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ABSTRACT 
Convolutional neural networks (CNNs) have shown 
promising improvements in video coding efficiency when 
included in traditional block-based codecs as a loop filter. 
Unfortunately, these coding gains are often accompanied by 
significant increases in complexity, measured by the number 
of multiply-accumulate (MAC) operations, that make them 
intractable in practice. As a result, there is considerable 
interest in reducing complexity for these CNN-based 
approaches. In previous work, we have shown that multiscale 
CNNs provide a path to reduce the associated MAC count. In 
this paper, we extend our work to consider channel grouping, 
spatial support limitations and shallower network depths to 
further reduce the MAC count of these multi-scale 
architectures. We demonstrate that the method can achieve an 
average VMAF bitrate reduction of 6.1% and 2.6% for all 
intra and random-access coding respectively, when compared 
to the evolving AV2 standard.  Complexity is reduced to 
1.85k MACs per pixel, which is a 390× reduction over 
previously published results. 
 

Index Terms— Multiscale Convolutional Neural 
Network, Video Compression, Restoration 
 

1. INTRODUCTION 
Video compression is a key enabling technology in the world 
today. It facilitates streaming video over the Internet in 
applications such as video on demand, live sports, game 
livestreaming and video conferencing – all of which saw 
explosive growth during recent years. Video coding 
standards, such as VP9 [1], AV1 [2], AVC [3], HEVC [4], 
VVC [5] are developed to enable interoperability between 
decoding devices. Each generation of video coding standard 
has approximately doubled in compression efficiency over 
the previous. Despite this rapid pace of improvement, video 
data currently represents more than 80% of consumer traffic 
on the Internet [6] and fuels the need for even higher video 
coding efficiency. Compression gains across the generations 
have typically been achieved by improving traditional video 
compression tools, such as transforms, quantization, motion 
compensation, and entropy coding.  

Recent work has shown that incorporating CNN-based 
methods into video codecs as in-loop filters can also improve 
coded picture quality and achieve bit rate reductions [7]-[13]. 
While this is a promising area of work for the next generation 
of video coding standards, the bitrate reductions are often 
accompanied by a large increase in computational 

complexity. Specifically, the number of multiply-accumulate 
(MAC) operations may be in the millions of operations per 
input sample, resulting in complexities that are intractable for 
most decoders.  As a result, there is significant interest in 
reducing the number MAC operations while keeping the 
bitrate reductions of these approaches. 

In this paper, we build on our previous work on in-loop 
filtering using Multiscale Convolutional Neural Networks 
(MSCNNs) [13] by exploiting channel grouping to further 
reduce computational complexity. While channel grouping 
has been used to reduce complexity in other applications such 
as image classification [14], to our knowledge, this is the first 
investigation of its use within in-loop video restoration. As a 
result of the grouping, channels are partitioned into sets and 
processed largely independently within the neural network. 
This reduction in channel cross-talk directly translates to a 
reduction in MAC count.  In addition to channel grouping, we 
explore limiting the spatial support of the convolutional 
kernels as well as decreasing network depths to further reduce 
the overall MAC count. The result is a MSCNN architecture 
with a MAC count of 1.85k per pixel.  This is a 390× 
reduction compared to our previous work [13], while 
providing VMAF [15] bitrate reduction of 6.1% and 2.6% for 
all intra and random-access configurations, respectively. 

The rest of the paper is organized as follows: Section 2 
describes previous work in the area of in-loop filtering using 
CNNs. Section 3 provides details of our proposed model 
architecture. Section 4 describes the training and evaluation 
protocols. Section 5 includes experimental results. Section 6 
provides an ablation study. Concluding remarks are provided 
in Section 7. 
 

2. BACKGROUND 
Typical CNN-based in-loop video restoration approaches 
make use of residual neural networks. Several variations have 
been explored in literature.  For example, a depth-adaptive 
variant using residual CNNs is described in [8].  Wide 
activation residual networks that modify the structure of the 
residual block and vary its count are considered in [9]. 
Incorporating attention networks as well as inputs other than 
reconstructed samples, such as quantization parameters, 
boundary strength and coded partition information, is 
explored in [10].  Coding luma and chroma within a single 
CNN is considered in [11]. While these works demonstrate 
promising bitrate reduction, they all have MAC counts 
numbering in the hundreds of thousands, or millions of 
operations per pixel. 



Previously, we explored a multiscale CNN architecture 
that processes a subset of channels at a resolution lower than 
that of the input picture [13].  Results show this is a promising 
direction to reduce computational complexity. In this paper, 
we build upon this multiscale CNN approach. Specifically, 
we further partition channels in the network into groups 
within the 2-D convolutional layers. The grouping reduces 
cross talk between channels. Additionally, we limit the spatial 
extent of the convolutional kernels and reduce the network 
depth to achieve an overall MAC count of 1.85k per pixel. 
This design represents a 390× reduction in per pixel MAC 
count over [13]. 

Note that other attempts to reduce the per pixel MAC 
count in video coding applications have also appeared in the 
literature.  An architecture with 19k MAC operations per 
pixel is described in [7]. An approach that uses channel 
expansion and reductions to reduce MAC count to an 
estimated 5k MAC is described in [8], albeit with lower 
bitrate savings than reported here. 
 

3. PROPOSED MODEL ARCHITECTURE 
Figure 1 illustrates the placement of MSCNN within the 
AOMedia Video Model (AVM) codec. As shown in the 
Figure, the AVM may select between MSCNN, and the 
deblocking and constrained directional enhancement filter 
(CDEF) operations.  This selection is indicated within the 
video bitstream at the picture level. And, when MSCNN is 
enabled for the picture, an additional 1-bit flag is signaled 
indicating if block level control is enabled for the picture. 
When block level control is enabled, the block size is 
determined at the encoder and transmitted in the bit-stream. 
Control block sizes can be 16×16, 32×32, 64×64 or 128×128 
(in luma samples).  

The method operates on the decoded luma sample values 
that are input to deblocking as well as dequantized inverse 
transform residue. It outputs a correction that is added to the 
input luma sample values to obtain a refined luma video 
signal. The correction samples values are scaled using scaling 
factors (1.0, 0.75, 0.50) that are transmitted at the picture 
level. This scaling enables an adaptation mechanism for 
content beyond those used to train the models. 

For a picture, the encoder selects one of four pre-defined 
models available for a quantization parameter (QP) range and 
slice type. There is a total of six QP ranges. The six QP ranges 
chosen for Intra slice are: [0…100], [101…124], [125…149], 
[150…174], [175…200], [200…255] and for inter slice are: 
[0…110], [111…135], [136…160], [161…185], [185…210], 
[211…255]. The QP used for determining the model 
parameter values is derived as: 

 
QP = (base qindex) - 24 * (source bit depth - 8) 
 

where “base qindex” represents the base QP used for coding 
the video sequence.  

Figure 2 shows the detailed model architecture for the 
MSCNN used in this paper and a visual example of the input-

output. The example output shows that besides improving 
overall quality, the MSCNN also reduces blocking artifacts. 
The expression “conv2d kX nC sS” represents a two-
dimensional 2-D convolution layer with a spatial kernel size 
of X×X, an output channel count of C, and a stride of S.  
(When not provided, S is one.) Similarly, “conv2d k(X,Y) nC 
sS” denotes the convolution kernel has  spatial kernel 
dimensions X×Y.   We denote convolutions using a diamond 
shaped filter as conv2dD.  All convolutions are zero padded 
(as needed) within a 2-D convolutional layer to produce the 
same output spatial dimensions as the input. The residual 
blocks in Figure 2 have spatial kernel support that are either 
diamond-shaped, horizontal, vertical or 1×1. This is smaller 
than the traditional spatial kernel support of 3×3 in our 
previous work and helps reduce the overall per-pixel MAC 
complexity. There are five residual block stages. 

Compared to [13], we rely on channel grouping to further 
reduce the overall number of MAC operations.  Channel 
grouping is indicated by “gs G” in the “conv2d” notation, 
where G denotes the channel group size. The absence of “gs 
G” denotes that the convolution operates over all input 
channels and that the group size is the same as input channel 
count. A 2-D convolutional layer in Figure 2 performs 
(𝐺𝐺 ∗ 𝐶𝐶 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)/𝑆𝑆  MAC operations. 
As a result, when the input channel count, I, is greater than 
G, grouping of channels reduces the number of MACs 
contributed by a 2-D convolutional layer by a scale factor of 
𝐼𝐼/𝐺𝐺. Of the three processing paths shown in the Figure, the 
bottom path corresponds to I=28, G=8, which results in a 3× 
reduction of MACs.  

In this paper, the input is initially converted to 31 
channels.  One of the channels is processed at full-resolution, 
while the remaining 30 are processed at one-half resolution. 
The full resolution processing path contains four residual 
blocks with diamond-shaped convolutions. The one-half 
resolution processing path (after the spatial downscaling) 
contains four residual blocks with alternating horizontal and 
vertical convolutions.  These convolutions also use channel 

 
Figure 1: Placement of MSCNN with channel grouping 

within the AVM (tag: research-v3.0.0 [16]) 



groups, and the group sizes are 6, 8, 8, and 8, respectively. 
Operating at lower spatial resolutions, using input channel 
grouping, and reducing kernel spatial extent helps reduce the 
MAC per pixel associated with these layers. The overall 
spatial support region for MSCNN filtering is 23×23. 

After processing by the residual blocks, the one-half 
resolution channels are fed to a 2-D convolution layer with 
input channel group size of two (i.e. 15 input channel groups) 
and spatial extent 1x1. The purpose of this 2-D convolution 
layer is to reduce the amount of data processed by subsequent 
layers, which is accomplished by producing one output 
channel for every two input channels. These 15 output 
channels are then upsampled independently and concatenated 
with the full-resolution channel.  The concatenated result 
undergoes further processing by a residual block with 1x1 
convolutions and group size of four. Finally, the result is 
processed with a 2-D convolution layer to generate the 
predicted correction for each luma sample. The overall per-
pixel MAC count is 1,847.5. This is 390× lower than the per-
pixel MAC count in [13]. 
 

4. TRAINING 
The network uses four models for each combination of slice 
type and QP range.  The intra slice type models are trained 
using the DIV2K dataset [17], while the inter slice type 
models are trained using the BVI-DVC dataset [18]. We use 
256×256 patches with a batch size of eight. Intra model 
training is carried out for 3520 epochs with a learning rate of 
10-3 for the first 3168 epochs, and 10-4 for the remaining 
epochs. For intra models, training data is generated by coding 

the DIV2K dataset using an all intra encoder configuration 
and the AVM research-3.0 software [16]. For inter models, 
training data is first generated by coding the BVI-DVC 
dataset using the trained intra models and a random-access 
configuration. Inter models are initially trained using this data 
for 320 epochs. We then re-generate training data using the 
partially trained inter model and continue training.  During 
training, evaluation is carried out by using a subset of pictures 
from classes A2 and A3 of the AOMedia Common Test 
Conditions (CTC) [19]. Mean square error is used for the 
training loss. 

 
5. EXPERIMENTAL RESULTS 

The trained models are tested using AOMedia CTC for intra 
and random-access encoder configurations. The AVM 
software with tag research-v3.0.0 is used to conduct the 
experiments.  In these conditions, test sequences are divided 
into multiple categories based on different use cases. We 
focus our efforts on camera-captured test sequences with 
resolutions class A1_4K (3840×2160,), class A2_2K 
(1920×1080), class A3_720p (1280×720), class A4_360p 
(640×360), class A5_270p (480×270). The source and model 
files used to perform the test are available at [20]. 

Table 1 reports the performance of MSCNN with channel 
grouping. As can be seen in the Table, the average VMAF 
Bjøntegaard Delta (BD) bitrate [21] improvement is 6.1% for 
the all intra configuration and 2.6% for the random-access 
configuration. We observe that the improvement is largely 
consistent between the VMAF and VMAF neg (nVMAF), 
which is a VMAF mode that is less sensitive to enhancement. 

 
Figure 2: Multiscale CNN with channel grouping processing, 1 full resolution and 30 one-half resolution channels 
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As can be seen in the Table, the bit-rate savings are also 
sensitive to the video sequence resolution.  For example, we 
observe (VMAF) coding improvement of 7.2% and 4.4% for 
UHD (4K) sequences in the all intra and random-access 
configurations, respectively.  This is impactful in practice, as 
higher resolution sequences typically require larger bit-rates 
and correspondingly larger storage and transmission costs. 
 

6. ABALATION STUDY 
While the proposed architecture shows meaningful 
improvement in coding efficiency, we also provide results of 
our ablation study as an additional contribution of the paper.  
We examine how changes introduced in the model design 
impacts coding efficiency and per-pixel MAC complexity. 

Table 2 reports on the tradeoff between complexity and 
coding performance for the different aspects under study.  In 
the Table,  𝑆𝑆0 represents channels processed at full-resolution 
and 𝑆𝑆1 represents channels processed at one-half resolution 
(output by first 2-D convolutional layer). The average YUV 
BD bitrate corresponds to that of class A3, A4, A5 all-intra 
configuration. We use YUV BD bitrate in the ablation study 
to facilitate comparison with cases where the BD bitrate 
improvement in luma is accompanied by a loss in chroma 
(YUV results are also provided in Section 5). 

As can be seen in the Table, it is possible to achieve 
different tradeoffs between coding performance and 
complexity. The highest performing configuration appears in 
the first row and corresponds to the performance of [13]. As 
can be seen, this method achieves a YUV bitrate savings of 
6.6% at the complexity expense of 720k MAC operations per 
pixel.  One straightforward way to reduce this complexity is 
to reduce the number of channels processed at each resolution 
and the number of residual blocks. When the number of 
channels is reduced (to (1,30)) along with the number of 
residual block stages (to 5), there is about 38.7× drop in per-
pixel MAC count, while reducing bitrate savings to 3.7%. 
This is shown in the second row of the Table. 

Limiting the spatial support of the convolutional kernels 
further reduces the per-pixel MAC count.  This is shown in 
the third row of the Table, where complexity is reduced to 
7.8k MAC operations (2.4×) and a bitrate savings of 3.3%. 
The final rows in Table 2 investigate the impact of channel 
grouping. Specifically, they show the impact of reducing the 
channel group sizes. In the fourth row, the 30 one-half 
resolutions are grouped in sizes of 6,8,8,8, representing an 
average group size reduction of 4×. The provided bitrate 
savings of 2.5% is interesting while reducing the per-pixel 
MAC count by 4.2×. In the final experiment, we employ 15 
groups of 2 channels that represents a group size reduction of 
another 4× when compared to the row above. This drops the 
per-pixel MAC count even further, but the bitrate savings are 
now below 2%. As can be seen in the Table, reducing channel 
group size is effective in further reducing the MAC count. 
 

7. CONCLUSION 
In this paper, we report on the use of channel grouping to 
reduce the complexity of a multi-scale CNN architecture 
operating within a video codec.  We demonstrate that with 
channel grouping, spatial support limitations and shallower 
depths, these multi-scale methods can achieve an average 
VMAF bitrate reduction of 6.1% and 2.6% for all intra and 
random-access coding configurations, respectively, when 
compared with the evolving AV2 standard.  Complexity is 
reduced to 1.85k MAC per pixel. This represents a 390× 
reduction in per pixel MAC count over previous work. We 
assert that the proposed architecture is more suitable for use 
within video decoding devices that are complexity 
constrained. 

Table 1: Performance of MSCNN with channel 
grouping over AOMedia CTC 

All Intra (PSNR BD Rate) 
Class Y YUV VMAF nVMAF 

A1_4K -2.54% -2.26% -7.19% -6.38% 
A2_2K -2.84% -2.57% -5.88% -5.29% 
A3_720p -3.38% -3.08% -6.00% -5.40% 
A4_360p -2.67% -2.46% -5.62% -4.97% 
A5_270p -2.21% -2.01% -5.85% -5.20% 
Average -2.73% -2.48% -6.11% -5.45% 

Random-Access (PSNR BD Rate) 
Class Y YUV VMAF nVMAF 

A1_4K -2.59% -2.29% -4.37% -4.27% 
A2_2K -2.68% -2.42% -3.17% -3.20% 
A3_720p -3.03% -2.71% -2.26% -2.67% 
A4_360p -2.70% -2.44% -2.06% -2.31% 
A5_270p -2.24% -2.00% -0.90% -1.56% 
Average -2.65% -2.37% -2.55% -2.80% 

 

Table 2: Complexity-coding performance tradeoff of various MSCNN designs 

(𝑺𝑺𝟎𝟎,𝑺𝑺𝟏𝟏) 
Residual 

block 
stages 

Group size 
for 𝑆𝑆0 |  𝑆𝑆1 

Limit  
kernel 
spatial 
support 

Parameter 
count per 

model 
MACs/pixel Spatial 

extent 

Average 
YUV BD 

rate 

(32,96) [13] 9 32 | 96 No 2,073,601 720,752.0 57×57 -6.60% 
(1, 30) 5 1 | 30 No 68,862 18,648.0 39×39 -3.66% 
(1, 30) 5 1 | 30 Yes 25,630 7,816.0 23×23 -3.27% 
(1, 30) 5 1 | 6,8,8,8 Yes 7,105 1,847.5 23×23 -2.52% 
(1, 30) 5 1 | 2,…,2 Yes 3,151 840.0 23×23 -1.53% 
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