
REDUCED COMPLEXITY MULTISCALE CNN FOR IN-LOOP VIDEO RESTORATION

Kiran Misra, Andrew Segall, Byeongdoo Choi

Amazon Prime Video

ABSTRACT
Convolutional neural networks (CNNs) have shown
promising improvements in video coding efficiency when
included in traditional block-based codecs as a loop filter.
Unfortunately, these coding gains are often accompanied by
significant increases in complexity, measured by the number
of multiply-accumulate (MAC) operations, that make them
intractable in practice. As a result, there is considerable
interest in reducing complexity for these CNN-based
approaches. In previous work, we have shown that multiscale
CNNs provide a path to reduce the associated MAC count. In
this paper, we extend our work to consider channel grouping,
spatial support limitations and shallower network depths to
further reduce the MAC count of these multi-scale
architectures. We demonstrate that the method can achieve an
average VMAF bitrate reduction of 6.1% and 2.6% for all
intra and random-access coding respectively, when compared
to the evolving AV2 standard. Complexity is reduced to
1.85k MACs per pixel, which is a 390× reduction over
previously published results.

Index Terms— Multiscale Convolutional Neural
Network, Video Compression, Restoration

1. INTRODUCTION
Video compression is a key enabling technology in the world
today. It facilitates streaming video over the Internet in
applications such as video on demand, live sports, game
livestreaming and video conferencing – all of which saw
explosive growth during recent years. Video coding
standards, such as VP9 [1], AV1 [2], AVC [3], HEVC [4],
VVC [5] are developed to enable interoperability between
decoding devices. Each generation of video coding standard
has approximately doubled in compression efficiency over
the previous. Despite this rapid pace of improvement, video
data currently represents more than 80% of consumer traffic
on the Internet [6] and fuels the need for even higher video
coding efficiency. Compression gains across the generations
have typically been achieved by improving traditional video
compression tools, such as transforms, quantization, motion
compensation, and entropy coding.

Recent work has shown that incorporating CNN-based
methods into video codecs as in-loop filters can also improve
coded picture quality and achieve bit rate reductions [7]-[13].
While this is a promising area of work for the next generation
of video coding standards, the bitrate reductions are often
accompanied by a large increase in computational

complexity. Specifically, the number of multiply-accumulate
(MAC) operations may be in the millions of operations per
input sample, resulting in complexities that are intractable for
most decoders. As a result, there is significant interest in
reducing the number MAC operations while keeping the
bitrate reductions of these approaches.

In this paper, we build on our previous work on in-loop
filtering using Multiscale Convolutional Neural Networks
(MSCNNs) [13] by exploiting channel grouping to further
reduce computational complexity. While channel grouping
has been used to reduce complexity in other applications such
as image classification [14], to our knowledge, this is the first
investigation of its use within in-loop video restoration. As a
result of the grouping, channels are partitioned into sets and
processed largely independently within the neural network.
This reduction in channel cross-talk directly translates to a
reduction in MAC count. In addition to channel grouping, we
explore limiting the spatial support of the convolutional
kernels as well as decreasing network depths to further reduce
the overall MAC count. The result is a MSCNN architecture
with a MAC count of 1.85k per pixel. This is a 390×
reduction compared to our previous work [13], while
providing VMAF [15] bitrate reduction of 6.1% and 2.6% for
all intra and random-access configurations, respectively.

The rest of the paper is organized as follows: Section 2
describes previous work in the area of in-loop filtering using
CNNs. Section 3 provides details of our proposed model
architecture. Section 4 describes the training and evaluation
protocols. Section 5 includes experimental results. Section 6
provides an ablation study. Concluding remarks are provided
in Section 7.

2. BACKGROUND
Typical CNN-based in-loop video restoration approaches
make use of residual neural networks. Several variations have
been explored in literature. For example, a depth-adaptive
variant using residual CNNs is described in [8]. Wide
activation residual networks that modify the structure of the
residual block and vary its count are considered in [9].
Incorporating attention networks as well as inputs other than
reconstructed samples, such as quantization parameters,
boundary strength and coded partition information, is
explored in [10]. Coding luma and chroma within a single
CNN is considered in [11]. While these works demonstrate
promising bitrate reduction, they all have MAC counts
numbering in the hundreds of thousands, or millions of
operations per pixel.

Previously, we explored a multiscale CNN architecture
that processes a subset of channels at a resolution lower than
that of the input picture [13]. Results show this is a promising
direction to reduce computational complexity. In this paper,
we build upon this multiscale CNN approach. Specifically,
we further partition channels in the network into groups
within the 2-D convolutional layers. The grouping reduces
cross talk between channels. Additionally, we limit the spatial
extent of the convolutional kernels and reduce the network
depth to achieve an overall MAC count of 1.85k per pixel.
This design represents a 390× reduction in per pixel MAC
count over [13].

Note that other attempts to reduce the per pixel MAC
count in video coding applications have also appeared in the
literature. An architecture with 19k MAC operations per
pixel is described in [7]. An approach that uses channel
expansion and reductions to reduce MAC count to an
estimated 5k MAC is described in [8], albeit with lower
bitrate savings than reported here.

3. PROPOSED MODEL ARCHITECTURE
Figure 1 illustrates the placement of MSCNN within the
AOMedia Video Model (AVM) codec. As shown in the
Figure, the AVM may select between MSCNN, and the
deblocking and constrained directional enhancement filter
(CDEF) operations. This selection is indicated within the
video bitstream at the picture level. And, when MSCNN is
enabled for the picture, an additional 1-bit flag is signaled
indicating if block level control is enabled for the picture.
When block level control is enabled, the block size is
determined at the encoder and transmitted in the bit-stream.
Control block sizes can be 16×16, 32×32, 64×64 or 128×128
(in luma samples).

The method operates on the decoded luma sample values
that are input to deblocking as well as dequantized inverse
transform residue. It outputs a correction that is added to the
input luma sample values to obtain a refined luma video
signal. The correction samples values are scaled using scaling
factors (1.0, 0.75, 0.50) that are transmitted at the picture
level. This scaling enables an adaptation mechanism for
content beyond those used to train the models.

For a picture, the encoder selects one of four pre-defined
models available for a quantization parameter (QP) range and
slice type. There is a total of six QP ranges. The six QP ranges
chosen for Intra slice are: [0…100], [101…124], [125…149],
[150…174], [175…200], [200…255] and for inter slice are:
[0…110], [111…135], [136…160], [161…185], [185…210],
[211…255]. The QP used for determining the model
parameter values is derived as:

QP = (base qindex) - 24 * (source bit depth - 8)

where “base qindex” represents the base QP used for coding
the video sequence.

Figure 2 shows the detailed model architecture for the
MSCNN used in this paper and a visual example of the input-

output. The example output shows that besides improving
overall quality, the MSCNN also reduces blocking artifacts.
The expression “conv2d kX nC sS” represents a two-
dimensional 2-D convolution layer with a spatial kernel size
of X×X, an output channel count of C, and a stride of S.
(When not provided, S is one.) Similarly, “conv2d k(X,Y) nC
sS” denotes the convolution kernel has spatial kernel
dimensions X×Y. We denote convolutions using a diamond
shaped filter as conv2dD. All convolutions are zero padded
(as needed) within a 2-D convolutional layer to produce the
same output spatial dimensions as the input. The residual
blocks in Figure 2 have spatial kernel support that are either
diamond-shaped, horizontal, vertical or 1×1. This is smaller
than the traditional spatial kernel support of 3×3 in our
previous work and helps reduce the overall per-pixel MAC
complexity. There are five residual block stages.

Compared to [13], we rely on channel grouping to further
reduce the overall number of MAC operations. Channel
grouping is indicated by “gs G” in the “conv2d” notation,
where G denotes the channel group size. The absence of “gs
G” denotes that the convolution operates over all input
channels and that the group size is the same as input channel
count. A 2-D convolutional layer in Figure 2 performs
(𝐺𝐺 ∗ 𝐶𝐶 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)/𝐾𝐾 MAC operations.
As a result, when the input channel count, I, is greater than
G, grouping of channels reduces the number of MACs
contributed by a 2-D convolutional layer by a scale factor of
𝐼𝐼/𝐺𝐺. Of the three processing paths shown in the Figure, the
bottom path corresponds to I=28, G=8, which results in a 3×
reduction of MACs.

In this paper, the input is initially converted to 31
channels. One of the channels is processed at full-resolution,
while the remaining 30 are processed at one-half resolution.
The full resolution processing path contains four residual
blocks with diamond-shaped convolutions. The one-half
resolution processing path (after the spatial downscaling)
contains four residual blocks with alternating horizontal and
vertical convolutions. These convolutions also use channel

Figure 1: Placement of MSCNN with channel grouping

within the AVM (tag: research-v3.0.0 [16])

groups, and the group sizes are 6, 8, 8, and 8, respectively.
Operating at lower spatial resolutions, using input channel
grouping, and reducing kernel spatial extent helps reduce the
MAC per pixel associated with these layers. The overall
spatial support region for MSCNN filtering is 23×23.

After processing by the residual blocks, the one-half
resolution channels are fed to a 2-D convolution layer with
input channel group size of two (i.e. 15 input channel groups)
and spatial extent 1x1. The purpose of this 2-D convolution
layer is to reduce the amount of data processed by subsequent
layers, which is accomplished by producing one output
channel for every two input channels. These 15 output
channels are then upsampled independently and concatenated
with the full-resolution channel. The concatenated result
undergoes further processing by a residual block with 1x1
convolutions and group size of four. Finally, the result is
processed with a 2-D convolution layer to generate the
predicted correction for each luma sample. The overall per-
pixel MAC count is 1,847.5. This is 390× lower than the per-
pixel MAC count in [13].

4. TRAINING
The network uses four models for each combination of slice
type and QP range. The intra slice type models are trained
using the DIV2K dataset [17], while the inter slice type
models are trained using the BVI-DVC dataset [18]. We use
256×256 patches with a batch size of eight. Intra model
training is carried out for 3520 epochs with a learning rate of
10-3 for the first 3168 epochs, and 10-4 for the remaining
epochs. For intra models, training data is generated by coding

the DIV2K dataset using an all intra encoder configuration
and the AVM research-3.0 software [16]. For inter models,
training data is first generated by coding the BVI-DVC
dataset using the trained intra models and a random-access
configuration. Inter models are initially trained using this data
for 320 epochs. We then re-generate training data using the
partially trained inter model and continue training. During
training, evaluation is carried out by using a subset of pictures
from classes A2 and A3 of the AOMedia Common Test
Conditions (CTC) [19]. Mean square error is used for the
training loss.

5. EXPERIMENTAL RESULTS

The trained models are tested using AOMedia CTC for intra
and random-access encoder configurations. The AVM
software with tag research-v3.0.0 is used to conduct the
experiments. In these conditions, test sequences are divided
into multiple categories based on different use cases. We
focus our efforts on camera-captured test sequences with
resolutions class A1_4K (3840×2160,), class A2_2K
(1920×1080), class A3_720p (1280×720), class A4_360p
(640×360), class A5_270p (480×270). The source and model
files used to perform the test are available at [20].

Table 1 reports the performance of MSCNN with channel
grouping. As can be seen in the Table, the average VMAF
Bjøntegaard Delta (BD) bitrate [21] improvement is 6.1% for
the all intra configuration and 2.6% for the random-access
configuration. We observe that the improvement is largely
consistent between the VMAF and VMAF neg (nVMAF),
which is a VMAF mode that is less sensitive to enhancement.

Figure 2: Multiscale CNN with channel grouping processing, 1 full resolution and 30 one-half resolution channels

co
nv

2d
 k

(1
,3

) n
6

gs
6

R
eL

U

co
nv

2d
 k

(1
,3

) n
6

gs
6

+

co
nv

2d
 k

3
n6

 s
2

co
nv

2d
 k

(3
,1

) n
6

gs
6

R
eL

U

co
nv

2d
 k

(3
,1

) n
6

gs
6

+

co
nv

2d
 k

(1
,3

) n
6

gs
6

R
eL

U

co
nv

2d
 k

(1
,3

) n
6

gs
6

+

co
nv

2d
 k

(3
,1

) n
6

gs
6

R
eL

U

co
nv

2d
 k

(3
,1

) n
6

gs
6

+

co
nv

2d
 k

3
n1

2
gs

1

Pi
xe

lS
hu

ffl
e(

2)

R
eL

U

co
nv

2d
D

 k
3

n1

+

co
nv

2d
D

 k
3

n1

R
eL

U

co
nv

2d
D

 k
3

n1

+

co
nv

2d
D

 k
3

n1

R
eL

U

co
nv

2d
D

 k
3

n1

+

co
nv

2d
D

 k
3

n1

R
eL

U

co
nv

2d
D

 k
3

n1

+

x,
 re

si
du

e

co
nv

2d
 k

3
n1

co
nv

2d
 k

1
n1

6
gs

4

R
eL

U

co
nv

2d
 k

1
n1

6
gs

4

+

co
nv

2d
 k

1
n1

3

C
ha

nn
el

 c
on

ca
te

na
te

1

pr
ed

ic
tio

n

co
nv

2d
 k

1
n3

 g
s2

co
nv

2d
 k

(1
,3

) n
24

 g
s8

R
eL

U

co
nv

2d
 k

(1
,3

) n
24

 g
s8

+

co
nv

2d
 k

3
n2

4
s2

co
nv

2d
 k

(3
,1

) n
24

 g
s8

R
eL

U

co
nv

2d
 k

(3
,1

) n
24

 g
s8

+

co
nv

2d
 k

(1
,3

) n
24

 g
s8

R
eL

U

co
nv

2d
 k

(1
,3

) n
24

 g
s8

+

co
nv

2d
 k

(3
,1

) n
24

 g
s8

R
eL

U

co
nv

2d
 k

(3
,1

) n
24

 g
s2

+

co
nv

2d
 k

3
n4

8
gs

1

Pi
xe

lS
hu

ffl
e(

2)

co
nv

2d
 k

1
n1

2
gs

2

12

Residual Block

Upsampler
Stage 1 Stage 2 Stage 3 Stage 4

Stage 5

prediction

x

residue

As can be seen in the Table, the bit-rate savings are also
sensitive to the video sequence resolution. For example, we
observe (VMAF) coding improvement of 7.2% and 4.4% for
UHD (4K) sequences in the all intra and random-access
configurations, respectively. This is impactful in practice, as
higher resolution sequences typically require larger bit-rates
and correspondingly larger storage and transmission costs.

6. ABALATION STUDY
While the proposed architecture shows meaningful
improvement in coding efficiency, we also provide results of
our ablation study as an additional contribution of the paper.
We examine how changes introduced in the model design
impacts coding efficiency and per-pixel MAC complexity.

Table 2 reports on the tradeoff between complexity and
coding performance for the different aspects under study. In
the Table, 𝐾𝐾0 represents channels processed at full-resolution
and 𝐾𝐾1 represents channels processed at one-half resolution
(output by first 2-D convolutional layer). The average YUV
BD bitrate corresponds to that of class A3, A4, A5 all-intra
configuration. We use YUV BD bitrate in the ablation study
to facilitate comparison with cases where the BD bitrate
improvement in luma is accompanied by a loss in chroma
(YUV results are also provided in Section 5).

As can be seen in the Table, it is possible to achieve
different tradeoffs between coding performance and
complexity. The highest performing configuration appears in
the first row and corresponds to the performance of [13]. As
can be seen, this method achieves a YUV bitrate savings of
6.6% at the complexity expense of 720k MAC operations per
pixel. One straightforward way to reduce this complexity is
to reduce the number of channels processed at each resolution
and the number of residual blocks. When the number of
channels is reduced (to (1,30)) along with the number of
residual block stages (to 5), there is about 38.7× drop in per-
pixel MAC count, while reducing bitrate savings to 3.7%.
This is shown in the second row of the Table.

Limiting the spatial support of the convolutional kernels
further reduces the per-pixel MAC count. This is shown in
the third row of the Table, where complexity is reduced to
7.8k MAC operations (2.4×) and a bitrate savings of 3.3%.
The final rows in Table 2 investigate the impact of channel
grouping. Specifically, they show the impact of reducing the
channel group sizes. In the fourth row, the 30 one-half
resolutions are grouped in sizes of 6,8,8,8, representing an
average group size reduction of 4×. The provided bitrate
savings of 2.5% is interesting while reducing the per-pixel
MAC count by 4.2×. In the final experiment, we employ 15
groups of 2 channels that represents a group size reduction of
another 4× when compared to the row above. This drops the
per-pixel MAC count even further, but the bitrate savings are
now below 2%. As can be seen in the Table, reducing channel
group size is effective in further reducing the MAC count.

7. CONCLUSION
In this paper, we report on the use of channel grouping to
reduce the complexity of a multi-scale CNN architecture
operating within a video codec. We demonstrate that with
channel grouping, spatial support limitations and shallower
depths, these multi-scale methods can achieve an average
VMAF bitrate reduction of 6.1% and 2.6% for all intra and
random-access coding configurations, respectively, when
compared with the evolving AV2 standard. Complexity is
reduced to 1.85k MAC per pixel. This represents a 390×
reduction in per pixel MAC count over previous work. We
assert that the proposed architecture is more suitable for use
within video decoding devices that are complexity
constrained.

Table 1: Performance of MSCNN with channel
grouping over AOMedia CTC

All Intra (PSNR BD Rate)
Class Y YUV VMAF nVMAF

A1_4K -2.54% -2.26% -7.19% -6.38%
A2_2K -2.84% -2.57% -5.88% -5.29%
A3_720p -3.38% -3.08% -6.00% -5.40%
A4_360p -2.67% -2.46% -5.62% -4.97%
A5_270p -2.21% -2.01% -5.85% -5.20%
Average -2.73% -2.48% -6.11% -5.45%

Random-Access (PSNR BD Rate)
Class Y YUV VMAF nVMAF

A1_4K -2.59% -2.29% -4.37% -4.27%
A2_2K -2.68% -2.42% -3.17% -3.20%
A3_720p -3.03% -2.71% -2.26% -2.67%
A4_360p -2.70% -2.44% -2.06% -2.31%
A5_270p -2.24% -2.00% -0.90% -1.56%
Average -2.65% -2.37% -2.55% -2.80%

Table 2: Complexity-coding performance tradeoff of various MSCNN designs

(𝑺𝑺𝟎𝟎,𝑺𝑺𝟏𝟏)
Residual

block
stages

Group size
for 𝐾𝐾0 | 𝐾𝐾1

Limit
kernel
spatial
support

Parameter
count per

model
MACs/pixel Spatial

extent

Average
YUV BD

rate

(32,96) [13] 9 32 | 96 No 2,073,601 720,752.0 57×57 -6.60%
(1, 30) 5 1 | 30 No 68,862 18,648.0 39×39 -3.66%
(1, 30) 5 1 | 30 Yes 25,630 7,816.0 23×23 -3.27%
(1, 30) 5 1 | 6,8,8,8 Yes 7,105 1,847.5 23×23 -2.52%
(1, 30) 5 1 | 2,…,2 Yes 3,151 840.0 23×23 -1.53%

8. REFERENCES
[1] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P.
Wilkins, Y. Xu, R.S. Bultje, "The latest open-source video codec
VP9 - an overview and preliminary results", Picture Coding
Symposium (PCS), December 2013.
[2] Y. Chen, D. Mukherjee, et. al, “An Overview of Core Coding
Tools in the AV1 Video Codec,” Picture Coding Symposium (PCS),
June 2018.
[3] D. Marpe, T. Wiegand and G. J. Sullivan, "The H.264/MPEG4
advanced video coding standard and its applications," IEEE
Communications Magazine, vol. 44, no. 8, pp. 134-143, Aug. 2006.
[4] G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, "Overview
of the High Efficiency Video Coding (HEVC) standard," IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668,
Dec. 2012.
[5] B. Bross et al., "Overview of the Versatile Video Coding
(VVC) Standard and its Applications," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 31, no. 10, pp.
3736-3764, Oct. 2021.
[6] CISCO, "Visual Networking Index Complete Forecast
Highlights," 2021.
[7] U. Joshi, Y. Chen, D. Mukherjee, O. Guleryuz, S. Li and I. S.
Chong, "Switchable CNN-Based Same-Resolution and Super-
Resolution In-Loop Restoration for Next Generation Video
Codecs," IEEE International Conference on Image Processing
(ICIP), pp. 1946-1950, 2022.
[8] D. Ding et al., “A CNN-based In-loop Filtering Approach for
AV1 Video Codec,” in Picture Coding Symposium (PCS), pp. 1-5,
2019.
[9] G. Chen et al., “AV1 in-loop Filtering using a Wide-Activation
Structured Residual Network,” IEEE International Conference on
Image Processing (ICIP), pp. 1725-1729, 2019.
[10] Y. Li et al., “Deep In-loop filter with fixed point
implementation,” document JVET-AA0111, 27th JVET Meeting,
July 2023.
[11] L. Wang et al., “Neural network based in-loop filter with a
single model”, document JVET-AA0088, 27th JVET Meeting, July
2023.
[12] J. Wang, G. Ding, D. Ding, D. Mukherjee, U. Joshi and Y.
Chen, "Quadtree-based Guided CNN for AV1 In-loop Filtering,"
IEEE International Conference on Image Processing (ICIP), pp.
3331-3335, 2022.
[13] K. Misra, A. Segall, B. D. Choi, “Multiscale convolutional
neural networks for in-loop video restoration,” to appear in IEEE
Data Compression Conference, 2023.
[14] A. Krizhevsky et al., "ImageNet Classification with Deep
Convolutional Neural Networks," Advances in Neural Information
Processing Systems 25, NIPS, 2012
[15] VMAF Metric Library, libvmaf v2.1.1 Source:
https://github.com/Netflix/vmaf/releases/tag/v2.1.1
[16] AOM Video Model, Online:
https://gitlab.com/AOMediaCodec/avm
[17] R. Timofte et al., “NTIRE 2017 challenge on single image
super resolution: methods and results,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops,
2017.
[18] D. Ma et al., “BVI-DVC: a training database for deep video
compression,” IEEE Transactions on Multimedia, vol. 24, pp. 3847-
3858, 2022.
[19] X. Zhao et al., “AV2 Common Test Conditions and
Performance Measurement,” Testing Subgroup of AOMedia Codec
Work Group.

[20] https://gitlab.com/kiranmisra/avm_mscnn/-/tree/research-
mscnn Commit: 0c21545baebefdd0049cdff492bdc55e3f7ffe9c
[21] G. Bjøntegaard, “Calculation of average PSNR difference
between RD curves,” in ITU-T proposals, VCEG-M33, 2001.

https://gitlab.com/AOMediaCodec/avm
https://gitlab.com/kiranmisra/avm_mscnn/-/tree/research-mscnn
https://gitlab.com/kiranmisra/avm_mscnn/-/tree/research-mscnn

	Reduced complexity Multiscale CNN for in-loop video restoration
	Abstract

