained solely with ASR or Reconstruction, we find
that the two tasks have a small conflict with each other to
achieve the best performance, but can both achieve reasonable
performance through multitask training. Additionally, factor-
ization doesn’t make a significant difference on the upstream
performance, compared to the multitask-only model. However,
as we show in Section I'V-B, this extra factorization constraint
brings robustness to downstream tasks.

V. CONCLUSION

In this work, we study the challenge of learning factorized
acoustic and semantic information in speech representations.
We proposed a two-branch multitask finetuning framework
that integrates ASR and transcript-aligned audio reconstruction
to factorize and preserve these different types of informa-
tion in the final layer of a pretrained model. Our results
demonstrate superior performance and enhanced robustness
across multiple downstream tasks. Furthermore, our analysis
shows the feasibility of co-training ASR and reconstruction.
We believe our experiments offer valuable insights for building
more informative and robust speech models. While our work
focuses on factorization at the final layer, earlier separation of
the branches may offer further benefits. Future research will
explore factorization across different layers.
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