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Online sites typically evaluate the impact of new product features on customer behavior
using online controlled experiments (or A/B tests). For many business applications, it is
important to detect heterogeneity in these experiments [1], as new features often have
a differential impact by customer segment, product group, and other variables. Under-
standing heterogeneity can provide key insights into causal pathways, enable differential
launches to subgroups of customers and products, and motivate future experiments.

Recent methods have focused on estimating heterogeneous impacts [1], but they are
difficult to apply to online experiments for two reasons. First, existing methods scale
poorly in industry settings. With hundreds of thousands of experiments and billions of
observations per year, many existing methods are impractical due to their computational
speed and need for supervision. Second, existing methods typically detect heterogeneity
based on customer features. However, heterogeneity also exists on other axes. For example,
a new online retail feature may increase e-book revenue, but reduce revenue from physical
books, which reflects heterogeneity in a dimension of the outcome (i.e., revenue broken
out by product group). Current approaches for such heterogeneity (e.g., fixed effects)
scale poorly with large numbers of customers and categories. There is thus a need for a
scalable method that can detect different types of heterogeneity in online experiments.

A Naive, Scalable Approach Consider a naive but scalable approach to detect
heterogeneity: use a simple model (e.g., univariate linear regression) to separately estimate
the treatment effect in each category (e.g., customer segment, outcome dimension), then
flag categories with the strongest evidence of positive or negative impact (e.g., the smallest
p-values). This approach is intuitive, as it identifies the categories that are “most impacted”
in an experiment. It is also scalable and applicable to any type of heterogeneity, as it just
requires fitting a simple model separately on a few pre-defined categories.

The naive approach has two key flaws. First, it produces many false discoveries (i.e.,
flags categories that are unaffected by the treatment), as it simultaneously evaluates
several hypotheses without accounting for multiplicity. Second, it greatly overestimates
the true effects in correctly flagged categories. This exaggeration results from the winner’s
curse [2]: if two categories have the same true effect, the dimension value in which the
estimated effect is larger due to random chance is more likely to be flagged. Multiple
testing corrections can limit false discoveries, but do not address impact exaggeration,
and are overly conservative in low signal, high noise settings (typical in most A/B tests).

Hierarchical Bayes for Improved Scalable Estimation We propose a hierarchical
Bayes approach that addresses the flaws of the naive approach while maintaining its
benefits. The main benefits of the naive approach are that it is scalable and broadly
applicable. Its limitation lies in ignoring the sampling variance of the treatment effects
across multiple categories. Our proposed approach addresses this flaw by modeling the
distribution of treatment effects across categories. It shrinks the estimates towards a
common mean, reducing false discoveries and effect size exaggeration.

Again, we start by separately estimating the effect in each category. We then define a
generative hierarchical model of these estimates and infer the posterior distribution of the
underlying true effects conditional on the observed estimates. Let θj denote the true effect
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in category j, θ̂j denote its estimate, and σ̂2
j denote the estimated sampling variance of θ̂j

(which is treated as known). We define the following generative process:

µ ∼ gµ, τ ∼ gτ

θj|µ, τ 2 ∼ N (µ, τ 2), θ̂j|θj ∼ N (θj, σ̂
2
j ).

In this framework, µ is the common mean that the estimates of θj are shrunk towards,
while τ 2 controls the amount of shrinkage (the larger the τ 2, the further away from µ the
posterior estimates are allowed to be). We define appropriate priors gµ and gτ for µ and τ ,
and obtain a posterior distribution for the true treatment effects θj using Markov Chain
Monte Carlo (MCMC). This posterior estimation scales well in the number of categories
(fitting 10k+ categories within minutes). We then flag categories for which posterior
probability of θj > 0 is greater than γ (i.e., evidence of positive impact) or smaller than
1− γ (i.e., evidence of negative impact), where γ ∈ (0.5, 1) is a user-specified threshold.

Evaluation Here, we demonstrate the performance of our hierarchical approach in semi-
synthetic simulations. We consider a common task at Amazon: finding the product groups
whose revenue is most impacted in an experiment. We use data from the control group
of a real A/B test with 115 product groups and simulate the true effects and treatment
group data. We consider several distributions for the true effect sizes, including normal,
fat-tailed (using a student-t3), sparse (where all but five effects are zero), and dependent
(product group effects have arbitrary correlation sampled from an LKJ distribution). We
compare the performance of our hierarchical method to the naive approach described
above—both with and without a multiple testing correction—in Fig. 1. The hierarchical
approach uses fixed µ = 0, a N+(0, 1) prior for τ , and a threshold of γ = 0.66.

As expected, the naive approach is prone to false discoveries, often identifies effects
with the incorrect sign (inflated Type S error), and greatly exaggerates the true effects
(exaggeration ratio >> 1). While a multiple testing correction can reduce false discoveries
and Type S errors, it greatly worsens effect exaggeration and has very low statistical power
(high Type II error). In constrast, the hierarchical approach reduces the exaggeration
ratio and Type S error rate, while significantly increasing power. Notably, the hierarchical
approach is robust to common violations of the assumptions of its generative model (e.g.,
independence of true effects across categories). One limitation is that the hierarchical
approach is prone to false discoveries in the sparse setting; however, these false discoveries
are less likely to lead to incorrect business decisions, as the estimated effects are shrunk
close to 0 (mean absolute value of false discovery < 10−3, vs. 0.74 for the naive approach).

Practical Application We showcase a practical application of our hierarchical approach.
We consider a series of experiments that tested the same feature in different contexts (e.g.,
desktop, mobile), and estimate impacts by customer segment. Our estimates (Tab. 1)
suggest that customer segments 2 and 4 were positively impacted by the feature in almost
all contexts. Meanwhile, customer segments 1 and 3 were more lukewarm, showing
heterogeneous behaviour across contexts. These insights were invaluable to the product
team in understanding the feature’s business impact and designing future experiments.

Discussion We discuss three key points. First, the choice of prior for µ and τ should be
driven by the specifics of the domain. We experimented with horseshoe priors for τ and
mixture priors for µ, but found that these showed no improvement over the chosen normal
priors. Second, the choice of threshold γ reflects the decision tradeoffs of the experimenter.
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Figure 1: Performance of the hierarchical Bayes (“HB”) approach compared to the naive approach
(“Naive”) and the Benjamini-Hochberg procedure (“BH”). We display mean results across 500
simulated experiments. Error bars denote 95% confidence intervals of the mean.

While thresholding based on posterior probabilities is not decision-theory optimal, it is
practical and easily tunable. We found that setting γ = 0.66 produced valuable insights
in exploratory situations where false negatives were less tolerable than false positives. If
instead false positives were more costly, a higher threshold (e.g., γ = 0.95) would be more
appropriate. Finally, our approach detects heterogeneity based on pre-defined categories.
While this is less flexible than causal estimation methods that detect heterogeneity based
on customer features, it is often impractical to operationalize decisions based on arbitrary
groups of customers. For example, launching to an arbitrary group requires storing and
propagating customer identifiers across all production systems and updating the group
with new customers as they arrive. This is often infeasible, especially if identifiers in an
experiment are anonymized to maintain privacy. Thus, determining heterogeneity based
on pre-defined customer segments (or other categories) leads to more actionable inference.

Experiment Overall Segment
1

Segment
2

Segment
3

Segment
4

#1 0.04 0.04 0.08 -0.03 0.12
#2 0.08 0.06 0.12 0.06 0.12
#3 0 0.15 -0.08 0.02 -0.03
#4 0.01 0.01 0.05 -0.11 0.04
#5 0.01 -0.03 -0.01 0.02 -0.01
#6 0.01 0.02 0.11 0.04 0.16

Table 1: Estimates of effect by customer segment of a new feature on sales in six contexts.
Colors indicate likely negative (red), indeterminate (gray), and likely positive (green) impacts.
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