
TINA VPN Protocol
What TINA VPN protocol adds to a
Barracuda CloudGen Firewall and/or
Barracuda SecureEdge deployment

WHITE PAPER NETWORK SECURITY

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 2 NETWORK SECURITY

Introduction

Today’s organizational structures rely on Internet connectivity
more than ever, be it a client-to-site connection for road
warrior or a site-to-site connection from a branch office to
headquarters or data centers (on-premise or cloud). All of these
cases depend on tamper-proof connections via the Internet.
Standard IPsec is most likely what comes to mind when talking
about secure connectivity. But standard IPsec can also limit
usability in the context of business-critical connectivity setups.
To name just a couple of limitations and how Barracuda
mitigates:
•	 Dead peer detection: The IPsec RFC specifications for

dead peer detection mechanisms leave a lot of room for
interpretation, resulting in incompatibilities and suddenly
stopping VPN tunnels. Heart-beat detection, deeply
integrated into Barracuda TINA, typically identifies dead
peers more reliable and faster than other VPN solutions.

•	 NAT and proxy traversal: While IKEv2 made some steps
improving the ability for NAT traversal, proxy traversal is still
not officially implemented. The Barracuda VPN protocol
offers full support for NAT and proxy traversal.

•	 VPN and roaming: With standard VPN client-to-site
connections, a change in network and IP address (like
when putting the laptop to standby, traveling to a different
location, opening up the laptop again) routinely results in
connection loss or at least the need to re-authenticate to the
VPN server. With Barracuda VPN the client instantaneously
and imperceptible to the user reconnects to the VPN server
without session loss or the need to log on again.

•	 Ability to control traffic inside the VPN tunnel: The
standard IPsec protocol, even when using IKEv2, provides
very limited capabilities to control the traffic and the sessions
inside the VPN tunnel. This has been built into the products
CloudGen Firewall and SecureEdge from initial conception.
QoS and even performance-based application control is fully
available in the VPN tunnel. In addition, multiple physical
uplinks can be used to share the load of a single logical VPN
tunnel. For load optimization the admin can reassign sessions
between the physical uplinks manually or use the built-in SD-
WAN features to achieve performance-based load balancing
with session-based optimization applied automatically.

•	 Tunnel monitoring: Related to the above, the standard IPsec
protocol does not provide much help when maintaining
or troubleshooting a VPN tunnel. Barracuda VPN includes
tunnel heartbeat monitoring to control a VPN tunnel and
–if needed– failover to a different line much quicker and
smoother than standard IPsec implementations that need
to wait for a timeout, then fail-over, and potentially update
routing information.

•	 Built-in packet loss mitigation: Encrypted connections with
the TINA protocol are designed for high-speed networking
across shared lossy lines such as internet broadband
or 4G/5G. The underlying forward error correcting (FEC)
technology to remediate packet loss is based on a new
set of algorithms in the category of random linear network
codes (RLNC). Algorithms based on RLNC codes react much
faster to losses, remediate these faster on the fly, requiring
fewer packet retransmissions and reducing overhead on
the devices. This results in high quality voice and video
calls even in high packet loss scenarios and with many
subscribers on the shared line.

•	 Self-healing connectivity: To achieve the best possible
user experience across the WAN and to the cloud service,
SecureEdge site devices proactively measure the available
bandwidths and quality of all internet uplinks and between
VPN endpoints. The results are directly available to the
security and SD-WAN policy engine to select the best
suitable uplink per application or to disqualify an uplink if
the bandwidth or latency fall outside of acceptable limits.
Adaptive Session Balancing technology ensures using
the best available uplink for the application profile, for all
encrypted tunnels across SD-WAN sites. If the health state
of the initial uplink recovers, encrypted SD-WAN traffic
transparently switches back to this previously defunct uplink.

•	 Cloud and provider friendliness: Standard IPsec is and will
always be detected as what it is: IPsec. There is no hiding
from it. Some cloud providers and internet providers limit
the bandwidth available to IPsec traffic or require more
expensive “Business” tariffs. Barracuda’s TINA VPN is visible
as a standard network connection, not falling under
these limitations.

Contents

Introduction . 2

Phases of an encrypted session 3

Possible credentials . 3

Verification of credentials 3

Phase 1 - Pre-handshake and handshake phase 4

Phase 2 - configuration phase 6

Phase 3 - traffic phase . 7

Phase 4 - rekey phase 7

Phase 5 - termination phase 7

Appendix - Timeline of a session 8

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 3 NETWORK SECURITY

In order to improve the reliability and performance of such
remote connectivity, Barracuda has created its own transport-
independent network architecture - TINA for short.
The TINA protocol can encapsulate encrypted ESP payload
in TCP or UDP packets, thus adapting to underlying transport
network quality and providing failure-resistant, high-speed VPN
connections.
TINA also substantially improves VPN connectivity by adding:
•	 Multiple concurrent physical transport paths per

logical tunnel
•	 Session-level or packet-level transport aggregation for

increased total tunnel throughput
•	 Adaptive traffic shaping depending on VPN

transport availability
•	 Packet loss mitigation by applying

Forward Error Correction techniques
•	 Fallback transports in case of uplink failure
•	 Traffic compression
•	 DHCP and NAT support
•	 Heartbeat monitoring for failover scenarios

The TINA protocol is used in the following settings:

Client-to-SASE service

•	 Dedicated SASE agents for Windows, macOS, iOS, Android,
and Linux

Client-to-site connectivity

•	 Dedicated VPN clients for Windows, macOS, and Linux

•	 Clientless, browser-based SSL VPN (transparent agent)

•	 CudaLaunch app for Windows, macOS, iOS, and Android

Site-to-site connectivity between

•	 on-premise/virtual CloudGen Firewall or SecureEdge

•	 on-premise/virtual CloudGen Firewall and public cloud
offerings like Amazon Web Services, Microsoft Azure, or
Google Cloud Platform

•	 on-premise/virtual SecureEdge and public cloud
offerings like Amazon Web Services, Microsoft Azure, or
Google Cloud Platform

•	 public cloud offerings like Amazon Web Services, Microsoft
Azure, or Google Cloud Platform

Phases of an encrypted session

During an encrypted session a client/partner server passes
through the following phases:

Phase 1	 Pre-handshake and handshake phase
	 (authentication phase)

Phase 2	 Configuration phase

Phase 3	 Traffic phase

Phase 4	 Rekey phase

Phase 5	 Termination phase

Phases 1 and 2 cover the authentication process and ensure
that only clients with appropriate credentials may proceed to
the next phases.

Possible credentials

•	 Possession of a private RSA key that matches a known public
key. (“Known” means either explicitly known or through a
X509 certificate)

•	 A valid login password combination.

•	 [optional] Additional two-factor authentication

Depending on the configuration, one or both type of
credentials must be present.

Verification of credentials

RSA key - Depending on the capabilities of the RSA key (keys
on smartcards or tokens may have a restricted key usage) a
valid digital signature or a private decryption of dynamically (!)
generated data (avoid replay) is required. In case the public key
is known through an X509 certificate, the certificate is
also verified.

X509 certificate - The root certificate of the issuer has to be
known. The certificate must be signed by that root certificate.
The certificate may not be expired. The certificate may not be
on the CRL belonging to its root certificate, or optionally, an
OCSP call verifies the validity of the certificate.

Login/password - Login name and password are verified at an
external authentication server (LDAP, NTLM, ADS, ACE, Radius)

Note:
No matter how many intermediate steps the authentication
involves (e.g., DoS save methods, cookies, or DH
intermediate keys), authentication always reduces to the two
credentials mentioned above.
This also applies to the IKE protocol.

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 4 NETWORK SECURITY

Phase 1 - Pre-handshake and handshake phase
(authentication phase)

We distinguish three scenarios for the handshake phases:

Case A.	 The partner public key for a specific tunnel is known
to the system and, optionally, a password is required.

Case B.	 The public key is not known but will be received via
an X509 certificate.
Variant A: Signing packet with client private key
Variant B: No signing packet, public / private encrypt

Case C.	 No public key/ X509 certificate is required. Valid
login password combination is sufficient.

For case A, a client may proceed to the handshake phase
immediately. For case B and C, the client has to pass the pre-
handshake phase first, which will exchange the partner’s public
keys.

General comment:
In the following, the term cookie will appear. A cookie is
simply a sequence of random numbers that may be used to
assure that a reply was answered by the correct partner.
Unencrypted cookies help to avoid communication with
attackers using IP spoofed addresses. Encrypted cookies
play the role of the dynamic part of encrypted data so
“Replay Attacks” cannot be performed (i.e., if network traffic
is intercepted and replayed at a later time).
The term client refers to the initiator of the handshake. This
can be a VPN client used for personal or group VPN, the
SecureEdge Access Agent (all commonly referred to as
client) or another VPN server (active partner) in the case of
site-to-site VPN.

The pre-handshake phase

A client that wants to pass the pre-handshake phase must
first obtain a so-called cookie that is required for further
communication. Since in the pre-handshake phase no keys are
known by the communication partners, pre-handshake cookies
(PHS cookie) do NOT involve encryption and are built using a
MD5 hash of the IP address of the requestor and a secret 16-
byte sequence, which is changed randomly every 10 seconds.

•	 Client PHS step 1:
Generate a 16-byte random sequence: client cookie.
Send a PHS cookie Request to the server including
the client cookie.

•	 Server PHS step 1:
Reply a PHS cookie for the client IP, the client cookie and the
server X509 certificate.

•	 Client PHS step 2, case B, variant A:
Verify the client cookie.
Verify the server X509 certificate.
Create a 16-byte random string.
Send a PHS request including the client X509 certificate, the
replied PHS cookie, the random string, and the client public
key used for further encryption.
Packet is signed using the client private key.

•	 Server PHS step 2, case B, variant A:
Verify the PHS cookie.
Verify the X509 certificate and the packet signature.
Reply the random string, a unique name for the tunnel, and
the server public key used for further encryption.
16-byte random string and server public key are hashed.

•	 Client PHS step 2, case B, variant B:
Verify the client cookie.
Verify the server X509 certificate.
Create a 16-byte random string.
Send a PHS request including the client X509 certificate, the
replied PHS cookie, the random string, and the client public
key used for further encryption.

•	 Server PHS step 2, case B, variant B:
Verify the PHS cookie.
Verify the X509 certificate.
Create secret cookie and hash with PHS cookie.
Send a PHS NO SIG RESPONSE including random string and
secret hash.

•	 Client PHS step 2.1, case B, variant B:
Verify the random string.
Send a PHS NO SIG REQUEST including secret hash, client
X509 certificate, replied PHS cookie, random string, and
client public key used for further encryption.

•	 Server PHS step 2.1, case B, variant B:
Verify the PHS cookie.
Verify the X509 certificate.
Verify the secret hash.
Reply a PHS Reply including a random string, a unique name
for the tunnel, and the server public key used for
further encryption.
16-byte random string and server public key are hashed.

•	 Client PHS step 2, case C:
Verify the client cookie.
Verify the server X509 certificate.
Create a 16-byte random string.
Encrypt the login and password using the server public key
(from X509 certificate).
Send the encrypted login/password, the replied cookie, the
random string, and the client public key used for
further encryption.

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 5 NETWORK SECURITY

•	 Server PHS step 2, case C:
Verify the PHS cookie.
Decrypt the login and password.
Verify the login/password combination.
Reply the random string, a unique name for the tunnel, and
the server public key used for further encryption.
16-byte random string and server public key are hashed.

In this way, the server as well as client have the possibility to
validate the authenticity of their partners. Both PHS cookie and
client cookie are important to avoid attackers using IP spoofing
from sending requests or replies at a fast rate in order to keep
the receiver busy decrypting.

After a successful pre-handshake, each partner possesses
a public key of the communication partner that can be used
for further decryption and encryption and a unique name
of the tunnel that will be used to reference it for the further
communication in the handshake phase. Note that the purpose
of the pre-handshake phase is solely the exchange of the
public keys. For establishing a tunnel, a successful handshake
phase is required as a next step. The public keys exchanged
do not have to be identical with the public key contained
in the X509 certificate. While X509 public key is used for
authentication purposes, the passed public key is used for
further decryption and encryption. This is due the private part
of the public key in the X509 might reside on smartcards or
security tokens. Decryption and encryption on tokens is not
very fast, so Barracuda uses that key for authentication only
and exchange the public part of a dynamically generated 2048-
bit RSA key that will be used for all further operations.

Cases B and C may occur in a combined request, where
both an X509 certificate AND a login/password combination
is required.

The handshake phase

Prior to the start of the handshake phase, the client as well as
the server possesses the public key of their communication
partner and has knowledge of the unique name for the tunnel.
The server holds a so-called server prebuild cookie for each
known (unique name) partner. The server prebuild cookie is a
random sequence of 16 bytes that is publicly encrypted with
the partners public key. This cookie is available before the
communication starts, is valid for one single request, and is
only replaced when used in a properly validated request. In this
way, the server will only have to perform expensive encryption
operations for the next request which implies a successful
prior request.

Prior to communication

•	 Client HS, step 0:
Build client cookie I and II (encrypted, using server public)

•	 Server HS, step 0:
Build server prebuild cookie packet (encrypted,
using client public)

Communication starts

•	 Client HS, step 1:
Send a cookie request.

•	 Server HS, step 1:
Reply to the server prebuild cookie packet (encrypted).

•	 Client HS, step 2:
Decrypt the received server prebuild cookie.
Send a verify request including the decrypted server prebuild
cookie and the encrypted client cookie I.
Packet is signed using the client’s private key.

•	 Server HS, step 2:
Validate the received server prebuild cookie (cleartext).
Validate the packet signature.
Decrypt the client cookie I.
Generate a server request cookie (encrypted).
Reply to the decrypted client cookie I and the encrypted
server request cookie.
Packet is signed using the server private key.

•	 Client HS, step 3:
Validate the client cookie I (cleartext).
Validate the packet signature.
Decrypt the received server request cookie.
Send a handshake request including the decrypted server
request cookie and the encrypted client cookie II and
handshake PAYLOAD (see below).
Packet is signed using the client private key.

•	 Server HS, step 3:
Validate the server request cookie (cleartext).
Validate the packet signature.
Decrypt the received client cookie II.
Set the tunnel as ACTIVE.
Reply to the handshake request including the decrypted
client cookie II and handshake PAYLOAD (see below).
Packet is signed using the server private key.

•	 Client HS, step 4:
Validate the client cookie II (cleartext).
Validate the packet signature.
Set the tunnel as ACTIVE.

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 6 NETWORK SECURITY

Purpose of the PHS cookie:

The server will only talk to clients that have successfully
decrypted the PHS cookie which makes it virtually immune to
DoS attacks.

Purpose of the verify request as an intermediate step:
In the handshake process, the operations for client and server
are not symmetric. Since the client is initiating the process, it
has the disadvantage - compared to the server - that it has to
perform a decryption of a reply packet in order to proceed.
Furthermore, the client could be attacked by a man-in-the-
middle that is replaying old cookie replies. The purpose of
verify request is to filter out the replies coming from the “real”
server and bringing the client and server into a state where
they have mutually exchanged cookies that can then be used
to perform the actual transaction. It also solves the problem that
packets might get lost and retransmissions occur, which have
to be distinguished from replayed packets. Of course, the client
can be subject to a DoS attack involving the need to decrypt
data, but this is only for the limited period of time it takes to get
from step 2 to step 3.

This sequence for performing a request/reply operation is not
limited to the handshake phase but is also used for various
other request types (see below). In this case, steps 3 to 4 are
replaced with other specific request and reply packet payloads.

By default, CloudGen Firewall and SecureEdge support Perfect
Forward Secrecy (PFS) and Elliptic Curve Cryptography (ECC).
The VPN service sends and responds to PFS/ECC requests and
uses ECC if it is also supported by the remote service.

At the end of a successful handshake phase, the client and the
server have exchanged the following information (passed as
encrypted PAYLOAD of handshake request and reply):

Client-to-server
•	 Hashing algorithm used

•	 Hashing key

•	 Encryption algorithm used

•	 Encryption key

•	 SPI number (security parameter
index)

•	 Tunnel mode

•	 Client OS information

•	 Client version information

•	 Rekey time

•	 Alive heartbeat rate

•	 Alive heartbeat timeout

•	 Password (only case A with
required password)

•	 Preferred client IP

Server to Client
•	 Result of the handshake

•	 Human readable result string

•	 Hashing algorithm used

•	 Hashing key

•	 Encryption algorithm used

•	 Encryption keys (ECDH-derived)

•	 SPI (security parameter index)

•	 Assigned client IP (client only)

•	 Assigned client default gateway
(client only)

•	 Assigned network routes
(client only)

•	 Assigned domain name suffix
(client only)

•	 Assigned name server
(client only)

•	 Assigned WINS server
(client only)

•	 Server time

Client and server now have exchanged a so-called transport
key which is a symmetric key that will be used to encrypt
network traffic.

The type of key used (cipher) is negotiated and can be either
DES, 3DES, BLOWFISH, CAST, AES128 , AES256, or a NULL
cipher. The server decides (configuration) if a proposed cipher
is acceptable. The same is valid for the hashing algorithm that
can be either MD5, SHA, RIPEMD160, SHA256, SHA512, GCM,
or NOHASH.

Note:
The product’s recommended authentication algorithm,
NOHASH, is sometimes referred to as ‘TINA standard
hash’ in the product. However, this method does not use a
traditional hashing mechanism and derives its name from
this difference. Instead, it is based on a similar concept as
used in GCM for creating a hash, i.e., by using metadata
and payload information to derive an authentication tag.
NOHASH complements a regular block cipher, providing
encryption for data confidentiality and authenticity within a
single, efficient algorithm. To guarantee data packet integrity,
NOHASH authentication employs the following method:
• In addition to the payload, encrypted packets include
 metadata such as the nohash-result and a sequence
 number.
• After decryption,
 - the included nohash-result is verified for authenticity
 - the included sequence number is verified as a replay
 protection and as anti-tampering check.

Upon successful handshake, the server activates the tunnel by
setting up an SA (security association, see IPsec).

In case the client is a personal or group VPN client, the client
uses the received IP address, gateway, and network routes to
setup his network configuration.

Phase 2 - configuration phase

In addition to the information passed along with the handshake
reply, the client needs more information for the server.

This involves:
•	 An online firewall rule set
•	 An offline firewall rule set
•	 A message of the day for user information
•	 A corporate logo bitmap
•	 A registry check set

Due to the size of this information, this data is passed with
separate requests after the handshake request. The patterns
of these requests are exactly the same as for a handshake
request except that the request type for steps 3 to 4 differs.

Barracuda Networks • WHITE PAPER • TINA VPN Protocol • Page 7 NETWORK SECURITY

Phase 3 - traffic phase

The client and server exchange network traffic that is encrypted
using the communicated transport key. The payload is
equivalent to an IPsec ESP (encapsulation security payload)
packet but contains a 4-byte Barracuda header for packet type
identification (packet type=17). It features:

•	 SA lookup by SPI number and peer
•	 Authentication header
•	 Encrypted payload with padding check
•	 Sliding packet bitmap for replay protection

From time to time (alive heartbeat time) client and server
exchange so-called heartbeats, which are used to probe the
availability of the tunnel. So-called alive requests are not like
the handshake requests performed with the asymmetric RSA
keys but rather with inexpensive transport keys (transport
encrypted request/reply).

Phase 4 - rekey phase

In order to update the transport keys, the client and server have
agreed on a rekey time (the shorter time wins) after which a
transport key is supposed to be replaced. Replacement means
that both keys, server and client, are refreshed. The rekey
phase is again handled like a handshake request (cookie >
verify > rekey request) with the new transport key as payload.

Since the initial credentials (large asymmetric keys) are required
for that operation, the operation is said to have
“perfect forward secrecy”.

Phase 5 - termination phase

Termination can be performed by either client or server and is a
simple transport-encrypted request/reply. Termination may also
occur without notification in case that alive heartbeat packets
are not replied over a period of time (alive heartbeat timeout)
and the tunnel is assumed to be non-functional.

WHITE PAPER • UK 3.1 • Copyright 2024 Barracuda Networks, Inc. • barracuda.com
Barracuda Networks and the Barracuda Networks logo are registered trademarks of Barracuda Networks, Inc. in the United States. All other names are the property of their respective owners.

Handshake

Prehandshake

Established session

SSA
Server Security Association

Cookies

SA

Configuration

TINA SHM

Unique tunnel name

SPI + peer
Unique tunnel name

SPI + peer

Dyn SSA

Cookies

SA

Configuration
Get server

X509 / public key

Get
configuration

Terminate

Traffic
phase

Traffic
phase

Get server
X509 / public key

Handle
configuration

Terminate

Traffic
phase

Traffic
phase

Exchange

Exchange

Config

request

Termination

request

Config

reply

Termination

reply

Rekey

request

Rekey

request

Exchange

Cookie

Cookie

Cookie

Handshake

request

Handshake

response

Determine
name

Initial
handshake

Session
establishment

Cookie exchange

Check cookie
Handle handshake

New cookie
Generate SPI

Enter TINA SHM
Session established

Inexpensive DoS Save

Inexpensive DoS save

ESP packet

ESP packet

ESP packet

ESP packet

Exchange

Cookie

Renew
transport

key

Update
transport

key

SA

Key

Transport-encrypted

RSA-encrypted

Unencrypted

Appendix - Timeline of a session

	Introduction
	Phases of an encrypted session
	Possible credentials
	Verification of credentials
	Phase 1 - Pre-handshake and handshake phase
(authentication phase)
	Phase 2 - configuration phase
	Phase 3 - traffic phase
	Phase 4 - rekey phase
	Phase 5 - termination phase
	Appendix - Timeline of a session

