
Secure software development strategy essentials — 1

Secure software
development
strategy essentials

Secure software development strategy essentials — 2

Table of
Contents

INTRODUCTION

SAFEGUARDING CUSTOMER DATA

Build a culture of security

Always encrypt data

Encryption in transit

Encryption at rest

Encryption with GitHub

Adopt strong identity management practices

Using GitHub with identity management systems

Prevent database attacks

Segregate sensitive data

Preventing sensitive data from reaching repositories with pre-receive hooks

Enforce protections on source code

SECURING THE ENTIRE DEVELOPMENT PROCESS

Include legacy core systems

Automate processes to prevent bugs and errors

Integrating CI/CD with GitHub

Enforce manual reviews with required code review

Move security all the way left

Creating a security culture

CUSTOMER STORY: ANAPLAN

SUMMARY

We’re here to help

2

4

10

16

18

Secure software development strategy essentials — 3

Introduction
Trust is the foundation of the relationship between

software companies and their customers. The

ability to prevent sensitive data from falling into

the wrong hands is a cornerstone of this trust.

Globally, governments have responded with a variety

of regulatory frameworks obligating companies

to protect sensitive customer data, with severe

sanctions imposed on firms that fail to do so. Failure

to properly safeguard data can have profound and

lasting impact on a company’s reputation and their

bottom line.

To make matters more complex, software has

become a central component of businesses

everywhere and will continue to increase in

importance. However, strict regulatory and

compliance requirements can govern the way teams

build software, from the processes they follow to

the tools they use. These requirements are often

prohibitive enough to compromise performance

and stifle innovation, particularly for companies

in highly regulated industries, such as healthcare,

government, and financial services.

The good news is secure development doesn’t have to

be a barrier to collaboration or innovation. Businesses

today are uniquely positioned to create impactful,

forward-thinking user experiences, and many of them

are doing just that. Thousands of organizations are

using GitHub to free their workflows from insular

development and build secure processes that give

engineering teams the flexibility to do their best work.

With consumer expectations higher than ever

and increased pressure to lower costs, efficient,

collaborative, and secure workflows can help teams

shift focus to where it matters most: Building the best,

most innovative software for their customers.

In this guide, we’ll outline the unique regulatory and

technical challenges that software companies face,

how to address them, and how GitHub can help.

GitHub: How people build software

Secure software development strategy essentials — 4

Safeguarding
customer data

Today, customers share some of their most sensitive

data with companies in online transactions and

other data exchanges. Security teams are engaged

in a constant arms race with those trying to obtain

this data for criminal purposes—from individual

hackers to state actors deploying considerable skill

and resources in their efforts to undermine security.

Fortunately, there are best practices and tools

that can help companies secure their development

processes and keep sensitive data safe.

There is no single solution or approach that can

guarantee security. Instead, effective security relies on

a layered approach, enforcing checks and safeguards

at multiple points across data paths and workflows.

This layered approach includes a combination of tools,

practices, and culture.

GitHub: How people build software

Secure software development strategy essentials — 5

Education and training regarding the dangers of public networks,

as well as the physical protection of devices like laptops, tablets,

and cell phones.

Use of VPNs to secure access to internal corporate networks

Build a culture of security
A corporate culture that places security at the center of everything is key to

enforcing security policies at scale. Creating a security culture means building

processes that make everyone’s job. Examples include regular training on secure

practices, highlighting the danger of social paths to infiltration like phishing

attacks, as well as technical means. Specific best practices include:

SPECIFIC BEST PRACTICES INCLUDE:

Enforcement of password policies, including complex passwords,

regular password changes, and the use of password managers

and generators to enhance password security

Use of two-factor authentication

GitHub: How people build software

Secure software development strategy essentials — 6

Always encrypt data
One of the best ways to avoid unauthorized access to data is encryption.

 Even if a bad actor obtains access to data transmission, strong encryption

can render that success of little or no value. Again, employing a layered

approach is most effective when implementing an encryption strategy.

This means:

Encrypting data in transit when it’s being transmitted

between a permanent store and an end user

Encrypting data ‘at rest’ in the databases where it’s stored

ENCRYPTION IN TRANSIT
As a standard practice, any web-based effort should employ end-to-end

encryption using modern encryption protocols such as TLS. TLS helps secure

communication using strong, certificate-based encryption that can be

essentially unbreakable in any practical sense. TLS also verifies each party in

a network transaction, preventing ‘man-in-the-middle’ attacks, where a bad

actor poses as a trusted partner in a transaction. Services like LetsEncrypt

have greatly reduced the cost and complexity of implementing effective TLS

and obtaining the required certificates.

ENCRYPTION AT REST
Some applications provide encryption services at the software layer. This sort

of encryption is better than none but can bring significant costs in terms of

complexity and reduced performance. Encryption solutions that run as close to the

storage hardware as possible, such as filesystem encryption or hardware appliance

level encryption can provide a transparent layer of encryption for all applications.

ENCRYPTION WITH GITHUB
All communication to and from our self-hosted solution GitHub Enterprise

Server is protected by TLS with the option to use LetsEncrypt for inexpensive

and simple certificate maintenance. GitHub also secures communication

between Git clients used by developers and the server using SSH. Both are

strong cryptographic protocols that present robust barriers to unauthorized

interception or leakage of sensitive data.

GitHub: How people build software

Secure software development strategy essentials — 7

Adopt strong identity
management practices

Prevent database attacks

The more passwords users have to remember, the more likely they are to

default to insecure practices like writing passwords down or reusing easy-to-

remember (and thus easy to crack) passwords. Using a centralized identity

management system like LDAP coupled with a Single Sign On (SSO) solution

can greatly reduce the number of passwords users have to manage, making it

easier for them to follow sound password management practices.

USING GITHUB WITH IDENTITY MANAGEMENT SYSTEMS
GitHub Enterprise supports authentication and authorization using a variety

of identity management solutions like Active Directory and LDAP. GitHub

also supports SAML, which allows enterprises to provide a Single Sign On

experience for users.

Data entering an organization can be a dangerous vector that bad actors use

to attempt to gain access to your systems. Many of these strategies rely on

passing dangerous payloads to poorly designed systems, exploiting flaws

to gain control. SQL injection is a classic example, occuring when a bad actor

intentionally appends SQL code to seemingly harmless data like a customer

name in a web application. Flaws in the underlying software can result in

arbitrary execution of this code, resulting in data being unintentionally

returned to the user. These attacks are particularly dangerous because they

may not cause an error or other event that might attract the attention of IT

administrators overseeing security.

Again, a layered approach is most effective in ensuring that only valid data enters

your environment. This begins with the code in the user interface and extends

throughout the datapath through middleware to underlying data stores. Building

validation into the code at each step can dramatically reduce your vulnerability

to these sorts of attacks. A combination of frequent manual and automated

reviews and tests are critical to supporting this effort.

Three ways you can prevent common
vulnerabilities:

• Only accept validated data into production systems

• Monitor systems for errors and edge cases

• Restrict access to data systems of records as much as

possible by adopting an identity management system

GitHub: How people build software

Secure software development strategy essentials — 8

Segregate sensitive data
The fewer places sensitive data exists, the fewer opportunities (or less

“surface area”) attackers have available to exploit. Reducing surface area

means implementing practices like storing passwords in a password manager

rather than entrusting them to individuals and never committing passwords,

access/API tokens, encryption keys, and other sensitive data to publicly

accessible repositories.

 Sensitive data should never be used or stored in non-production systems.

Of course, teams might require large amounts of data that reliably mimic the

real thing for testing, tempting some engineers to ‘refresh’ development and

testing environments with production data. Instead of using production data,

consider using a tool that allows you to configure and then generate large

sets of dummy data. These allow reliable, realistic testing without risking

sensitive information.

PREVENTING SENSITIVE DATA FROM REACHING
REPOSITORIES WITH PRE-RECEIVE HOOKS
In addition to storing sensitive data separately, you can prevent the

inadvertent (or deliberate) committing of protected data to repositories with

pre-receive hooks—simple scripts that run in an isolated environment on

the GitHub appliance. These scripts are triggered _before_ code is pushed to

GitHub to examine commits, identify sensitive information, and prevent it from

being added to your repositories.

After examining code, pre-receive hooks return only one of two possible

values: success, or failure. If it fails, developers will see a message informing

them that their commit failed, along with any other useful information your

team chooses to include. The code is committed to the repository only if the

pre-receive hooks succeeds. The result? No unwanted code makes it to your

repositories, protecting your company from violations, liability threats, and

potential regulatory penalties.

GitHub: How people build software

Secure software development strategy essentials — 9

Preventing deletion of a branch

Preventing code which fails automated

testing and Continuous Integration (CI)

checks from being merged

Enforce protections on source code
Effective security requires controlling access to sensitive information and the source code for

the software that manages it. Granular controls mean you can effectively protect this information

without creating a security-bound environment that denies access too comprehensively. GitHub

can support your access policies with protected branches. Protected branches help maintain the

integrity of your code by limiting several features of Git on any branch an administrator chooses

to protect. For example, administrators can restrict who can post to a branch to specific users and

teams programmatically. They can also disable force pushes that might change or delete code on

certain branches. Additional safeguards include:

ADDITIONAL SAFEGUARDS INCLUDE:

Steps you can take to
protect your customer’s most
important information:

• Use secure connections everywhere (no

excuses!) and only transfer data using

protocols like SSH and SFTP

• Never commit passwords, access/API

tokens, encryption keys, and more to

publicly accessible repositories.

• Use protected branches and pre-receive

hooks to account for human error and

protect sensitive data from making it

to production

• Use an identity solution to restrict

access and make sure only the right

people have access to sensitive data

Requiring manual, auditable

reviews from one or more people

Specifying ‘codeowners’ for any

part of a codebase and requiring

their review

GitHub: How people build software

Secure software development strategy essentials — 10

Securing the entire
development process

Your software codebase and the development

processes that shape the way your team builds

are at the center of a layered security strategy. As

developers work together and contribute changes,

it’s important to put certain safeguards in place

through a combination of best practices and GitHub

features that make sure the code that reaches

production is secure.

Include legacy
core systems

Tools like mainframes remain central to some

companies' operations more than 50 years after

their initial introduction. These systems provide

unparalleled capabilities but can also pose unique

challenges to secure. Development teams should

periodically evaluate all legacy systems and balance

the cost of updating them against the potential risks of

causing a security breach. Replacing a legacy system

may not seem cost-effective until the threat of fines in

the billions of dollars or a devastating security breach

destroying public goodwill are included in the equation.

SELECTING A MAINFRAME SYSTEM
GitHub’s partner ecosystem includes many vendors

producing, selling, and maintaining mainframe systems.

For example, IBM recently announced extensions

for Git, the technology underpinning GitHub, that

allow modern DevSecOps practices to be applied to

mainframe development workflows. Find integrations

to power your GitHub.com workflow on GitHub

Marketplace or learn more about which apps work with

our self-hosted solution GitHub Enterprise Server at

github.com/works-with.

GitHub: How people build software

Secure software development strategy essentials — 11

Automate processes to prevent bugs and errors
Manual oversight is a critical component of an

effective, layered security strategy. However,

overreliance on people can be dangerous. People get

tired, become distracted, or simply make mistakes. Put

people to work where their skills are most important,

and delegate repetitive, tedious, yet still critical tasks

to machines. Your team can leverage fully automated

Continuous Integration and Delivery (CI/CD) in your

GitHub workflows.

CI/CD tools test and evaluate your code every single time

a commit is pushed to a repository. With CI/CD in place,

GitHub can test new code with existing production

code to ensure the proposed changes work as intended

and do not introduce security flaws into existing

systems. These tests can also extend to examining all

the code that your code depends on (its dependencies).

Implementing automation isn’t difficult—and it

can yield immediate and measurable results. In a

2017 study, the IEEE found that organizations that

implemented automated dependency management, for

example, had 60 percent fewer security vulnerabilities

in their delivered software than those which did not.

organizations that
implemented automated
dependency management,
for example, had 60 percent
fewer security vulnerabilities
in their delivered software
than those which did not.

GitHub: How people build software

Secure software development strategy essentials — 12

INTEGRATING CI/CD WITH GITHUB
Integrating CI/CD is easy with GitHub, and it won’t affect developers’ existing

workflows unless an automated test result requires them to take action. The

less intrusive automation is for developers, the more likely it is to be widely

adopted and its benefits felt across an organization.

GitHub integrates with a variety of CI tools like Jenkins, Travis, and CircleCI. These

automatically fetch code from a GitHub repository every time code is pushed, run

tests, and return the results to GitHub with either a pass/fail status. They also

return notifications on the status of each test, so developers can see where

their code is failing. And with the Checks API, teams can build sophisticated

custom tools for CI that make feedback seamless and richly informative.

Learn more about the Checks API

You and your team can decide whether or not you’d like the results of CI tests to

prevent code from getting merged into the code base or simply alert developers

without taking action. If CI statuses are required, the pull request can only be

merged when all required CI jobs complete. If you choose to prevent merging,

the pull request can’t be merged until the required tests return successfully.

Integrating security tools and workflows

Hundreds of tools integrate with GitHub—and many of them can

help you keep your code and customer data safe.

• CI: CI tools like Travis CI, CircleCI, and AppVeyor automatically

build and test code as you push it to GitHub, preventing bugs

from being deployed to production

• The Checks API: Teams can create sophisticated custom tools

that report on exactly the data and feedback you need

• Error reporting: Tools like Snyk, Sentry, and Dependabot help

your team find, fix, and prevent vulnerabilities

• Code quality: Code Climate and Codacy automate reviews

with security and quality checks to prevent human error and

streamline your team’s code review processes

Ready to see what kinds of tools are available to your team? Visit

GitHub Marketplace at github.com/marketplace or browse

github.com/works-with

GitHub: How people build software

Secure software development strategy essentials — 13

Require reviews from one or more users

with write access to the repository

containing the changes

Require additional review and

approval by one or more codeowners.

Codeowners can be any combination

of individual users or teams assigned

specific responsibility for a section of

a codebase, a particular technology, or

any combination of the two

Empower reviewers to provide

detailed, line-by-line feedback on

any proposed changes

Ensure that all reviews are logged

and auditable in the future

Enforce manual reviews with required code review
Automation is important, but manual review of code will always remain a critical component of your security

strategy. The more eyes on a given codebase, the more likely errors or vulnerabilities are likely to be detected.

Reviews also serve a valuable function beyond security, helping ensure that institutional knowledge is shared and

providing learning and mentoring opportunities for developers of all skill levels. The result of regular, organization-

sanctioned reviews is a codebase that is not only more secure but also healthier and more consistent.

Three steps to take to
help your team prevent
bugs and errors:

1. Build in automated security

scanning to reduce human error,

test for weaknesses that may not

be introduced otherwise, and save

developers time

2. Integrate automation directly into

your team’s GitHub workflow with

status checks

3. Ensure all of your team members

feel an equal and shared

responsibility for building and

maintaining secure software

GitHub provides a flexible framework for mandating code reviews. You can:

GitHub: How people build software

Secure software development strategy essentials — 14

Audit and compliance-proof your workflow

AUDIT LOGGING:
GitHub Enterprise maintains comprehensive logs of user

and system activity. Audited activity includes every `git

push` operation, including who initiated the push, their IP

address, and repositories affected by the operation. Logs

can be forwarded to an external system (like Logstash

or Splunk) for analysis, reporting, and storage, ensuring

compliance with regulatory requirements

ARCHIVING REPOSITORIES:
Repositories that are no longer maintained can be

archived and set to ‘read-only’ mode. This ensures that no

new code can be committed to the repository while still

allowing users to view its content

BLOCKING FORCE PUSHES:
Git allows developers to rewrite commit history by ‘force

pushing’ changes. While sometimes necessary in order

to fix mistakes, this capability presents a challenge

when regulations require data to be immutable. GitHub

Enterprise allows administrators to block force pushes

for individual repositories or for the entire appliance,

ensuring commit history can never be rewritten

PREVENTING USERS FROM DELETING
REPOSITORIES:
The ability to delete repositories can be restricted

to administrators

The regulatory standards under which some companies work today require a robust logging and auditing

capability. Not only do teams need to create an effective security strategy, they also have to prove they’ve

done so to regulators. GitHub provides flexible and powerful logging, auditing, and reporting frameworks

to help ensure compliance and the ability to prove it.

GitHub: How people build software

Secure software development strategy essentials — 15

Move security all the way left
In the past, security was all too often an afterthought. In fact, the protocols

which run the internet were not designed with security in mind _at all_. Bolted-

on aftermarket security is better than nothing, but far from sufficient in today’s

frenzied threat environment. To be effective, security must be built into every

software project from its very inception. Moving security left means shifting

security from the right-hand side of your timeline, near delivery, all the way to

the left, at the beginning. This ensures that security remains front and center

throughout the entire product lifecycle.

Involving security teams early can also influence design, development, and

maintenance decisions before they become too difficult and expensive

to change. This advice is simple enough, but process means very little if

leadership and engineering teams aren’t on board. Secure development

requires everyone to adopt an effective security culture.

CREATING A SECURITY CULTURE
DevSecOps is a way of thinking about security throughout the development

cycle and distributing it across teams and roles. It no longer makes sense for

security teams to join the process after an application is built, only to discover

exploitable flaws. With security experts closely aligned from the start, teams can

create collaborative processes that proactively support security as they build.

DevSecOps principles may require organizations to shift their team culture in

addition to their infrastructure, but more reliable software and fewer surprises

are worthwhile results. Some companies even invite security specialists into

scrum teams to make sure it’s a priority throughout the process.

GitHub: How people build software

Secure software development strategy essentials — 16

Customer story:
Anaplan

Anaplan helps businesses make smart, data-driven

decisions with advanced modeling software. With

a focus on speed, flexibility, and integrity, Anaplan

supports planning at more than 500 companies—

helping them stay nimble, discover opportunities, and

plan for their futures.

Behind its smart platform is a huge amount of data.

Anaplan's 150+ developers need to create a platform

that’s both flexible enough to make that data

meaningful to businesses across industries, while

ensuring that data is secure enough to keep it private.

Their customers trust Anaplan to store sensitive

financial plans in its own data centers. As a result,

the company has rigorous compliance and security

requirements in place to ensure the safety and privacy

of regulated financial data.

To help their teams build a flexible, forward-thinking

platform, Anaplan uses GitHub Enterprise Server.

“Compliance is a very big deal, and we
built a lot of tooling to make sure we’re
bulletproof. All commits are tagged
with JIRA IDs that link everything
together, including all of our developer
tools. GitHub has made a huge impact
on compliance, while helping us
become more transparent."

JON SANDLES,
Release Manager, Anaplan

GitHub: How people build software

Secure software development strategy essentials — 17

At the heart of the Anaplan’s build and deployment pipelines are a set of

automated tools that leverage the GitHub Enterprise API to regularly query

and poll, and produce reports and alerts across all repositories. These keep

the product team in tune with what's going on by emailing developers, creating

reports in Confluence, and updating JIRA and Slack channels.

Product Managers are informed if code is checked into the wrong repositories

against incorrect JIRA projects. Engineers are kept informed if pull requests

are left open for too long. Code is scanned continuously by tools like Sonar and

Checkmarx; deployment appliances like Chef scripts get the same treatment.

Everything that goes to production follows the same pipelines.

At any point in time, especially near production deployment, the release

and program management team are fully up to date on codebase compliance

and readiness.

Four key features convinced Anaplan that
GitHub offered the best solution:

1. Protected branches: Developers can ensure code

that processes data comes from a known source and

gets reviewed

2. Hard tokens: Developers can keep access tightly

controlled by using two-factor authentication with hard

tokens behind a VPN

3. JIRA integration: Developers can attach all pull requests

and commit comments to JIRA IDs that document whether

changes are approved and tested

4. Documentation versioning: Programmers can create and

host documentation as close as possible to the applications

5. Security: the platform is hosted on internal servers;

Enterprise Server uses the enterprise directory to manage

authentication and logs all user and system activity

GitHub: How people build software

Secure software development strategy essentials — 18

Summary
Keeping data safe has never been more critical

to the success, even survival of your business.

Implementing effective security might seem

overwhelming, but it doesn’t have to be. One of the

advantages of a layered defense is to break up the

task of implementing security into multiple, less

daunting sub-projects. The most important thing to

do is to start, or if you’ve started, continue to test,

examine, question, and improve. Attackers never

rest, and neither can you.

Part of the challenge in implementing effective

security lies in balancing it with the freedom that

software developers need to innovate, thrive, and be

productive. Too little security is simply ineffective.

Too much, on the other hand, can stifle creativity

or encourage people to avoid your security

efforts altogether. Tools like GitHub provide

you with the controls you need to help find that

balance for your organization.

Ultimately our goal is to help you transform your

perception of security beyond a threat and into

an opportunity to build customer satisfaction,

attract new customers, and further differentiate

your business. Good security pays off in customer

trust—and partners like GitHub can help you on

your way to an effective security strategy.

GitHub: How people build software

We’re here to help

GitHub supports building robust, secure code. Ready to explore

how GitHub fits into your secure development process?

Ready to try GitHub?
Get started today.

1. Your data are under constant attack. A breach can have very serious

consequences for your business and, increasingly, for you personally

2. There is no magic fix for security. Instead, a layered defense

comprised of multiple tools, processes, and practices is much more

resilient and effective

3. Effective security requires an effective security culture. Security

must be a stakeholder in every important initiative and decision

4. Encrypt everything—no exceptions

5. Use a multi-layered approach to vet and validate all data entering

your systems to prevent malicious attacks like SQL injection

6. Plan for and include older, but still mission-critical systems like

mainframes. Include the possible costs in terms of fines, civil liability,

and lost goodwill when evaluating and upgrading legacy tools

7. Leverage automation where you can, particularly for software testing

Key takeaways:

GitHub: How people build software

