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Figure 1. We propose GenomeBench, a novel framework to assess performance of text-to-image generative models. Given the prompt
and the synthesized image (a), we parse the prompt into a scene graph (b) and ask humans carefully guided assessment questions (c).
The answers are then summarized into a transparent score assessing text-to-image quality alignment (d). Comparing to simple, holistic
questions asked in previous benchmarks, our method reduces annotation ambiguity and provides more insight into model performance.

Abstract

Following the great progress in text-conditioned image
generation there is a dire need for establishing clear com-
parison benchmarks. Unfortunately, assessing performance
of such models is highly subjective and notoriously difficult.
Current automatic assessment of generated images quality
and their alignment to text are approximate at best while
human assessment is subjective, poorly calibrated and not

very well defined. To address these concerns, we propose
GenomeBench, a new framework for assessing quality of
text-to-image generative models. It consists of a prompt
dataset richly annotated with semantic components based
on a formalized grounding of language and images. On top
of it, we define a procedure to collect human assessment
through a carefully guided question answering process. Fi-
nally, these assessments are summarized into a novel score
built around quality and alignment to text. We show the



proposal achieves higher inter-annotator agreement with
respect to the baseline human assessment and better cor-
relation between quality and alignment compared to auto-
matic assessment. Finally, we use this framework to dissect
the performance of recent text-to-image models, providing
insights on strength and weakness of each.

1. Introduction
Latest text-to-image generative models are very good

at generating impressive images with remarkable diversity.
Since their break-through, many new models have been pro-
posed, each claiming some advantage over the state-of-the-
art. Unfortunately, such comparisons are difficult to make
because the relationship between text and images in current
text-to-image generative models remains poorly defined.

To systematically perform such comparison, a variety of
benchmarking systems have been developed [6, 13, 20, 25].
Typically, they consist of three major components: 1) a set
of prompts for model input, 2) a set of questions probing an-
notators’ perceptions, 3) a method for analyzing annotation
results. Additionally, automatic metrics that strive to align
with human perception have been proposed, eliminating the
need of collecting costly human annotations at the cost of
accuracy.

There are many desirable aspects of a generative text-to-
image models. One approach is to include a broad range of
fine-grained metrics, such as model bias (e.g., race, gender),
aesthetics, reasoning capacity, toxicity, and multilingualism
to name just a few [6, 13]. Nevertheless, two stand-out as
the most commonly used: a) quality, also referred to as fi-
delity which measures the overall quality and realism of the
generated images. and b) alignment which measures how
well the generated image aligns with the input text prompt.

Current benchmarks [6, 11, 13, 18, 20, 24] focus mostly
on enhancing the prompt set. Questions remain simple, bi-
nary answer questions. Even recent works [14] that collect
more detailed feedback, e.g. artifact grounding, still rely on
binary misalignment between text and image. This is prob-
lematic for several reasons:

Challenge during annotation. Simple, holistic ques-
tions about quality and alignment (as shown in Fig. 1,
top) are manageable for short prompts. However, complex
prompts present substantial difficulty for annotators, who
often struggle with where to begin. As the task is highly
subjective, this difficulty and ambiguity leads to inconsis-
tent annotation practices across people and even within per-
son across images, compromising annotation quality.

Presence-based alignment There is no clear definition
on how alignment should be assessed. Binary assessment
of alignment “Is there a dog in the image?” ignores the syn-
thesis quality altogether. When judged independently, there
is no difference between low quality synthetic images and

actual photographs as long as concepts in the prompt are
recognizable in the image. We ask ourselves: “What does it
even mean that the alignment is perfect if the dog has three
eyes or highly unrealistic fur?” This makes alignment by it-
self less useful and prevents using it as feedback signal for
improving alignment in models.

Preventing deep analysis. With only two holistic labels
for each image-text pair, it is challenging to identify the fac-
tors contributing to poor image quality or image-text mis-
alignment in previous benchmarks hindering further deep
dive on the model performance.

To address these issues, we propose GenomeBench a
new framework for collecting human assessments of text-
image pairs. We illustrate it in Fig. 1. Inspired by pre-
vious work in visual scene understanding and the concept
of Scene Graphs, we parse prompts (Fig. 1(a)) into basic
semantic components (Fig. 1(b)). A scene graph [12], a
data structure describing scene contents, offers a straight-
forward encoding for image descriptions and a clear heuris-
tic for assessing image quality and text-image alignment.
By constructing node-specific questions (Fig. 1(c)), we sig-
nificantly reduce the complexity for annotators. Departing
from current practice, the node-specific questions do not ask
for a binary rating but rather a gradual rating of alignment
that implicitly embeds a notion of quality in the assessment.

We show that this approach has several advantages over
existing practice: 1. Higher inter-annotator agreement due
to transforming complex prompt inquiries into a sequential
set of simpler questions, each focusing on individual seman-
tic concepts. 2. Higher correlation of alignment with over-
all image quality than in existing automatic or manual met-
rics which mostly account for presence of semantic concept
in the image. 3. Explainability, due to a scoring system that
is fine-grained and that summarizes quality and alignment
facilitating decision making (Fig. 1(d)) on model develop-
ment.

Contributions are as follows: 1) we introduce a novel
analysis framework for text-to-image generative models.
This includes: a) a diverse prompt set with scene graph
annotations (Sec. 3.1), providing fine-grain annotation on
the quality of objects, attributes, relationship and numerals,
b) a structured approach to guide human assessment (Sec.
3.2), and c) a transparent, explainable scoring system (Sec.
3.3). 2. we demonstrate the framework’s advantages by
applying it to recent text-to-image diffusion models (Sec.
4), revealing detailed insights into model performance, the
relationship between image quality, text-image alignment,
and complexity, among other aspects (Sec. 5).

2. Related Works
Reliable evaluation is crucial for the development and

comparison of text-to-image (T2I) generative models. Vari-
ous approaches have been proposed to assess these models,



focusing on different aspects of generative quality.
The two most commonly evaluated aspects are: a) im-

age quality, also referred to as fidelity which measures the
overall quality and realism of the generated images. and b)
alignment between the generated image and the input text
which assess how well the generated image aligns with the
input text prompt.

While these two aspects are widely used, some re-
searchers advocate for a broader range of fine-grained met-
rics, such as model bias (e.g., race, gender), aesthetics, rea-
soning capacity, toxicity, and multilingualism [6, 13].

In terms of human involvement, evaluation methods can
be categorized as manual or automatic. Human assessment
methods directly evaluate the generated images by humans.
Automatic assessment rely on computational metrics which
use pretrained neural networks to assess image quality and
text-image alignment.

2.1. Human Assessment

Because existing automatic measures do not adequately
reflect human judgments a standardized human evaluation
protocol is proposed in [18]. [24] collect a human prefer-
ence dataset by requesting users to rank multiple images
and rate them according to their quality. [11] built a web
application to collect human preferences by asking users to
choose the better image from a pair of generated images.
DrawBench, introduced in Imagen [20], employs human
annotators for pairwise model comparisons, focusing on
image fidelity and text-to-image alignment. PartiPrompts
also targets MS-COCO’s simplicity by offering prompts of
varying complexities and explicitly labeling challenge lev-
els. However, it has limitations in its single challenge label
per prompt and simplistic evaluation questions.

Despite these valuable contributions, most existing
works only use binary human ratings or preference ranking
for construction of feedback/rewards, and lack the ability
to provide detailed actionable feedback such as implausi-
ble regions of the image, misaligned regions, or misaligned
keywords on the generated images. In response to this,
RichHF-18K provides detailed human feedback on text-to-
image generation [14]. Unfortunately annotations guide-
lines are unclear and the data is dominated by human faces.

2.2. Automatic Assessment

Perceptual metrics like Fréchet Inception Distance (FID)
[8], CMMD [10] and Learned Perceptual Image Patch Simi-
larity (LPIPS) [22] use pre-trained neural networks to assess
the quality of generated imagery. However, these metrics
rely on reference images and do not generalize well to eval-
uating the alignment between generated images and input
text prompts.

To address this limitation, recent text-to-visual systems
have predominantly reported using the CLIPScore [19],

which measures the cosine similarity between the embed-
ded image and text prompt. Yet, CLIP has been shown
to struggle with reliably processing compositional text
prompts [23, 26].

To mitigate this problem human-feedback approaches
like ImageReward [24], PickScore [11] fine-tune vision-
language models on large-scale human ratings collected for
generated images. Divide-and-conquer approaches [17, 21]
use large language models (LLMs) to decompose text
prompts into simpler components for analysis. A no-
table technique within this framework is Question Gener-
ation and Answering (QG/A), exemplified by TIFA [9] and
Davidsonian [7], where the text prompt is decomposed into
QA pairs, and the alignment score is computed based on
the accuracy of the answers generated by a VQA model.
More reently, VQA [16] propose VQAScore, which utilizes
a visual question-answering (VQA) model to determine if a
generated image accurately depicts a given text prompt by
answering a simple “Does this figure show ’text’?” ques-
tion.

3. GenomeBench
GenomeBench consists of three main components: a

scene graph annotated data corpus that we describe in
Sec. 3.1, a mechanism to collect structured human assess-
ments through guided question answering, described in
Sec. 3.2 and a score that summarized image quality and
alignment-to-text described in Sec. 3.3.

3.1. Data

GenomeBench prompts are sampled from two sources.
The first set of prompts is coming from publicly available
image-text datasets: MS-COCO [15], DrawBench [20] and
PartiPrompts [25]. We complement these public sources
with HIT, a corpus of prompts we have sourced internally,
describing images of products sold online.

Inspired by the VisualGenome dataset [12], in these
prompts we parse attributes, objects, relationships and nu-
merals.

This is done in a stage-wise semi-automatic fashion.
First, given a prompt, we pass it to an LLM1 with instruc-
tions to return attributes, objects and actions. The result is
then manually corrected by a human evaluator. This ini-
tial set of prompts tags is than enriched with additional fine
grained subcategories of objects, attributes and relation-
ships. We divide objects into: animate (humans, animals),
products, context and abstract. Attributes are divided into
color and material and relationships into associative, spatial,
active, directional and qualitative. Finally, GenomeBench
contains 301 unique prompts and 1809 unique tags2. In 1

1ChatGPT
2Object, attribute, relationship or numeral.



and 2 we show the data distribution by prompt source, tag
source and tag-type. The difference between the first two
comes from the higher tag density coming from HIT which
generally contains more complex prompts compared to, for
example, Parti. In Fig. 2 we show prompt complexity, mea-
sured by mean number of words and mean number of tags
per source.

Coco Parti HIT Draw
Prompt 27.45 34.11 12.94 25.49
Tag 28.37 30.37 19.07 22.17

Table 1. Prompt and tag distribution by source in %.

Objects Attributes Relationships Numerals
41.9 28.6 25.2 3.75

Table 2. Prompt and tag distribution by source in %.

3.2. Collecting Human Assessment

For facilitating human assessment collection we develop
a set of new annotation tooling and task design.

3.2.1 Annotation Tooling

We developed a custom annotation tool for GenomeBench,
which is based on Streamlit3.

For a given prompt and its synthesized image, our in-
terface starts with a holistic image appeal question and then
traverses the prompt to rate each concept at a time, as shown
in Fig. 3. The UI will dynamically change its question ac-
cording the type of concepts (attributes, objects, relation-
ships and numerals) being evaluated.

Tab. 3 shows the question template for each of the con-
cepts. For each image-prompt pair, the image appeal ques-
tion will be asked first, to get an unbiased holistic view ir-
respective of the text prompt. We choose to show the ques-
tions one at a time, since all questions at once likely lead to
inconsistent attention shifts between questions among dif-
ferent annotators. All questions except for the Image Ap-
peal question has “N/A - object missing” to cover the case
when the object involved in the concept is missing. We also
added “Cannot answer/Something is wrong” for each ques-
tion in the case when the question does not make sense for
the image.

3.2.2 Design of Annotation Task

The annotation task is designed as a randomized control ex-
periment. Prompts, seeds and generation parameters are all

3https://streamlit.io/

Figure 2. Prompt complexity, measured by mean number of tags
and words, per source in GenomeBench.

fixed. The only variable is the generation model. This en-
sures fair comparison across all models.

Within each annotation batch, the annotator sees images
from all models and all seeds across a set of prompts, with
the display order randomized at image level. Such random-
ization ensures the internal standards shift across annota-
tions is counterbalanced and uncorrelated with the results.

Each batch takes one to two hours to finish, with anno-
tation results auto-saved. Annotators are allowed to work at
their own pace without time limit.

3.3. Score

Let D = (X,Y ) be a set of text and image pairs where
X are natural language text strings and Y ∈ RW×H×C are
color images. We define a parser ϕ : X −→ T that assigns
lexical tags T to the text x. The tags take values in a discrete
set T ∈ {O,A,R,N} of objects, attributes, relationships
and numerals. Given the X , Y and T a set of scores are
assigned for each tag. In practice, this is done by mapping
the collected annotations (see Sec. 3.2) on a scale between
0 and 1. Finally, for each sample (x, y, T ) drawn from D
we define a general score:

S =
ω(y) + α(x, y, T )

2
(1)

where ω(.) is an overall image quality score and α(.) is a
text-to-image alignment and S → [0, 1]. More specifically,
α is defined by averaging over individual tags’ alignment
(object, attribute, relationships and numeral):



Figure 3. Annotation UI for GenomeBench. The example prompt used here is “A punk rock platypus in a studded leather jacket shouting
into a microphone while standing on a boudler”. Annotators will see the synthetic image on the left and questions on the right. Each
question evaluates the quality of a concept.

Concept Question Template Response
image appeal How would people rate this image? Very good, Good, Acceptable, Bad

object <obj> - Rate object distortion None, Minor, Moderate, Severe
attribute <attr> describing <obj> - How accurate

is the attribute shown in the image?
Accurate, Recognizable, Barely Recognizable,
Not Recognizable

relationship <obj1> <rel> <obj2> - How accurate is
this relation shown in the image?

Accurate, Not same but close, Very different

numeral <num> describing <obj> - Is this number
accurately shown?

Exactly, A bit less, A bit more, A lot less, A lot
more

Table 3. Questions and response for each concept.

α(x, y, T ) =
1

|T |
(
∑
o∈O

α(o, x) +
∑
a∈A

α(a, o, x)+∑
r∈R

α(r, o1, o2, x) +
∑
n∈N

α(n, o, x)) (2)

4. Experiments

To demonstrate its effectiveness we collect human an-
notations over images generated with the GenomeBench
prompts. The sample is random and it preserves the dis-
tribution characteristics described in 3.1. Seven human an-
notators, 6 men, 1 woman, ages from 30 to 50, university
educated, from diverse ethnic backgrounds, living in differ-
ent locations in North America and Europe, were instructed
to complete the annotations tasks as described in 3.1.

We include several publicly available text-to-image dif-
fusion models in our analysis: Realistic Vision [1], Dream-
like [2], Deliberate [3], Stable Diffusion 2.1 [4] and Open-
Journey [5].

We synthesize images for each prompt model combina-

tion. We use a standard inference pipeline4 with a fixed
setup. We synthesize the same three seeds per combination
which results in 4500 unique images. We detail and com-
ment the results of this study in the next section.

5. Results and Analysis
In this section we discuss overall results. We compare

our proposal with baseline human assessment in Sec. 5.1
and with automatic assessment in Sec. 5.2. We then demon-
strate deep analysis on a set of recent text-to-image gener-
ative models in Sec. 5.3. Finally in Sec. 5.4 we study the
relationship between quality, alignment and prompt com-
plexity and we conclude with examples in Sec. 5.5.

5.1. Comparison with Baseline Human Assessment

We perform a consistency analysis between the proposed
alignment (α) and the baseline human assessment. For
building a baseline we have asked two annotators of the ini-
tial benchmark to annotate image-to-text alignment. This
corresponds to the baseline scenario (no guided QA; as in

4Available on https://huggingface.co/



DrawBench and PartiPrompts). We aggregate assessments
of this baseline into model rankings per annotator and we
compute consistency for model ranking among annotators.
Similarly we compute mean and standard deviation consis-
tency among all pairs of annotators from GenomeBench. In
Table 4 we show Kendall rank correlation coefficient of
model ranking. Notice how structuring human assessment
achieves higher agreement on model ranking.

Methods α
Baseline 0.06
GenomeBench 0.2 ±0.08

Table 4. Inter-annotator agreement measured by Kendall tau.

5.2. Comparison with Automatic Assessment

In Table 5 we show correlation between baseline hu-
man assessment of quality and α, VQA [16], DSG [7] and
TIFA [9] (three automatic alignment assessment metrics).
Results clearly show that automatic alignment assessment
correlates poorly with image quality. In other words, cur-
rent state-of-the-art in automatic text-to-image alignment
might account for presence in the image, i.e. ”Is there a dog
in the image?” but ignores quality altogether. By specif-
ically asking annotators about the synthesis quality of se-
mantically meaningful items in the text, our score α not
only detects if a semantic concept is present in the image
but also measure its rendition quality.

5.3. Dissecting Diffusion Models’ Performance

We proceed by demonstrating the deeper analysis a
structured score can achieve. We show in Table 6 the pro-
posed score and the models studied and its breakdown into
the quality ω and alignment α components. We showing
in Table 7 quality alignment based on object category, in
Table 8 we analyse alignment based on attribute category
while and Table 9 we analyse alignment based on relation-
ship category.

The benchmark proposed is a method of assessing be-
haviour but causes for such behaviour are in the model
development itself: data, architecture, training protocol,
model capacity etc. It is difficult to speculate on why a
certain model is better than another. Nevertheless, the pro-
posed benchmark helps the interested practitioner to create
hypothesis and guides toward possible action items. This
comes in contrast to the current holistic assessment that will

Metric VQA DSG TIFA Ours
Correlation 0.158 0.133 0.075 0.417

Table 5. Correlation with holistic human perception of quality.

Model Quality Alignment ScoreObj Attr Rel Num
RV 0.70 0.65 0.78 0.81 0.73 0.72
Del 0.67 0.62 0.78 0.76 0.70 0.71
Drm 0.64 0.61 0.78 0.78 0.47 0.65
SD 2.1 0.55 0.58 0.75 0.77 0.79 0.64
OJ 0.53 0.57 0.74 0.74 0.73 0.61

Table 6. Overall score and its quality and alignment components
across models. Best score in bold. RV: Realistic Vision, Del: De-
liberate, Drm: Dreamlike, SD: Stable Diffusion, OJ: OpenJourney

Model Animate Context Products
RealisticVision 0.55 0.81 0.68
Deliberate 0.53 0.81 0.65
Dreamlike 0.58 0.78 0.59
StableDiffusion 2.1 0.50 0.70 0.62
OpenJourney 0.45 0.77 0.62
Theia 1.0 0.40 0.68 0.63

Table 7. Model performance over object type alignment. Best
score in bold.

Model Color Material
RealisticVision 0.80 0.81
Deliberate 0.79 0.82
Dreamlike 0.77 0.75
StableDiffusion 2.1 0.70 0.79
OpenJourney 0.77 0.59
Theia 1.0 0.68 [0.84]

Table 8. Model performance over attribute type alignment. Best
score in bold.

Model Spatial Qualitative Associative
RV 0.56 0.90 0.74
SD 2.1 0.51 0.68 0.81
Dreamlike 0.53 0.88 0.70
Deliberate 0.55 0.67 0.68
OpenJourney 0.51 0.70 0.72
Theia 1.0 0.58 0.97 0.73

Table 9. Model performance over relationship type alignment.
Best score in bold. RV: Realistic Vision, SD: Stable Diffusion

only conclude that “model X is better than model Y” with-
out offering hints on how could model Y be improved.

We will use our study as an example. From Tables 6,7,
8,9 one can make a set of interesting observations about the
models studied. First, animate objects (humans, animals)
have the lowest quality among objects. It is an intuitive re-
sult and it confirms the anecdotal experience of practitioners
observing extra-fingers or legs. This is for sure due to the



higher variation in appearance of articulated, non-rigid ob-
jects compared to the lower degree of variation of a rigid
objects. Practitioners should invest considerably more in
curating large and diverse images of humans and animals.
Additionally, observers are highly sensitive to any struc-
tural inconsistency of the human body and face. Artifacts
there would heavily weight down any general perception of
quality. Second, it seems that context is the easiest type of
object to model. This of course, might also mean that hu-
mans are far less sensitive to the quality of the background.
Any good model should first focus on getting the salient
foreground objects right. Third, spatial relationships are
difficult to grasp by these models. They represent abstract
conceptual knowledge that the model has to learn. This is
the classic example of the “astronaut on a horse”. From
what we have observed spatial relationships are particularly
tricky between animate objects, e.g. “a cat on a dog”. Fi-
nally we add an observation not transparent from the results.
Counting is not particularly bad in the benchmark because
low numbers (two-three) are over-represented. Models like
these fail almost always with higher numbers. This is a clear
indication of learning by association and suggests that the
textual embedding is less than ideal.

5.4. On the Relationship between Quality, Align-
ment and Prompt Complexity

We now turn to the relationship between quality and
alignment. For this purpose, in Tab. 10 we show the corre-
lation of the various type of alignment: overall alignment α,
object-alignment αO, attribute-alignment αA, relationship-
alignment αR and quality ω. Notice how, among the align-
ment components, the most correlated with quality is by far
object-alignment. This is intuitive and suggests that when
human judge image quality, they mainly focus on object
quality.

corr(ω, α) corr(ω, αO) corr(ω, αA) corr(ω, αR)
0.51 0.71 0.29 0.18

Table 10. Correlation between quality and the different compo-
nents of alignment.

Next, we look into prompt complexity. Since the re-
cent emergence of potent text-to-image models there was
frantic activity in the community for searching for prompts
that create best images. More often than not these prompts
would be very detailed and quite intricate. We have now,
for the first time a clear measure of both image quality and
prompt complexity. In Table 11 we show that in fact there is
almost no correlation between prompt complexity as mea-
sured by the number of tags |T | and α and ω across all mod-
els studied. This measurement is model independent. This
is in a sense surprising as one would expect that a model

corr(|T |, α) corr(|T |, ω)
0.10 0.01

Table 11. Correlation between prompt complexity, i.e. mean num-
ber of tags, and quality and alignment per prompt.

finds it easier to synthesize good quality images from sim-
pler prompts. Similarly, it seems alignment does not nec-
essarily decrease with more complex prompts. When taken
per model, it might be that specific models express stronger
dependencies than others.

5.5. Qualitative Results

To further illustrate the proposed framework in Fig. 4 we
show a sample from each model for four different prompts.
For each particular sample, we specify the quality ω and
alignment α as they were obtained during our study from
actual human assessments. If we are to focus on the first
prompt, the quality is pretty much the same, with the no-
table exception of sample (f) which is rated higher. If on the
other hand we look at the alignment scores, there are great
differences. On one side, (a) and (e) are poorly aligned.
Notice how in both of the “a man” is entirely missing. At
the either side of the spectrum, (b) comes closest to perfect
alignment: not only we have all the object present but in
this case also the relationship “standing on (man, cart)” is
relatively aligned. Consider now the second example. Im-
age (i) is considered to be the most appealing by the raters.
But it is by no means the most aligned to the prompt. Even
if none of the images is perfectly aligned the one the is the
most aligned is image (h) which happens to be the only one
that contains both “cat” and “dogs”. The obvious source of
misalignment of course comes from the numerals. In the
third example the prompt is particularly challenging. This
immediately obvious from the low alignment scores across
models. On the quality, image (l) scores very high. it is a
nice, high quality, high contrast image. nevertheless, even
in this case the alignment to the prompt is minimal. Fi-
nally, in the last set of examples we get considerable vari-
ance along both dimensions. By far the worst sample (s) for
obvious reasons. Example (p) scores highest overall, both
on quality and alignment. You might wonder why are (r)
and (t) not scored higher. At a closer look one might no-
tice that what you see is the actual Earth (as judged by the
details of the planetary surface) and the moon is not even
present. The rest of course is captured in the quality of the
object “International Space Station”.

5.6. Limitations

Despite the significant contributions and insights gained
from this study, it is essential to acknowledge several inher-
ent limitations, some unique to GenomeBench, some shared
among the human-in-the-loop benchmarks.



Figure 4. Examples of synthesized images and their associated quality and alignment scores.

Most importantly, the GenomeBench score requires con-
siderable human question answering. Although the ques-
tions are now more well defined and analysis more power-
ful, annotators still need to spend more time on each image-
text pairs, especially when the prompt is complex. Such
challenge is also shared with previous human assessment as
annotators need to carefully consider each image without
explicit guidance.

Second, the need of human annotation also means that
given a newly developed model it is not immediate to cal-
culate the model performance and conduct model compar-
isons as it is the case with automatic metrics assessment.
This shortcoming is shared among all the benchmark sys-
tems that requires manual annotation.

Third, if new prompts are requested, additional tag pars-
ing is needed before the use of GenomeBench. This can be
mitigated by appropriate planing on prompt set expansion.

6. Conclusion

In this paper we proposed GenomeBench, a compre-
hensive framework that includes a prompt dataset with se-
mantically rich annotations and a system to structure hu-
man assessment through detailed questioning over text-
image quality and alignment. This showed superior inter-
annotator agreement over baseline binary human assess-
ment and higher correlation between alignment and quality
when compared to automatic assessment. Furthermore, the
implicit fine-grained structure, allows for in-depth analysis
of generative models, shedding light on their ability to gen-
erate realistic and high-quality samples.
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