
Amazon Bedrock
User Guide

Amazon Bedrock User Guide

Amazon Bedrock: User Guide
Copyright © 2023 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon Bedrock User Guide

Table of Contents
What is Amazon Bedrock? 1

Access the Amazon Bedrock models ... 1
Features of Amazon Bedrock 1
Supported models in Amazon Bedrock 2
Supported Regions 3
Amazon Bedrock pricing 3

Set up 4
Add model access 4
Console access 4
Sign up for an AWS account 4
Create an administrative user ... 5
Set up the AWS CLI ... 5
Grant programmatic access 5

Model access 7
Manage model access 4
Edit model access 7
Add model access 7
Remove model access 8

Settings 9
Model invocation logging 9

Set up an Amazon S3 destination 9
Set up CloudWatch Logs destination 10
Using the console 11
Using APIs with invocation logging 12

Use the console 13
Base models ... 13

View and group models ... 13
Filter and search models ... 14
View model provider details ... 14
Request access to base models ... 14

Text playground 14
Submit a prompt to a text model ... 15
Interact with the prompt and generated text ... 15
Re-run a query 16
Use advanced prompts 16
Adjust the model parameters ... 16
Select a different model ... 16

Chat playground 16
Submit a prompt to a chat model ... 17
Update the chat instructions 17
Use advanced prompts 17
Adjust the inference configuration 18
Select a different model ... 18

Image playground 18
Submit a prompt to a model ... 18
Adjust the model parameters ... 19

Examples library 19
Use the API ... 20

API setup 20
Amazon Bedrock endpoints ... 20
Setting up the AWS CLI ... 21
AWS SDK setup 21
Using SageMaker notebooks 21

API operations 23

iii

Amazon Bedrock User Guide

List the base models ... 23
Get details about a base model ... 23
Run inference 24
Tag resources 29

Inference parameters ... 31
Inference parameter definitions 31

Randomness and diversity ... 31
Length 32
Repetitions 32

Amazon Titan models ... 32
Randomness and Diversity ... 32
Length 33
Model invocation request body field 33
Model invocation response body field 33

Anthropic Claude models ... 34
Randomness and diversity ... 34
Length 34
Model invocation request body field 35
Model invocation response body field 35

AI21 Labs Jurassic-2 models ... 35
Randomness and Diversity ... 35
Length 36
Repetitions 36
Model invocation request body field 36
Model invocation response body field 37

Cohere models ... 37
Cohere Command models ... 38
Cohere Embed models ... 40

Meta Llama 2 Chat 13B model ... 42
Randomness and diversity ... 42
Length 42
Model invocation request body field 42
Model invocation response body field 42

Stability.ai Diffusion models ... 43
Model invocation request body field 43
Model invocation response body field 44

Prompt engineering guidelines 45
Introduction 45
What is a prompt? 45

Components of a prompt 46
Few-shot prompting vs. zero-shot prompting 47
Prompt template 48
Important notes on using Amazon Bedrock LLMs by API calls ... 49

What is prompt engineering? 49
General guidelines for Amazon Bedrock LLM users ... 50

Design your prompt 50
Use hyperparameters ... 51
Detailed guidelines 51
Optimize prompts for text models on Amazon Bedrock—when the basics aren't good enough 55

Prompt templates and examples for Amazon Bedrock text models ... 58
Text classification 58
Question-answer, without context ... 60
Question-answer, with context ... 62
Summarization 65
Text generation 66
Code generation 68
Mathematics ... 70

iv

Amazon Bedrock User Guide

Reasoning/logical thinking 70
Embeddings 73
Custom models ... 74

Fine-tuning 74
Prepare the datasets ... 74
Using the console 75

Submit a job 75
Monitor the job 76
Stop a job 77
Analyze the job results ... 77
Use a fine-tuned model for inference 78

Using the API ... 78
Set up an IAM role for model customization 79
Submit a job 81
Monitor a job 84
Stop a job 85
Analyze a job 85
Retrieve information about your customized models ... 86

Guidelines 87
Size of the input training dataset ... 87
Model size 87
Epochs 87
Batch size 87
Learning rate 88
Learning warmup steps 88

Troubleshooting 88
Permissions issues 88
Data issues 89
Internal error ... 89

Provisioned Throughput 90
Model IDs 91
Procedures 91

Creating 91
Updating 91
Deleting 91
Running inference 92

Permissions 92
Console procedures 92

View Provisioned Throughput summary 92
Purchase Provisioned Throughput 92
View details of a Provisioned Throughput 93
Edit a Provisioned Throughput 94
Delete a Provisioned Throughput 94

API operations 94
Create Provisioned Throughput 94
Run inference using Provisioned Throughput 95
Update Provisioned Throughput 96
Get Provisioned Throughput 97
Delete Provisioned Throughput 97
List Provisioned Throughput resources 98

Agents for Amazon Bedrock 99
Building a knowledge base 100

Create a service role and configure IAM permissions 101
Set up your data for ingestion 105
Create a knowledge base 108
Manage a knowledge base 111
Add a knowledge base to an agent 111

v

Amazon Bedrock User Guide

Building an agent 112
Create a service role and configure IAM permissions 112
Create an agent 115
Edit your agent 119

Test your agent 121
Trace enablement 122

Deploying an agent: versioning and aliases 124
Using the API ... 125

Invoke your agent 125
How Bedrock Agent works with IAM 126

Identity-based policies ... 127
Resource-based policies ... 127
Policy actions 128
Policy resources 128
Policy condition keys 129
ACLs 129
ABAC 129
Temporary credentials ... 130
Principal permissions 130
Service roles ... 130
Service-linked roles ... 131
Identity-based policy examples for Bedrock Agent 131

Tag resources 136
Use the console 136
Use APIs ... 137
Tag restrictions 137

Security ... 138
Data protection 138

Data encryption 140
Use VPC 142

Identity and access management 147
Audience 147
Authenticating with identities ... 148
Managing access using policies ... 150
How Amazon Bedrock works with IAM 151
Identity-based policy examples 156
Service role 161
Troubleshooting 161

Compliance validation 162
Incident response 163
Resilience 163
Infrastructure security ... 163
Cross-service confused deputy prevention 164
Configuration and vulnerability analysis in Amazon Bedrock 165

Monitor Amazon Bedrock 166
Monitor with CloudWatch 166

Runtime metrics ... 166
Logging CloudWatch metrics ... 167
Use CloudWatch metrics for Amazon Bedrock 167
View Amazon Bedrock metrics ... 167

Monitor events 168
How it works 168
EventBridge schema 169
Rules and targets ... 170
Create a rule to handle AWS Bedrock events 170

CloudTrail logs 171
Amazon Bedrock information in CloudTrail .. 171

vi

Amazon Bedrock User Guide

Understanding Amazon Bedrock log file entries ... 172
Abuse detection 174
AWS PrivateLink 175

Considerations 175
Create an interface endpoint ... 175
Create an endpoint policy 176

Quotas 177
Runtime quotas 177
Model customization quotas 177

Model quotas 178
Fine-tuning quotas 178
Training quotas 178

Provisioned Throughput quotas 178
Document history 180
AWS Glossary 181

vii

Amazon Bedrock User Guide
Access the Amazon Bedrock models

What is Amazon Bedrock?
Amazon Bedrock is a fully managed service that makes base models from Amazon and third-party model
providers accessible through an API.

Topics
• Access the Amazon Bedrock models (p. 1)
• Features of Amazon Bedrock (p. 1)
• Supported models in Amazon Bedrock (p. 2)
• Supported Regions (p. 3)
• Amazon Bedrock pricing (p. 3)

Access the Amazon Bedrock models
Important
You must request access to a model before you can use it. If you try to use the model (with the
API or console) before you have requested access to it, you receive an error message. For more
information, see Model access (p. 7).

Features of Amazon Bedrock
With Amazon Bedrock, you can explore the following capabilities:

• Text playground – A hands-on text generation application in the AWS Management Console.
• Image playground – A hands-on image generation application in the console.
• Chat playground – A hands-on conversation generation application in the console.
• Examples library – Example use cases to load.
• Amazon Bedrock API – Explore with the AWS CLI, or use the API to access the base models.
• Embeddings – Use the API to generate embeddings from the Titan Embeddings G1 - Text model.
• Provisioned Throughput – Purchase throughput to run inference on models at discounted rates.

Note

Note
Provisioned throughput is currently available for the following models.

Model name Model ID for provisioned throughput

Titan Text G1 - Express 8K amazon.titan-text-express-v1:0:8k

Titan Embeddings G1 - Text amazon.titan-embed-text-v1:2:8k

Anthropic Claude V2 18K anthropic.claude-v2:0:18k

Anthropic Claude V2 100K anthropic.claude-v2:0:100k

Anthropic Claude Instant V1 100K anthropic.claude-instant-v1:2:100K

Stable Diffusion XL 1.0 stability.stable-diffusion-xl-v1:0

1

Amazon Bedrock User Guide
Supported models in Amazon Bedrock

Model name Model ID for provisioned throughput

Meta Llama 2 Chat 13B meta.llama2-13b-chat-v1:0:4k

Note
Stable Diffusion XL 1.x is only available with provisioned throughput. For more
information, see Provisioned Throughput (p. 90). Stable Diffusion XL 0.x is a
preview release.

• Fine-tuning – Create a training dataset and fine-tune an Amazon Bedrock model.

Note
To use fine-tuning, you must have access to the Amazon Titan Text G1 - Express model. The
Amazon Titan Text G1 - Express model is in limited preview. To request access, contact your
AWS account manager.

• Model invocation logging – Collect invocation logs, model input data, and model output data for all
invocations in your AWS account used in Amazon Bedrock.

The following capabilities are in limited preview release. To request access, contact your AWS account
manager.

• Agents for Amazon Bedrock – Build agents to perform orchestration and carry out tasks for your
customers.

• Knowledge base for Amazon Bedrock – Draw from data sources to help your agent find information
for your customers.

Supported models in Amazon Bedrock
For details about the Amazon Bedrock model providers and their models and model IDs see the Base
models pages in the Amazon Bedrock console. You can also use the ListFoundationModels (p. 23) API
operation to retrieve information about the current list of models.

Amazon Bedrock supports the following models:

• AI21 Labs
• Jurassic-2 Ultra
• Jurassic-2 Mid

• Amazon
• Titan Text G1 - Express
• Titan Embeddings G1 - Text

Note
The Amazon Titan Text G1 - Express model is in limited preview release. Access will be granted
on an ongoing basis.

• Anthropic
• Claude v1.x
• Claude v2.x
• Claude Instant v1.x

• Cohere
• Command v14.7
• Command Light v14.7
• Embed English v3.0

2

Amazon Bedrock User Guide
Supported Regions

• Embed Multilingual v3.0
• Meta

• Llama 2 Chat 13B
• Stability.ai

• Stable Diffusion XL 0.x
• Stable Diffusion XL 1.x

Note
Stable Diffusion XL 1.x is only available with provisioned throughput. For more information,
see Provisioned Throughput (p. 90). Stable Diffusion XL 0.x is a preview release.

For additional information about these models, see the following links:

• Anthropic documentation.
• AI21 Studio documentation.
• Cohere documentation.
• Meta documentation.
• Stability.ai documentation.

Supported Regions
Amazon Bedrock is available in the following AWS Regions:

• US East (N. Virginia)
• US West (Oregon)
• Asia Pacific (Singapore)
• Asia Pacific (Tokyo)
• Europe (Frankfurt)

Amazon Bedrock pricing
When you sign up for AWS, your AWS account is automatically signed up for all services in AWS,
including Amazon Bedrock. However, you are charged only for the services that you use.

To see your bill, go to the Billing and Cost Management Dashboard in the AWS Billing and Cost
Management console. To learn more about AWS account billing, see the AWS Billing User Guide. If you
have questions concerning AWS billing and AWS accounts, contact AWS Support.

With Amazon Bedrock, you pay to run inference on any of the third-party foundation models. Pricing
is based on the volume of input tokens and output tokens, and on whether you have purchased
provisioned throughput for the model. For more information, see the Model providers page in the
Amazon Bedrock console. For each model, pricing is listed following the model version. For more
information about purchasing Provisioned Throughput, see Provisioned Throughput (p. 90).

For more information, see Amazon Bedrock Pricing.

3

https://console.anthropic.com/docs
https://docs.ai21.com/
https://docs.cohere.com/docs
https://ai.meta.com/llama/get-started
https://platform.stability.ai/docs/getting-started
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://aws.amazon.com/contact-us/
https://console.aws.amazon.com/bedrock/home#/providers
http://aws.amazon.com/bedrock/pricing

Amazon Bedrock User Guide
Add model access

Set up Amazon Bedrock
Before you use Amazon Bedrock for the first time, complete the following tasks.

Setup tasks
• Add model access (p. 4)
• Console access (p. 4)
• Sign up for an AWS account (p. 4)
• Create an administrative user (p. 5)
• Set up the AWS CLI (p. 5)
• Grant programmatic access (p. 5)

Add model access
Important
You must request access to a model before you can use it. If you try to use the model (with the
API or console) before you have requested access to it, you receive an error message. For more
information, see Model access (p. 7).

Console access
To access the Amazon Bedrock console and playground:

1. Sign in to your AWS account.
2. Navigate to: Amazon Bedrock console

You can also access the Amazon Bedrock console in US East (N. Virginia), US West (Oregon) and Asia
Pacific (Singapore).

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user has access
to all AWS services and resources in the account. As a security best practice, assign administrative
access to an administrative user, and use only the root user to perform tasks that require root user
access.

4

https://console.aws.amazon.com/bedrock
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Bedrock User Guide
Create an administrative user

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can view
your current account activity and manage your account by going to https://aws.amazon.com/ and
choosing My Account.

Create an administrative user
After you sign up for an AWS account, create an administrative user so that you don't use the root user
for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and entering
your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User Guide.
2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in the IAM
User Guide.

Create an administrative user

• For your daily administrative tasks, grant administrative access to an administrative user in AWS IAM
Identity Center.

For instructions, see Getting started in the AWS IAM Identity Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in the
AWS Sign-In User Guide.

Set up the AWS CLI
You don't need the AWS Command Line Interface (AWS CLI) to use Amazon Bedrock. If you prefer, you
can skip this step and set up the AWS CLI later.

To install and configure the AWS CLI

1. Install the AWS CLI. For instructions, see Installing or updating the latest version of the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

2. Configure the AWS CLI. For instructions, see Configuring the AWS Command Line Interface in the
AWS Command Line Interface User Guide.

Grant programmatic access
Users need programmatic access if they want to interact with AWS outside of the AWS Management
Console. The way to grant programmatic access depends on the type of user that's accessing AWS.

5

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Bedrock User Guide
Grant programmatic access

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM Identity
Center)

Use temporary credentials to
sign programmatic requests to
the AWS CLI, AWS SDKs, or AWS
APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS CLI to
use AWS IAM Identity Center
in the AWS Command Line
Interface User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in the
AWS SDKs and Tools Reference
Guide.

IAM Use temporary credentials to
sign programmatic requests to
the AWS CLI, AWS SDKs, or AWS
APIs.

Following the instructions in
Using temporary credentials
with AWS resources in the IAM
User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests to
the AWS CLI, AWS SDKs, or AWS
APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface User
Guide.

• For AWS SDKs and tools, see
Authenticate using long-term
credentials in the AWS SDKs
and Tools Reference Guide.

• For AWS APIs, see Managing
access keys for IAM users in
the IAM User Guide.

6

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Bedrock User Guide
Manage model access

Model access
Amazon Bedrock users need to request access to models before they are available for use. If you want
to add additional models for text, chat, and image generation, you need to request access to models in
Amazon Bedrock. To request access to additional models, select the Model access link in the left side
navigation panel in the Amazon Bedrock console.

Topics
• Manage model access (p. 4)
• Edit model access (p. 7)
• Add model access (p. 7)
• Remove model access (p. 8)

Manage model access
The account does not have access to models by default. Admin users with IAM access permissions can
add access to specific models using the model access page. After the admin adds access to models, those
models are available for all users of the account.

Charges are accrued when the models are used in Amazon Bedrock. You can review the End User License
Agreement (EULA) by selecting the link for each model.

To add or remove model access, select Manage model access.

Edit model access
You can request access to models to use them in Amazon Bedrock. This page lists base models of LLMs to
text, image, and embedding models. You can review your status to see which models you have access to.
The modality lists whether the model is used for text, embedding, or images.

Add model access
You can add access to a model in Amazon Bedrock with the following steps:

1. Open the Amazon Bedrock console at Amazon Bedrock console
2. Go to the Model access link in the left side navigation panel in Amazon Bedrock, or go to the Edit

model access page.
3. Select the check box next to the model you want to add access to. For Anthropic models, you must

also request access when you click the Request access button. Models are not available as a default
setting in Amazon Bedrock.

4. Select Confirm to add access to any third party models through Amazon Marketplace. Note: Your
use of Amazon Bedrock and it's models is subject to the seller's pricing terms, EULA and the Amazon
Bedrock service terms.

5. Select the Save Changes button in the lower right corner of the page. It may take several minutes to
save changes to the Model access page.

6. Models will show as Available on the Model access page under Access status, if access is granted.

7

https://console.aws.amazon.com/bedrock

Amazon Bedrock User Guide
Remove model access

Some users may not have IAM permissions to add access to models. A banner message will appear if you
try to add access to models and you are a non-admin user on your account. You will need to contact your
account administrator to request that they add access to the models before you can use them in Amazon
Bedrock.

When you have access to the model, you can select it using the View model access button or the Edit
model access page. Accounts do not have access to Amazon models by default.

Remove model access
When you are using Amazon Bedrock, you may decide to use only certain models for your work, and to
remove access to models you are no longer using. You can remove access to a model in Amazon Bedrock
with the following steps:

1. Open the Amazon Bedrock console at https://us-east-1.console.aws.amazon.com/bedrock/home?
region=us-east-1#/.

2. Go to the Model access link in the left side navigation panel in Amazon Bedrock, or go to the Edit
model access page.

3. Deselect the check box next to the model you want to remove access.
4. Select the Save changes button at the bottom right corner of the page.
5. You will be prompted to confirm you want to remove access to models. You cannot remove access to

models if there are resources using those models.
6. Users must remove the associations to the model listed in the information window in order to

remove access. You can select the link next to the resource name to go to the location, and remove
access to the model for that resource. Repeat this step for each item listed as a dependent resource.

7. Once you have removed access all the resources listed, select Okay to complete the remove access
step.

8. Once completed, you will see a banner message that confirms the action was completed
successfully.

8

https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/

Amazon Bedrock User Guide
Model invocation logging

Settings
You can manage your account level settings for Amazon Bedrock in the Settings page. The settings
include data logs, data permissions, and model access.

To access settings, go to the bottom of the left-side navigation pane in Amazon Bedrock, and select
Settings.

Topics
• Model invocation logging (p. 9)

Model invocation logging
Model invocation logging can be used to collect invocation logs, model input data, and model output
data for all invocations in your AWS account used in Amazon Bedrock. By default, logging is disabled.

With invocation logging, you can collect the full request data, response data, and metadata associated
with all calls performed in your account. Logging can be configured to provide the destination resources
where the log data will be published. Supported destinations include Amazon CloudWatch Logs and
Amazon Simple Storage Service (Amazon S3). Only destinations from the same account and region are
supported.

Before you can enable invocation logging, you need to set up an Amazon S3 or CloudWatch Logs
destination. You can enable invocation logging through either the console or the API.

Topics
• Set up an Amazon S3 destination (p. 9)
• Set up CloudWatch Logs destination (p. 10)
• Using the console (p. 11)
• Using APIs with invocation logging (p. 12)

Set up an Amazon S3 destination
You can set up an S3 destination for logging in Amazon Bedrock with these steps:

1. Create an S3 bucket where the logs will be delivered.
2. Add a bucket policy to it like the one below (Replace values for accountId, region, bucketName,

and optionally prefix):

Note
A bucket policy is automatically attached to the bucket on your behalf when you configure
logging with the permissions S3:GetBucketPolicy and S3:PutBucketPolicy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AmazonBedrockLogsWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },

9

Amazon Bedrock User Guide
Set up CloudWatch Logs destination

 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucketName/prefix/AWSLogs/accountId/BedrockModelInvocationLogs/*"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountId"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:bedrock:region:accountId:*"
 }
 }
 }
]
}

3. (Optional) If configuring SSE-KMS on the bucket, add the below policy on the KMS key:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountId"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:bedrock:region:accountId:*"
 }
 }
}

For more information on S3 SSE-KMS configurations, see Specifying KMS Encryption.

Note
The bucket ACL must be disabled in order for the bucket policy to take effect. For more
information, see Disabling ACLs for all new buckets and enforcing Object Ownership.

Set up CloudWatch Logs destination
You can set up a Amazon CloudWatch Logs destination for logging in Amazon Bedrock with the
following steps:

1. Create a CloudWatch log group where the logs will be published.
2. Create an IAM role with the following permissions for CloudWatch Logs.

Trusted entity:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"

10

https://docs.aws.amazon.com/AmazonS3/latest/userguide/specifying-kms-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ensure-object-ownership.html

Amazon Bedrock User Guide
Using the console

 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountId"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:bedrock:region:accountId:*"
 }
 }
 }
]
}

Role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:region:accountId:log-group:logGroupName:log-
stream:aws/bedrock/modelinvocations"
 }
]
}

For more information on setting up SSE for CloudWatch Logs, see Encrypt log data in CloudWatch Logs
using AWS Key Management Service.

Using the console
To enable model invocation logging, drag the slider button next to the Logging toggle switch in the
Settings page. Additional configuration settings for logging will appear on the panel.

Choose which data requests and responses you want to publish to the logs. You can choose any
combination of the following output options:

• Text
• Image
• Embedding

Choose where to publish the logs:

• Amazon S3 only
• CloudWatch Logs only
• Both Amazon S3 and CloudWatch Logs

Amazon S3 and CloudWatch Logs destinations are supported for invocation logs, and small input and
output data. For large input and output data or binary image outputs, only Amazon S3 is supported. The
following details summarize how the data will be represented in the target location.

11

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

Amazon Bedrock User Guide
Using APIs with invocation logging

• S3 destination — Gzipped JSON files, each containing a batch of invocation log records, are delivered
to the specified S3 bucket. Similar to a CloudWatch Logs event, each record will contain the invocation
metadata, and input and output JSON bodies of up to 100 KB in size. Binary data or JSON bodies
larger than 100 KB will be uploaded as individual objects in the specified Amazon S3 bucket under
the data prefix. The data can be queried using Amazon S3 Select and Amazon Athena, and can be
catalogued for ETL using AWS Glue. The data can be loaded into OpenSearch service, or be processed
by any Amazon EventBridge targets.

• CloudWatch Logs destination — JSON invocation log events are delivered to a specified log group
in CloudWatch Logs. The log event contains the invocation metadata, and input and output JSON
bodies of up to 100 KB in size. If an Amazon S3 location for large data delivery is provided, binary data
or JSON bodies larger than 100 KB will be uploaded to the Amazon S3 bucket under the data prefix
instead. data can be queried using CloudWatch Logs Insights, and can be further streamed to various
services in real-time using CloudWatch Logs.

Using APIs with invocation logging
Model invocation logging can be configured using the following APIs:

• PutModelInvocationLoggingConfiguration
• GetModelInvocationLoggingConfiguration
• DeleteModelInvocationLoggingConfiguration

For more information on how to use APIs with invocation logging, see the Bedrock API Guide.

12

Amazon Bedrock User Guide
Base models

Use the Amazon Bedrock console
The Amazon Bedrock console provides the following capabilities and features:

• From the Base models page under Foundation models, you can view the available models and group
them by various attributes. You can also filter the model view, search for models, and view information
about the model providers.

• After you select a model, you can open the model to experiment with it in the Text playground, Image
playground, or Chat playground.

• Amazon Bedrock provides example prompts for each of the supported models. The Examples page
displays up to 20 examples for each model provider. You can filter the list of examples using one or
more attributes.

Important
You must request access to a model before you can use it. If you try to use the model (with the
API or console) before you have requested access to it, you receive an error message. For more
information, see Model access (p. 7).

Topics

• Base models (p. 13)

• Text playground (p. 14)

• Chat playground (p. 16)

• Image playground (p. 18)

• Examples library (p. 19)

Base models
Amazon Bedrock supports base models from Amazon and third-party model providers.

From the Amazon Bedrock console, you can view the available models and group them by various
attributes. You can also filter the model view, search for models, and view information about the model
providers.

After you select a model, you can choose Open in playground to experiment with the model.

Topics

• View and group models (p. 13)

• Filter and search models (p. 14)

• View model provider details (p. 14)

• Request access to base models (p. 14)

View and group models
You can list models and view model details using the Amazon Bedrock console.

13

Amazon Bedrock User Guide
Filter and search models

1. From the Amazon Bedrock console, choose Base models under Foundation models.

2. You can view the models in a list view or a card view and group them by model family, by model
provider, or by model modality (text, image, or embedding).

Filter and search models
You can filter models by model name, provider, by modality, or by model attributes.

You can set multiple filters. You can also start by entering text in the text box. The console displays all
the possible filter values that match the text.

1. From the Amazon Bedrock console, choose Base Models under Foundation models.

2. To set a filter, choose the Find resource text box to display the filter properties.

3. Select the desired property, the operator for the filter, then enter the value to filter by.

View model provider details
To view model provider details using the Amazon Bedrock console, choose Model providers under
Foundation models.

As an alternative, from the Base models page, select View provider details under a provider name.

Choose one of the tabs near the top of the Model providers page to view details about that model
provider. The page displays the following information about the provider:

• Provider overview – An overview description about the provider.

• Models – A tabbed list of available models. When you choose one of the models, you can open the
model in the playground.

• Content limitations – Details about the content policy for the provider.

Request access to base models
Important
You must request access to a model before you can use it. If you try to use the model (with the
API or console) before you have requested access to it, you receive an error message. For more
information, see Model access (p. 7).

Text playground
From the Amazon Bedrock console, choose Playgrounds and then Text to view the text playground.

You can also navigate directly to the playground when you choose a model from a model details page or
the examples page.

Topics
• Submit a prompt to a text model (p. 15)

• Interact with the prompt and generated text (p. 15)

• Re-run a query (p. 16)

• Use advanced prompts (p. 16)

14

Amazon Bedrock User Guide
Submit a prompt to a text model

• Adjust the model parameters (p. 16)
• Select a different model (p. 16)

Submit a prompt to a text model
The following procedure shows how to use the text playground to submit a prompt to a text model.

1. Open the Amazon Bedrock console.
2. From the left-side menu, choose Text under Playgrounds.
3. Set up the text playground.

a. You can toggle on the following options in the top-right corner:

• Streaming – Generate text in real-time. This option is only available for models that support
streaming.

b. From the dropdown menu above the text panel, select a model provider. After you select
a provider, select a model from the model dropdown menu. The dropdown menu lists the
available models from this provider. You can also select a model that you have customized
(for more information, see Use a fine-tuned model for inference (p. 78). If you select a
customized model, you must have set up Provisioned Throughput for it beforehand.

c. (Optional) Adjust the Inference configurations. The default settings are optimal for most
prompts, but might not work well for your use case. You can restore the default settings by
choosing the Reset button. For more information, see Inference parameters for foundation
models (p. 31).

4. Enter your own prompt into the text field. A prompt is a natural language command, such as write
a blog post about computers.

5. Under the input panel, choose Run to generate a text response.

Note
If the response violates the content moderation policy, Amazon Bedrock does not display it.
If you have turned on streaming, Amazon Bedrock clears the entire response if it generates
content that violates the policy. For more details, navigate to the Amazon Bedrock console,
select Providers, and read the text under the Content limitations section.

Interact with the prompt and generated text
The generated text appears under your prompt in green text. Amazon Bedrock returns common
markdown and tables in a rich text view. If you turn on streaming, you can't interact with the text until
Bedrock finishes generating it. Interact with the prompt that you provided and the generated response in
the following ways:

1. If the response is not to your satisfaction, you can edit the text directly. To interact with tables, code,
and rich text in the response, use the icons at the upper-right of these objects:

• Edit – Select the pencil icon to revert the table or code to plain text format for editing.
• Copy – Select the copy icon to copy the object in plain text format.

2. Use the icons next to the Run button to undo and redo edits you have made.
3. Use the icons under the generated text to carry out the following actions:

• Copy – Select the copy icon to copy the response as plain text.
• Delete – Select the trash can icon to delete the latest model response.

4. After you experiment with the models, choose View API request to view the equivalent API request.
You can copy this code into your application.

15

Amazon Bedrock User Guide
Re-run a query

Re-run a query
You can modify the prompt and then re-run the query. Edit the prompt or response text, and then
choose Run. After you edit the response text, the console changes the text color to black. The console
displays the new response as green text.

Use advanced prompts
A prompt can consist of a simple command without any additional context, such as the example write
a blog post about computers. These prompts are known as zero-shot prompts.

To improve the precision of the output, you can provide a few examples of the type of output you desire
in the prompt. This is known as few-shot prompting (or few-shot learning).

In the following example, the first two sequences include the input text and the desired response. The
last sequence is asking the model to answer in a similar format as the first two sequences.

Input: I love going to the mall
Sentiment: Happy
Input: I don't like going to the dentist.
Sentiment: Sad
Input: I enjoy the park
Sentiment:

In general, large language models work to predict the next logical word in a given sequence. How you
prompt the model influences the model to produce a specific style of result.

Adjust the model parameters
When you choose a provider and model in the playground, the console loads the inference configuration
parameters that apply to the selected model and sets their default values.

When you adjust the inference parameter settings, the model generates text that can differ in context,
style, relevance, and length. Changing the parameter settings usually involves some trial and error to get
the desired results.

For information about the inference parameters that each model supports, see Inference parameters for
foundation models (p. 31).

Select a different model
You can select a different model provider and model from the dropdown menus at the top of the page.
The console sets the inference configuration parameters to the default values for the model that you
select.

Chat playground
From the Amazon Bedrock console, choose Playgrounds and then Chat to view the chat playground.

You can also navigate directly to the playground when you choose a model from a model details page or
the examples page.

Topics
• Submit a prompt to a chat model (p. 17)

16

Amazon Bedrock User Guide
Submit a prompt to a chat model

• Update the chat instructions (p. 17)
• Use advanced prompts (p. 17)
• Adjust the inference configuration (p. 18)
• Select a different model (p. 18)

Submit a prompt to a chat model
The following procedure shows how to use the chat playground to submit a prompt to a chat model:

1. Open the Amazon Bedrock console.
2. From the left-side menu, choose Chat under Playgrounds.
3. Set up the chat playground.

a. From the dropdown menu above the text panel, select a model provider. After you select
a provider, select a model from the model dropdown menu. The dropdown menu lists the
available models from this provider. You can also select a model that you have customized (for
more information, Use a fine-tuned model for inference (p. 78)). If you select a customized
model, you must have set up Provisioned Throughput for it beforehand.

b. You can toggle on the following options in the top-right corner:

• Streaming – Generate chat in real-time. This option isn't available if the model selected
doesn't support streaming.

4. Select Add instructions to , then choose Update. In the Response panel, the console displays the
response from the model.

5. Enter your own prompt into the text field. A prompt is a natural language phrase or command, such
as Tell me about the best restaurants to visit in Seattle.

Note
If the response violates the content moderation policy, Amazon Bedrock doesn't display it.
If you have turned on streaming, Amazon Bedrock clears the entire response if it generates
content that violates the policy. For more details, navigate to the Amazon Bedrock console,
select Providers, and read the text under the Content limitations section.

Update the chat instructions
You can modify the instructions and then update the chat model with the new instructions. Choose
Update to edit the instructions to the model, and then choose Confirm after you make changes.

For example, you can add instructions to guide the personality and tone of the model responses. At any
time, you can adjust the instructions to the model and re-run your prompt. This is useful when designing
the conversation experience that users will have with the chat model.

Use advanced prompts
A prompt can consist of a simple command without any additional context, such as the example Tell
me about the best car to buy. These prompts are known as zero-shot prompts.

To improve your prompt, you can provide a few examples of the type of output you desire. This is known
as few-shot prompting (or few-shot learning).

For example, you can use a more complex prompt such as Tell me about the best car to buy.
Give me a numbered list with the top 5 options. Include information on pricing,
fuel efficiency, consumer ratings, and comfort of design. List the sources used

17

Amazon Bedrock User Guide
Adjust the inference configuration

for each item in the list. hybrid or electric technology used. Order the list
so that the most desirable option is listed first.

Adjust the inference configuration
When you choose a provider and model in the playground, the console loads the inference configuration
parameters that apply to the selected model and sets their default values.

When you adjust the inference parameter settings, the model generates text that can differ in context,
style, relevance, and length. Changing the parameter settings usually involves some trial and error to get
the desired results. To adjust the inference parameters, select the Update link in the bottom right of the
chat window, and then choose Confirm after you make adjustments.

For information about the inference parameters that each model supports, see Inference parameters for
foundation models (p. 31).

Select a different model
You can select a different model provider and model from the dropdown menus at the top of the page.
The console sets the inference configuration parameters to the default values for the model that you
select.

Image playground
From the Amazon Bedrock console, choose Playgrounds and then Image to view the image playground.

You can also navigate directly to the image playground after you choose a model from a model details
page or the examples page.

Topics
• Submit a prompt to a model (p. 18)
• Adjust the model parameters (p. 19)

Submit a prompt to a model
The following procedure shows how to use the image playground to submit a prompt to a text-to-image
model.

1. Open the Amazon Bedrock console.
2. From the left-side menu, choose Image under Playgrounds.
3. From the dropdown menu above the text panel, select a model provider. After you select a provider,

select a model from the model dropdown menu. The dropdown menu lists the available models
from this provider.

4. Enter text into the Prompt field, or use one of the example prompts. A prompt is a natural language
command, such as Draw a picture of a computer.

5. (Optional) Adjust the Inference configurations. The default settings are generally optimal but might
not work for your use case. You can restore the default settings by choosing the Reset button.

6. Under the Response field, choose Run to generate the image. The generated image appears in the
Response field, under your prompt.

7. (Optional) Choose Download image to save the image to your local machine.
8. (Optional) Choose Save to save the current prompt as a favorite in your history items.

18

Amazon Bedrock User Guide
Adjust the model parameters

9. After you experiment with the model, choose View API request to view the equivalent API request.
You can copy this code into your application.

Adjust the model parameters
When you choose a provider and model in the playground, the console loads the inference configuration
parameters that apply to the selected model and sets their default values.

When you adjust the inference parameter settings, the model generates a new image that can differ in
style. Changing the parameter settings usually involves some trial and error to get the desired results.

For information about the inference parameters that each model supports, see Inference parameters for
foundation models (p. 31).

Examples library
Amazon Bedrock provides example prompts for each of the supported models. From the console, choose
Examples to view the available examples.

The Amazon Bedrock console displays up to 20 examples for each model provider. You can filter the list
of examples using one or more of the following attributes:

• Modality (text, image, or embedding)
• Provider
• Model name
• Category

You can also filter by entering text in the text box. The console displays all the possible filter values that
match the text.

When you select a specific example, the Amazon Bedrock console displays the following information
about the example:

• A description of what the example accomplishes.
• The model name (and model provider) where the example runs.
• The example prompt and the expected response.
• The inference configuration parameter settings for the example.
• The API request that runs the example.

To run the example, choose Open in playground.

19

Amazon Bedrock User Guide
API setup

Use the Amazon Bedrock API
This section describes how to set up your environment to make Amazon Bedrock API calls and provides
examples of common use-cases. You can access the Amazon Bedrock API using the AWS Command Line
Interface (AWS CLI), an AWS SDK, or a SageMaker Notebook.

You can make API calls to Amazon Bedrock through the following SDKs:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for .NET

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

For details about the API operations and parameters, see the Amazon Bedrock API Reference.

The following resources provide additional information about the Amazon Bedrock API.

• AWS General Reference

• Amazon Bedrock endpoints and quotas

• AWS Command Line Interface

• Amazon Bedrock CLI commands

• Amazon Bedrock Runtime CLI commands

Topics

• Setting up the Amazon Bedrock API (p. 20)

• Amazon Bedrock API operations (p. 23)

Setting up the Amazon Bedrock API
Important
You must request access to a model before you can use it. If you try to use the model (with the
API or console) before you have requested access to it, you receive an error message. For more
information, see Model access (p. 7).

You can access the Amazon Bedrock API using the AWS CLI, an AWS SDK, or a SageMaker Notebook.

Amazon Bedrock endpoints
To connect programmatically to an AWS service, you use an endpoint. Refer to the Amazon Bedrock
endpoints and quotas chapter in the AWS General Reference for information about the endpoints that
you can use for Amazon Bedrock.

20

https://docs.aws.amazon.com/sdk-for-cpp
https://docs.aws.amazon.com/sdk-for-go
https://docs.aws.amazon.com/sdk-for-java
https://docs.aws.amazon.com/sdk-for-javascript
https://docs.aws.amazon.com/sdk-for-net
https://docs.aws.amazon.com/pythonsdk
https://docs.aws.amazon.com/sdk-for-ruby
https://docs.aws.amazon.com/bedrock/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/cli/latest/reference/bedrock
https://docs.aws.amazon.com/cli/latest/reference/bedrock-runtime
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/general/latest/gr/bedrock.html

Amazon Bedrock User Guide
Setting up the AWS CLI

Setting up the AWS CLI
1. If you plan to use the CLI, install and configure the AWS CLI. See the section called “Set up the AWS

CLI” (p. 5).

2. Configure your AWS credentials using the aws configure CLI command (see Configure the AWS CLI).

Refer to the following references for AWS CLI commands and operations:

• Amazon Bedrock CLI commands

• Amazon Bedrock Runtime CLI commands

Setting up an AWS SDK
AWS software development kits (SDKs) are available for many popular programming languages. Each
SDK provides an API, code examples, and documentation that make it easier for developers to build
applications in their preferred language. Currently, you can make Amazon Bedrock API calls through the
following SDKs.

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for .NET

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

For code examples, find a method in Amazon Bedrock API operations (p. 23) and select the tab that
corresponds to the programming language of your choice.

Using SageMaker notebooks
You can use the SDK for Python (Boto3) to invoke Amazon Bedrock API operations from a SageMaker
notebook.

Prerequisites
Note the following prerequisites:

1. Request Amazon Bedrock access for the AWS account that hosts the notebook.

2. Use the console to accept the Amazon Bedrock terms and conditions.

Configure the SageMaker role
Add Amazon Bedrock permissions to the IAM role for this SageMaker notebook.

From the IAM console, perform these steps:

1. Choose the IAM role, then choose Add Permissions and select Create Inline Policies from the
dropdown list.

21

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/reference/bedrock
https://docs.aws.amazon.com/cli/latest/reference/bedrock-runtime
https://docs.aws.amazon.com/sdk-for-cpp
https://docs.aws.amazon.com/sdk-for-go
https://docs.aws.amazon.com/sdk-for-java
https://docs.aws.amazon.com/sdk-for-javascript
https://docs.aws.amazon.com/sdk-for-net
https://docs.aws.amazon.com/pythonsdk
https://docs.aws.amazon.com/sdk-for-ruby

Amazon Bedrock User Guide
Using SageMaker notebooks

2. Include the following permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "bedrock:*",
 "Resource": "*"
 }
]
}

Add the following permissions to the trust relationships.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Test the Runtime setup

Add the following code to your notebook and run the code.

import boto3
import json
bedrock = boto3.client(service_name='bedrock-runtime')

body = json.dumps({
 "prompt": "\n\nHuman:explain black holes to 8th graders\n\nAssistant:",
 "max_tokens_to_sample": 300,
 "temperature": 0.1,
 "top_p": 0.9,
})

modelId = 'anthropic.claude-v2'
accept = 'application/json'
contentType = 'application/json'

response = bedrock.invoke_model(body=body, modelId=modelId, accept=accept,
 contentType=contentType)

response_body = json.loads(response.get('body').read())
text

22

Amazon Bedrock User Guide
API operations

print(response_body.get('completion'))

Test the Amazon Bedrock setup
Add the following code to your notebook and run the code.

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.get_foundation_model(modelIdentifier='anthropic.claude-v2')

Amazon Bedrock API operations
Topics

• List the base models (p. 23)
• Get details about a base model (p. 23)
• Run inference (p. 24)
• Tag resources (p. 29)

List the base models
Use the ListFoundationModels operation to retrieve information about the base models, such as the
model ID that you need to perform inference with the InvokeMethod operation. See the following code
examples:

AWS CLI

List the base models using the following command in the AWS CLI:

aws bedrock list-foundation-models

Python (Boto)

The following example demonstrates how to list the base models using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.list_foundation_models()

Get details about a base model
Use the GetFoundationModel operation to retrieve detailed information about the specified base model.
See the following code examples:

AWS CLI

Get information about a base model using the following command in the AWS CLI:

aws bedrock get-foundation-model --model-identifier anthropic.claude-v2

23

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListFoundationModels.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetFoundationModel.html

Amazon Bedrock User Guide
Run inference

Python (Boto)

The following example demonstrates how to list the base models using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.get_foundation_model(modelIdentifier='anthropic.claude-v2')

Run inference
Use the InvokeModel operation to run inference on models. You use themodelId field to specify the
model that you want to use. The method for finding the modelId depends on the type of model
you use. To run inference on a custom model, first purchase Provisioned Throughput for it (for more
information, see Provisioned Throughput (p. 90)).

• Base model – Call ListFoundationModels to find the model ARN. For an example, see List the base
models (p. 23). To read a list of the model IDs for the currently available base models, see Base
model IDs (p. 28). You can also get the model ID for a foundation model from the JSON examples in
the Amazon Bedrock console.

• Model with Provisioned Throughput – If you have created a Provisioned Throughput for a foundation
or custom model, call ListProvisionedModelThroughputs and find the modelArn in the response.
You can also find the model ARN in the Model details when you select a model in the Provisioned
throuhput section in the console.

Each base model has its own parameters that you set in the body field. For more information, see
Inference parameters for foundation models (p. 31).

To run inference with streaming, use the InvokeModelWithResponseStream operation. Pick a base model
that supports streaming or a model that you created from a base model that supports streaming.

Topics
• Running inference on a model (p. 24)
• Base model IDs (p. 28)

Running inference on a model
The following examples show how to run inference on a model with InvokeModel and, with Python, run
inference with streaming with the InvokeModelWithResponseStream operation.

Note
The AWS CLI does not support streaming.

For information about the parameters each model supports, see Inference parameters for foundation
models (p. 31). For information about writing prompts, see Prompt engineering guidelines (p. 45).

AWS CLI

The following example shows how to generate text with the AWS CLI using the prompt story
of two dogs and the Anthropic Claude V2 model. The example returns up to 300 tokens in the
response and saves the response to the file output.txt:

aws bedrock-runtime invoke-model \
 --model-id anthropic.claude-v2 \

24

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListFoundationModels.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListProvisionedModelThroughputs.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Run inference

 --body "{\"prompt\": \"\n\nHuman: story of two dogs\n\nAssistant:\",
 \"max_tokens_to_sample\" : 300}" \
 --cli-binary-format raw-in-base64-out \
 invoke-model-output.txt

The following example shows how to call the Llama 2 Chat 13B model.

aws bedrock-runtime invoke-model \
 --region us-east-1 \
 --model-id meta.llama2-13b-chat-v1 \
 --body "{\"prompt\": \"What is the average lifespan of a Llama?\", \"max_gen_len
\" : 128, \"temperature\": 0.1, \"top_p\": 0.9}" \
 invoke-model-output.txt

Python (Boto)

The following example shows how to generate text with Python using the prompt explain black
holes to 8th graders and the Anthropic Claude V2 model:

import boto3
import json
brt = boto3.client(service_name='bedrock-runtime')

body = json.dumps({
 "prompt": "\n\nHuman: explain black holes to 8th graders\n\nAssistant:",
 "max_tokens_to_sample": 300,
 "temperature": 0.1,
 "top_p": 0.9,
})

modelId = 'anthropic.claude-v2'
accept = 'application/json'
contentType = 'application/json'

response = brt.invoke_model(body=body, modelId=modelId, accept=accept,
 contentType=contentType)

response_body = json.loads(response.get('body').read())

text
print(response_body.get('completion'))

The following example shows how to generate streaming text with Python using the prompt write
an essay for living on mars in 1000 words and the Anthropic Claude V2 model:

import boto3
import json

brt = boto3.client(service_name='bedrock-runtime')

body = json.dumps({
 'prompt': '\n\nHuman: write an essay for living on mars in 1000 words\n
\nAssistant:',
 'max_tokens_to_sample': 100
})

response = brt.invoke_model_with_response_stream(
 modelId='anthropic.claude-v2',
 body=body
)

25

Amazon Bedrock User Guide
Run inference

stream = response.get('body')
if stream:
 for event in stream:
 chunk = event.get('chunk')
 if chunk:
 print(json.loads(chunk.get('bytes').decode()))

Base model inference examples

The following Python (Boto) examples show how you can perform inference with the InvokeModel
operation on different Amazon Bedrock base models.

Topics
• A2I Jurassic-2 (p. 26)
• Cohere Command (p. 26)
• Meta Llama 2 (p. 27)
• Stability AI Diffusion XL (p. 27)

A2I Jurassic-2

This examples shows how to call the A2I Jurassic-2 Mid model.

import boto3
import json

brt = boto3.client(service_name='bedrock-runtime')

body = json.dumps({
 "prompt": "Translate to spanish: 'Amazon Bedrock is the easiest way to build and scale
 generative AI applications with base models (FMs)'.",
 "maxTokens": 200,
 "temperature": 0.5,
 "topP": 0.5
})

modelId = 'ai21.j2-mid-v1'
accept = 'application/json'
contentType = 'application/json'

response = brt.invoke_model(
 body=body,
 modelId=modelId,
 accept=accept,
 contentType=contentType
)

response_body = json.loads(response.get('body').read())

text
print(response_body.get('completions')[0].get('data').get('text'))

Cohere Command

This examples shows how to call the Cohere Command model.

import boto3
import json

26

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html

Amazon Bedrock User Guide
Run inference

brt = boto3.client(service_name='bedrock-runtime')

body = json.dumps({
 "prompt": "How do you tie a tie?",
 "max_tokens": 200,
 "temperature": 0.5,
 "p": 0.5
})

modelId = 'cohere.command-text-v14'
accept = 'application/json'
contentType = 'application/json'

response = brt.invoke_model(
 body=body,
 modelId=modelId,
 accept=accept,
 contentType=contentType
)

response_body = json.loads(response.get('body').read())

text
print(response_body.get('generations')[0].get('text'))

Meta Llama 2

This example shows how to call the Llama 2 Chat 13B model.

import boto3
import json
bedrock = boto3.client(service_name='bedrock-runtime', region_name='us-east-1')

body = json.dumps({
 "prompt": "What is the average lifespan of a Llama?",
 "max_gen_len": 128,
 "temperature": 0.1,
 "top_p": 0.9,
})

modelId = 'meta.llama2-13b-chat-v1'
accept = 'application/json'
contentType = 'application/json'

response = bedrock.invoke_model(body=body, modelId=modelId, accept=accept,
 contentType=contentType)

response_body = json.loads(response.get('body').read())
print(response_body)

Stability AI Diffusion XL

This example shows how to call the Stability AI Stability Diffusion XL model.

import boto3
import json

brt = boto3.client(service_name='bedrock-runtime')

prompt_data = "A photograph of an dog on the top of a mountain covered in snow."

body = json.dumps({
 "text_prompts": [

27

Amazon Bedrock User Guide
Run inference

 {
 "text": prompt_data
 }
],
 "cfg_scale":10,
 "seed":20,
 "steps":50
})
modelId = "stability.stable-diffusion-xl-v0"
accept = "application/json"
contentType = "application/json"

response = brt.invoke_model(
 body=body,
 modelId=modelId,
 accept=accept,
 contentType=contentType
)
response_body = json.loads(response.get("body").read())
print(response_body['result'])
print(f'{response_body.get("artifacts")[0].get("base64")[0:80]}...')

Base model IDs
The following is a list of model IDs for the currently available base models. You use a
model ID to identify the base model that you want to use in a call to InvokeModel or
InvokeModelWithResponseStream.

For information about the model IDs that you need for provisioned throughput, see Provisioned
Throughput model IDs (p. 91).

Provider Model name Version Model Id

AI21 Labs Jurassic-2 Mid 1.x ai21.j2-mid-v1

AI21 Labs Jurassic-2 Ultra 1.x ai21.j2-ultra-v1

Amazon Titan Text G1 - Lite 1.x amazon.titan-text-lite-
v1

Amazon Titan Embeddings G1 -
Text

1.x amazon.titan-embed-
text-v1

Amazon Titan Text G1 - Express 1.x amazon.titan-text-
express-v1

Amazon Titan Text G1 - Agile 1.x amazon.titan-text-
agile-v1

Anthropic Claude 1.x anthropic.claude-v1

Anthropic Claude 2.x anthropic.claude-v2

Anthropic Claude Instant 1.x anthropic.claude-
instant-v1

Cohere Command 14.x cohere.command-text-
v14

Cohere Command Light 15.x cohere.command-light-
text-v14

28

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Tag resources

Provider Model name Version Model Id

Cohere Embed English 3.x cohere.embed-english-
v3

Cohere Embed Multilingual 3.x cohere.embed-
multilingual-v3

Meta Llama 2 Chat 13B 1.x meta.llama2-13b-chat-
v1

Stability AI Stable Diffusion XL 0.x stability.stable-
diffusion-xl-v0

Note
The Amazon Titan Text G1 - Express model is in limited preview release. Access will be granted
on an ongoing basis.

Note
Stable Diffusion XL 1.x is only available with provisioned throughput. For more information, see
Provisioned Throughput (p. 90). Stable Diffusion XL 0.x is a preview release.

Tag resources
Use the TagResource and UntagResource operations to tag and untag resources. You need the ARN of the
resource to tag/untag.

The Amazon Bedrock resources that you can tag are:

• Custom models
• Model customization jobs
• Provisioned models

For more information about restrictions on tagging, see Tag restrictions (p. 137).

To list the tags for a resource, use the ListTagsForResource operation.

AWS CLI

The following example demonstrates how to add two tags to a resource using the AWS CLI. Separate
key/value pairs with a space:

aws bedrock tag-resource \
 --resource-arn "arn:aws:resource-arn" \
 --tags key=key1,value=value1 key=key2,value=value2

The following example demonstrates how to remove the tags with the keys key1 and key2 from a
resource. Separate keys with a space:

aws bedrock untag-resource \
 --resource-arn "arn:aws:resource-arn" \
 --tag-keys key=key1 key2

The following example demonstrates how to list tags for a resource:

aws bedrock list-tags-for-resource \

29

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListTagsForResource.html

Amazon Bedrock User Guide
Tag resources

 --resource-arn "arn:aws:iam::resource-arn"

Python (Boto)

The following example demonstrates how to add tags to a resource using Python:

import boto3

bedrock = boto3.client(service_name='bedrock')

tags = [
 {
 'key': 'key1',
 'value': 'value1'
 },
 {
 'key': 'key2',
 'value': 'value2'
 }
]

bedrock.tag_resource(resourceARN='arn:aws:bedrock:resource-arn', tags=tags)

The following example demonstrates how to remove the tags with the keys key1 and key2 from a
resource using Python

import boto3

bedrock = boto3.client(service_name='bedrock')

bedrock.untag_resource(resourceARN='arn:aws:bedrock:resource-arn', tagKeys=['key1',
 'key2'])

The following example demonstrates how to list the tags for a resource using Python:

import boto3

bedrock = boto3.client(service_name='bedrock')

bedrock.list_tags_for_resource(resourceARN='arn:aws:bedrock:resource-arn')

30

Amazon Bedrock User Guide
Inference parameter definitions

Inference parameters for foundation
models

Run inference using any of the foundation models in Amazon Bedrock. Optionally, set inference
parameters to influence the response generated by the model. You set inference parameters in a
playground in the console, or in the body field of the InvokeModel or InvokeModelWithResponseStream
API.

When you call a model, you also include a prompt for the model. For information about writing prompts,
see Prompt engineering guidelines (p. 45).

The following sections define the inference parameters available for each base model. For a custom
model, use the same inference parameters as the base model from which it was customized.

Topics
• Inference parameter definitions (p. 31)
• Amazon Titan models (p. 32)
• Anthropic Claude models (p. 34)
• AI21 Labs Jurassic-2 models (p. 35)
• Cohere models (p. 37)
• Meta Llama 2 Chat 13B model (p. 42)
• Stability.ai Diffusion models (p. 43)

Inference parameter definitions
Typically, foundation models support the following types of inference parameters.

Topics
• Randomness and diversity (p. 31)
• Length (p. 32)
• Repetitions (p. 32)

Randomness and diversity
Foundation models typically support the following parameters to control randomness and diversity in
the response.

• Temperature– Large language models use probability to construct the words in a sequence. For any
given sequence, there is a probability distribution of options for the next word in the sequence. When
you set the temperature closer to zero, the model tends to select the higher-probability words. When
you set the temperature further away from zero, the model may select a lower-probability word.

In technical terms, the temperature modulates the probability density function for the next tokens,
implementing the temperature sampling technique. This parameter can deepen or flatten the density
function curve. A lower value results in a steeper curve with more deterministic responses, and a
higher value results in a flatter curve with more random responses.

• Top K – Temperature defines the probability distribution of potential words, and Top K defines the
cutoff where the model no longer selects the words. For example, if K=50, the model selects from 50

31

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Length

of the most probable words that could be next in a given sequence. When you lower the Top K value, it
reduces the probability that an unusual word gets selected next in a sequence.

In technical terms, Top K is the number of the highest-probability vocabulary tokens to keep for Top-
K-filtering.

• Top P – Top P defines a cut off based on the sum of probabilities of the potential choices. If you set
Top P below 1.0, the model considers the most probable options and ignores less probable ones. Top
P is similar to Top K, but instead of capping the number of choices, it caps choices based on the sum of
their probabilities.

For the example prompt "I hear the hoof beats of ," you might want the model to provide "horses,"
"zebras," or "unicorns" as the next word. If you set the temperature to its maximum, without capping
Top K or Top P, you increase the probability of getting unusual results such as "unicorns." If you set the
temperature to 0, you increase the probability of "horses." If you set a high temperature and reduce
the value of Top K or Top P, you increase the probability of "horses" or "zebras," and decrease the
probability of "unicorns."

Length
Foundation models typically support the following parameters control the length of the generated
response.

• Response length – Configures the minimum and maximum number of tokens to use in the generated
response.

• Length penalty – Length penalty optimizes the model to be more concise in its output by penalizing
longer responses.

In technical terms, the length penalty penalizes the model exponentially for lengthy responses. 0.0
means no penalty. To generate longer sequences, set a value less than 0.0 for the model. To generate
shorter sequences, set a value greater than 0.0.

• Stop sequences – A stop sequence is a sequence of characters. If the model encounters a stop
sequence, it stops generating further tokens. Different models support different types of characters
in a stop sequence, different maximum sequence lengths, and may support the definition of multiple
stop sequences.

Repetitions
Foundation models typically support the following parameters help control repetition in the generated
response.

• Repetition penalty (presence penalty) – Prevents repetitions of the same words (tokens) in responses.
1.0 means no penalty. Greater than 1.0 decreases repetition.

Amazon Titan models
The Amazon Titan models support the following inference parameters.

Randomness and Diversity
The Amazon Titan models support the following parameters to control randomness and diversity in the
response.

• Temperature (temperature)– Use a lower value to decrease randomness in the response.

32

Amazon Bedrock User Guide
Length

• Top P (topP) – Use a lower value to ignore less probable options.

Length
The Amazon Titan models support the following parameters to control the length of the generated
response.

• Response length (maxTokenCount) – Specify the maximum number of tokens in the generated
response.

• Stop sequences (stopSequences) – Specify character sequences to indicate where the model should
stop. Use the | (pipe) character to separate different sequences (maximum 20 characters).

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using a Titan model, fill the
body field with a JSON object that conforms to the one below. Enter the prompt in the inputText field.

{
 "inputText": string,
 "textGenerationConfig": {
 "temperature": float,
 "topP": float,
 "maxTokenCount": int,
 "stopSequences": [string]
 }
}

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON field
format

Minimum Maximum Default

Temperature temperature 0 1 0Randomness
and diversity

Top P topP 0 1 1

Length Response
length

maxTokenCount 0 8,000 512

Model invocation response body field
The InvokeModel response returns a body field in the following format:

{
 'inputTextTokenCount': int,
 'results': [{
 'tokenCount': int,
 'outputText': '\n<response>\n',
 'completionReason': string
 }]
}

More information about each field is provided below.

33

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Anthropic Claude models

• inputTextTokenCount – The number of tokens in the prompt.
• tokenCount – The number of tokens in the response.
• outputText – The text in the response.
• completionReason – The reason the response finished being generated. The following reasons are

possible.
• FINISHED – The response was fully generated.
• LENGTH – The response was truncated because of the response length you set.

The InvokeModelWithResponseStream response returns a response stream object in the body field.
Each chunk of text in the response stream is in the following format. You must decode the bytes field
(see Running inference on a model (p. 24) for an example).

{
 'chunk': {
 'bytes': b'{
 "index": int,
 "inputTextTokenCount": int,
 "totalOutputTextTokenCount": int,
 "outputText": "<response-chunk>",
 "completionReason": string
 }'
 }
}

• index – The index of the chunk in the streaming response.
• inputTextTokenCount – The number of tokens in the prompt.
• totalOutputTextTokenCount – The number of tokens in the response.
• outputText – The text in the response.
• completionReason – The reason the response finished being generated. The following reasons are

possible.
• FINISHED – The response was fully generated.
• LENGTH – The response was truncated because of the response length you set.

Anthropic Claude models
The Anthropic Claude models support the following types of controls.

Randomness and diversity
The Anthropic Claude models support the following parameters to control randomness and diversity in
the response.

• Temperature (temperature)– Use a lower value to decrease randomness in the response.
• Top P (topP) – Use a lower value to ignore less probable options.
• Top K (topK) – Specify the number of token choices the model uses to generate the next token.

Length
The Anthropic Claude models support the following parameters to control the length of the generated
response.

34

Amazon Bedrock User Guide
Model invocation request body field

• Maximum length (max_tokens_to_sample) – Specify the maximum number of tokens to use in the
generated response. We recommend a limit of 4,000 tokens for optimal performance.

• Stop sequences (stop_sequences) – Configure up to four sequences that the model recognizes.
After a stop sequence, the model stops generating further tokens. The returned text doesn't contain
the stop sequence.

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using an Anthropic model, fill
the body field with a JSON object that conforms to the one below. Copy the format in the prompt field,
replacing prompt with your prompt.

{
 "prompt": "\n\nHuman:<prompt>\n\nAssistant:",
 "temperature": float,
 "top_p": float,
 "top_k": int,
 "max_tokens_to_sample": int,
 "stop_sequences": ["\n\nHuman:"]
}

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON object
format

Minimum Maximum Default

Temperature temperature 0 1 0.5

Top P top_p 0 1 1

Randomness
and diversity

Top K top_k 0 500 250

Length Max tokens to
sample

max_tokens_to_sample0 4096 200

Model invocation response body field
For information about the format of the body field in the response, see https://docs.anthropic.com/
claude/reference/complete_post.

AI21 Labs Jurassic-2 models
The AI21 Jurassic-2 models support the following types of controls.

Randomness and Diversity
The AI21 Jurassic-2 models support the following parameters to control randomness and diversity in the
response.

• Temperature (temperature)– Use a lower value to decrease randomness in the response.

35

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html
https://docs.anthropic.com/claude/reference/complete_post
https://docs.anthropic.com/claude/reference/complete_post

Amazon Bedrock User Guide
Length

• Top P (topP) – Use a lower value to ignore less probable options.

Length
The AI21 Jurassic-2 models support the following parameters to control the length of the generated
response.

• Max completion length (maxTokens) – Specify the maximum number of tokens to use in the
generated response.

• Stop sequences (stopSequences) – Configure stop sequences that the model recognizes and after
which it stops generating further tokens. Press the Enter key to insert a newline character in a stop
sequence. Use the Tab key to finish inserting a stop sequence.

Repetitions
The AI21 Jurassic-2 models support the following parameters to control repetition in the generated
response.

• Presence penalty (presencePenalty) – Use a higher value to lower the probability of generating
new tokens that already appear at least once in the prompt or in the completion.

• Count penalty (countPenalty) – Use a higher value to lower the probability of generating new
tokens that already appear at least once in the prompt or in the completion. Proportional to the
number of appearances.

• Frequency penalty (frequencyPenalty) – Use a high value to lower the probability of generating
new tokens that already appear at least once in the prompt or in the completion. The value is
proportional to the frequency of the token appearances (normalized to text length).

• Penalize special tokens – Reduce the probability of repetition of special characters. The default values
are true.
• Whitespaces (applyToWhitespaces) – A true value applies the penalty to whitespaces and new

lines.
• Punctuations (applyToPunctuation) – A true value applies the penalty to punctuation.
• Numbers (applyToNumbers) – A true value applies the penalty to numbers.
• Stop words (applyToStopwords) – A true value applies the penalty to stop words.
• Emojis (applyToEmojis) – A true value excludes emojis from the penalty.

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using an AI21 model, fill the
body field with a JSON object that conforms to the one below. Enter the prompt in the prompt field.

{
 "prompt": string,
 "temperature": float,
 "topP": float,
 "maxTokens": int,
 "stopSequences": [string],
 "countPenalty": {
 "scale": int
 },
 "presencePenalty": {
 "scale": float
 },

36

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Model invocation response body field

 "frequencyPenalty": {
 "scale": int
 }
}

To penalize special tokens, add those fields to any of the penalty objects. For example, you can modify
the countPenalty field as follows.

{
 "countPenalty": {
 "scale": int,
 "applyToWhitespaces": boolean,
 "applyToPunctuations": boolean,
 "applyToNumbers": boolean,
 "applyToStopwords": boolean,
 "applyToEmojis": boolean
 }
}

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON object
format

Minimum Maximum Default

Temperature temperature 0 1 0.5Randomness
and diversity

Top P topP 0 1 0.5

Max tokens
(mid, ultra, and
large models)

0 8,191 200Length

Max tokens
(other models)

maxTokens

0 2,048 200

Presence
penalty

presencePenalty 0 5 0

Count penalty countPenalty 0 1 0

Repetitions

Frequency
penalty

frequencyPenalty0 500 0

Model invocation response body field
For information about the format of the body field in the response, see https://docs.ai21.com/
reference/j2-complete-ref.

Cohere models
The following is inference parameters information for the Cohere models that Amazon Bedrock
supports.

Topics

37

https://docs.ai21.com/reference/j2-complete-ref
https://docs.ai21.com/reference/j2-complete-ref

Amazon Bedrock User Guide
Cohere Command models

• Cohere Command models (p. 38)
• Cohere Embed models (p. 40)

Cohere Command models
The Cohere Command models support the following controls.

• Return likelihoods (return_likelihoods) – (optional) Specify how and if the token likelihoods are
returned with the response. You can specify the following options.
• GENERATION – Only return likelihoods for generated tokens.
• ALL – Return likelihoods for all tokens.
• NONE – (Default) Don't return any likelihoods.

• Stream (stream) – (Required to support streaming) Specify true to return the response piece-by-
piece in real-time and false to return the complete response after the process finishes.

• Logit bias (logit_bias) – (Optional) prevents the model from generating unwanted tokens or
incentivizes the model to include desired tokens. The format is {token_id: bias} where bias is a
float between -10 and 10. Tokens can be obtained from text using any tokenization service, such as
Cohere’s Tokenize endpoint. For more information, see Cohere documentation.

• Number of generations (num_generations) – (Optional) The maximum number of generations that
the model should return.

• Truncate (truncate) – (Optional) Specifies how the API handles inputs longer than the maximum
token length. Use one of the following:
• NONE – Returns an error when the input exceeds the maximum input token length.
• START – Discard the start of the input.
• END – (Default) Discards the end of the input.

If you specify START or END, the model discards the input until the remaining input is exactly the
maximum input token length for the model.

Randomness and diversity
The Cohere Command model supports the following parameters to control randomness and diversity in
the response.

• Temperature (temperature) – (Optional) Use a lower value to decrease randomness in the response.
• Top P (p) – (Optional) Use a lower value to ignore less probable options. Set to 0 or 1.0 to disable. If

both p and k are enabled, p acts after k.
• Top K (k) – (Optional) Specify the number of token choices the model uses to generate the next token.

If both p and k are enabled, p acts after k.

Length
The Cohere Command models support the following parameters to control the length of the generated
response.

• Maximum length (max_tokens) – (Optional) Specify the maximum number of tokens to use in the
generated response.

• Stop sequences (stop_sequences) – (Optional) Configure up to four sequences that the model
recognizes. After a stop sequence, the model stops generating further tokens. The returned text
doesn't contain the stop sequence.

38

https://docs.cohere.com/docs

Amazon Bedrock User Guide
Cohere Command models

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using a Cohere model, fill the
body field with a JSON object that conforms to the one below. Enter the prompt in the prompt field.
The prompt field is required.

{
 "prompt": "string",
 "temperature": float,
 "p": float,
 "k": float,
 "max_tokens": int,
 "stop_sequences": ["string"],
 "return_likelihoods": "GENERATION|ALL|NONE",
 "stream": boolean,
 "num_generations": int,
 "logit_bias": {token_id: bias},
 "truncate": "NONE|START|END"
 }

For more information, see https://docs.cohere.com/reference/generate.

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON object
format

Minimum Maximum Default

Temperature temperature 0 5 0.9

Top P p 0 1 0.75

Randomness
and diversity

Top K k 0 500 0

Length Max tokens max_tokens 1 4,096 20

Number of
generations

num_generations1 5 1Other

Logit bias logit_bias -10 (for a
token bias)

10 (for a token
bias)

No default
value

Model invocation response body field
The body response from a call to InvokeModel or InvokeModelWithResponseStream is the
following:

{

 "generations": [
 {
 "finish_reason": "COMPLETE | MAX_TOKENS | ERROR | ERROR_TOXIC",
 "id": "string",
 "text": "string",
 "prompt": "string",
 "likelihood" : float,
 "token_likelihoods" : [{"token" : float}],
 "is_finished" : true | false,
 "index" : integer

39

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html
https://docs.cohere.com/reference/generate

Amazon Bedrock User Guide
Cohere Embed models

 }
],
 "id": "string",
 "prompt": "string"
 }
}

The response has the following possible fields:

• generations — A list of generated results along with the likelihoods for tokens requested. (Always
returned). Each generation object in the list contains the following fields.
• id — An identifier for the generation. (Alwaus returned).
• likelihood — The likelihood of the output. (Not always returned).
• token_likelihoods — An array of per token likelihoods. (Not always returned).
• finish_reason — states the reason why the model finished generating tokens. COMPLETE -

the model sent back a finished reply. MAX_TOKENS – the reply was cut off because the model
reached the maximum number of tokens for its context length. ERROR – something went wrong
when generating the reply. ERROR_TOXIC – the model generated a reply that was deemed toxic.
finish_reason is returned only when is_finished=true. (Not always returned).

• is_finished — A boolean field used only when stream is true, signifying whether or not there
are additional tokens that will be generated as part of the streaming response. (Not always returned)

• text — The generated text.
• index — In a streaming response, use to determine which generation a given token belongs

to. When only one response is streamed, all tokens belong to the same generation and index
is not returned. index therefore is only returned in a streaming request with a value for
num_generations that is larger than one.

• prompt — The prompt from the input request. (Always returned).
• id — An identifier for the request (always returned).

For more information, see https://docs.cohere.com/reference/generate.

Cohere Embed models
The Cohere Embed models support the following controls.

• texts (texts) – (Required) An array of strings for the model to embed. For optimal performance, we
recommend reducing the length of each text to less than 512 tokens. 1 token is about 4 characters.

• input type (input_type) – (Required) Prepends special tokens to differentiate each type from one
another. You should not mix different types together, except when mixing types for for search and
retrieval. In this case, embed your corpus with the search_document type and embedded queries
with type search_query type.
• search_document – In search use-cases, use search_document when you encode documents for

embeddings that you store in a vector database.
• search_query – Use search_query when querying your vector DB to find relevant documents.
• classification – Use classification when using embeddings as an input to a text classifier.
• clustering – Use clustering to cluster the embeddings.

• Truncate (truncate) – (Optional) Specifies how the API handles inputs longer than the maximum
token length. Use one of the following:
• NONE – (Default) Returns an error when the input exceeds the maximum input token length.
• LEFT – Discard the start of the input.
• RIGHT – Discards the end of the input.

40

https://docs.cohere.com/reference/generate

Amazon Bedrock User Guide
Cohere Embed models

If you specify LEFT or RIGHT, the model discards the input until the remaining input is exactly the
maximum input token length for the model.

Model invocation request body field
When you make an InvokeModel call using a Cohere model, fill the body field with a JSON object that
conforms to the one below. Enter the prompt in the prompt field.

{
 "texts:["string"],
 "input_type": "search_document|search_query|classification|clustering",
 "truncate": "NONE|LEFT|RIGHT"
 }

For more information, see https://docs.cohere.com/reference/embed.

Note
Amazon Bedrock doesn't support streaming responses from Cohere Embed models.

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON object
format

Minimum Maximum Default

Texts texts 0 texts per call 128 texts per
call

N/AOther

Text length texts 0 characters 2048
characters

N/A

Model invocation response body field
The body response from a call to InvokeModel is the following:

{
 "embeddings": [
 [float //*1024)]
],
 "id": "string",
 "texts": ["string"]
}

The body response has the following fields:

• id – An identifier for the response.
• embeddings – An array of embeddings, where each embedding is an array of floats with 1024

elements. The length of the embeddings array will be the same as the length of the original texts
array.

• texts – An array containing the text entries for which embeddings were returned.

For more information, see https://docs.cohere.com/reference/embed.

41

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.cohere.com/reference/embed
https://docs.cohere.com/reference/embed

Amazon Bedrock User Guide
Meta Llama 2 Chat 13B model

Meta Llama 2 Chat 13B model
The Meta Llama 2 Chat 13B model supports the following controls.

Randomness and diversity
The Meta Llama 2 Chate 13B model supports the following parameters to control randomness and
diversity in the response.

• Temperature (temperature) – Use a lower value to decrease randomness in the response.

• Top P (top_p) – Use a lower value to ignore less probable options. Set to 0 or 1.0 to disable.

Length
The Meta Llama 2 Chat 13B model supports the following parameters to control the length of the
generated response.

• Maximum length (max_gen_len) – Specify the maximum number of tokens to use in the generated
response. The model truncates the response once the generated text exceeds max_gen_len.

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using a Lllama 2 model, fill
the body field with a JSON object that conforms to the one below. Enter the prompt in the prompt field.

{
 "prompt": "string",
 "temperature": float,
 "top_p": float,
 "max_gen_len": int
}

For example code, see Meta Llama 2 (p. 27).

The following table shows the minimum, maximum, and default values for the numerical parameters.

Category Parameter JSON object
format

Minimum Maximum Default

Temperature temperature 0 1 0.5Randomness
and diversity

Top P top_p 0 1 0.9

Length Max
generation
length

max_gen_len 1 2048 512

Model invocation response body field
The InvokeModel response returns a body field in the following format:

42

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Stability.ai Diffusion models

{
 "generation": "\n\n<response>",
 "prompt_token_count": int,
 "generation_token_count": int,
 "stop_reason" : "string"
}

More information about each field is provided below.

• generation – The generated text.
• prompt_token_count – The number of tokens in the prompt.
• generation_token_count – The number of tokens in the generated text.
• stop_reason – The reason why the response stopped generating text. Possible values are:

• stop – The model has finished generating text for the input prompt.
• length – The length of the tokens for the generated text exceeds the value of max_gen_len in the

call to InvokeModel (InvokeModelWithResponseStream, if you are streaming output). The
response is truncated to max_gen_len tokens. Consider increasing the value of max_gen_len and
trying again.

Stability.ai Diffusion models
The Stability.ai Diffusion models have the following types of controls.

• Prompt strength (cfg_scale) – Determines how much the final image portrays the prompt. Use a
lower number to increase randomness in the generation.

• Generation step (steps) – Generation step determines how many times the image is sampled. More
steps can result in a more accurate result.

• Seed (seed) – The seed determines the initial noise setting. Use the same seed and the same settings
as a previous run to allow inference to create a similar image. If you don't set this value, it is set as a
random number.

Model invocation request body field
When you make an InvokeModel or InvokeModelWithResponseStream call using a Stability.ai model, fill
the body field with a JSON object that conforms to the one below. Enter the prompt in the text field in
the text_prompts object.

{
 "text_prompts": [
 {"text": "string"}
],
 "cfg_scale": float,
 "steps": int,
 "seed": int
}

The following table shows the minimum, maximum, and default values for the numerical parameters.

Parameter JSON object
format

Minimum Maximum Default

Prompt strength cfg_scale 0 30 10

43

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Model invocation response body field

Parameter JSON object
format

Minimum Maximum Default

Generation step steps 10 150 30

Model invocation response body field
For information about the format of the body field in the response, see https://platform.stability.ai/
docs/api-reference#tag/v1generation.

44

https://platform.stability.ai/docs/api-reference#tag/v1generation
https://platform.stability.ai/docs/api-reference#tag/v1generation

Amazon Bedrock User Guide
Introduction

Prompt engineering guidelines
Topics

• Introduction (p. 45)
• What is a prompt? (p. 45)
• What is prompt engineering? (p. 49)
• General guidelines for Amazon Bedrock LLM users (p. 50)
• Prompt templates and examples for Amazon Bedrock text models (p. 58)

Introduction
Welcome to the prompt engineering guide for large language models (LLMs) on Amazon Bedrock.
Amazon Bedrock is Amazon’s service for foundation models (FMs), which offers access to a range of
powerful FMs for text and images.

Prompt engineering refers to the practice of optimizing textual input to LLMs to obtain desired responses.
Prompting helps LLMs perform a wide variety of tasks, including classification, question answering, code
generation, creative writing, and more. The quality of prompts that you provide to LLMs can impact the
quality of their responses. These guidelines provide you with all the necessary information to get started
with prompt engineering. It also covers tools to help you find the best possible prompt format for your
use case when using LLMs on Amazon Bedrock.

Whether you’re a beginner in the world of generative AI and language models, or an expert with previous
experience, these guidelines can help you optimize your prompts for Amazon Bedrock text models.
Experienced users can skip to the General Guidelines for Amazon Bedrock LLM Users or Prompt Templates
and Examples for Amazon Bedrock Text Models sections.

Note
All examples in this doc are obtained via API calls. The response may vary due to the stochastic
nature of the LLM generation process. If not otherwise specified, the prompts are written by
employees of AWS.

Disclaimer: The examples in this document use the current text models available within Amazon
Bedrock. Also, this document is for general prompting guidelines. For model-specific guides, refer to
their respective docs on Amazon Bedrock. This document provides a starting point. While the following
example responses are generated using specific models on Amazon Bedrock, you can use other models in
Amazon Bedrock to get results as well. The results may differ between models as each model has its own
performance characteristics. The output that you generate using AI services is your content. Due to the
nature of machine learning, output may not be unique across customers and the services may generate
the same or similar results across customers.

Claude model prompt guide: https://docs.anthropic.com/claude/docs

AI21 Jurassic model prompt guide: https://docs.ai21.com/docs/prompt-engineering

What is a prompt?
Prompts are a specific set of inputs provided by you, the user, that guide LLMs on Amazon Bedrock to
generate an appropriate response or output for a given task or instruction.

User Prompt:

45

https://docs.anthropic.com/claude/docs
https://docs.ai21.com/docs/prompt-engineering

Amazon Bedrock User Guide
Components of a prompt

Who invented the airplane?

When queried by this prompt, Amazon Titan provides an output:

Output:
The Wright brothers, Orville and Wilbur Wright are widely credited
with inventing and manufacturing the world's first successful airplane.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Components of a prompt
A single prompt includes several components, such as the task or instruction you want the LLMs to
perform, the context of the task (for example, a description of the relevant domain), demonstration
examples, and the input text that you want LLMs on Amazon Bedrock to use in its response. Depending
on your use case, the availability of the data, and the task, your prompt should combine one or more of
these components.

Consider this example prompt asking Amazon Titan to summarize a review:

User Prompt:
The following is text from a restaurant review:

“I finally got to check out Alessandro’s Brilliant Pizza and it is now
one of my favorite restaurants in Seattle. The dining room has a beautiful view
over the Puget Sound but it was surprisingly not crowded. I ordered
the fried castelvetrano olives, a spicy Neapolitan-style pizza
and a gnocchi dish. The olives were absolutely decadent, and the pizza came
with a smoked mozzarella, which was delicious. The gnocchi was fresh and wonderful.
The waitstaff were attentive, and overall the experience was lovely.
I hope to return soon."

Summarize the above restaurant review in one sentence.

(Source of prompt: AWS)

Based on this prompt, Amazon Titan responds with a succinct one-line summary of the restaurant
review. The review mentions key facts and conveys the main points, as desired.

Output:
Alessandro's Brilliant Pizza is a fantastic restaurant in Seattle
with a beautiful view over Puget Sound, decadent and delicious food,
and excellent service.

(Model used: Amazon Titan Text G1 - Express)

The instruction Summarize the above restaurant review in one sentence and the review
text I finally got to check out ... were both necessary for this type of output. Without either
one, the model would not have enough information to produce a sensible summary. The instruction tells
the LLM what to do, and the text is the input on which the LLM operates. The context (The following
is text from a restaurant review) provides additional information and keywords that guide the
model to use the input when formulating its output.

In the example below, the text Context: Climate change threatens people with increased
flooding ... is the input which the LLM can use to perform the task of answering the question
Question: What organization calls climate change the greatest threat to global
health in the 21st century?”.

46

Amazon Bedrock User Guide
Few-shot prompting vs. zero-shot prompting

User prompt:
Context: Climate change threatens people with increased flooding,
extreme heat, increased food and water scarcity, more disease, and economic loss.
Human migration and conflict can also be a result. The World Health Organization (WHO)
calls climate change the greatest threat to global health in the 21st century.
Adapting to climate change through efforts like flood control measures
or drought-resistant crops partially reduces climate change risks,
although some limits to adaptation have already been reached.
Poorer communities are responsible for a small share of global emissions,
yet have the least ability to adapt and are most vulnerable to climate change.
The expense, time required, and limits of adaptation mean its success hinge
on limiting global warming.

Question: What organization calls climate change the greatest threat
to global health in the 21st century?

(Source of prompt: https://en.wikipedia.org/wiki/Climate_change)

AI21 Jurassic responses with the correct name of the organization according to the context provided in
the prompt.

Output:
The World Health Organization (WHO) calls climate change
the greatest threat to global health in the 21st century.

(Model used: AI21 Jurassic-2 Ultra v1)

Few-shot prompting vs. zero-shot prompting
It is sometimes useful to provide a few examples to help LLMs better calibrate their output to meet
your expectations, also known as few-shot prompting or in-context learning, where a shot corresponds
to a paired example input and the desired output. To illustrate, first here is an example of a zero-shot
sentiment classification prompt where no example input-output pair is provided in the prompt text:

User prompt:
Tell me the sentiment of the following headline and categorize it
as either positive, negative or neutral:
New airline between Seattle and San Francisco offers a great opportunity
for both passengers and investors.

(Source of prompt: AWS)

Output:
Positive

(Model used: Amazon Titan Text G1 - Express)

Here is the few-shot version of a sentiment classification prompt:

User prompt:
Tell me the sentiment of the following headline and categorize it
as either positive, negative or neutral. Here are some examples:

Research firm fends off allegations of impropriety over new technology.
Answer: Negative

Offshore windfarms continue to thrive as vocal minority in opposition dwindles.
Answer: Positive

47

Amazon Bedrock User Guide
Prompt template

Manufacturing plant is the latest target in investigation by state officials.
Answer:

(Source of prompt: AWS)

Output:
Negative

(Model used: Amazon Titan Text G1 - Express)

The following example uses Claude models. When using Claude models, it’s a good practice to use
<example></example> tags to include demonstration examples. We also recommend using different
delimiters such as H: and A: in the examples to avoid confusion with the delimiters Human: and
Assistant: for the whole prompt.

User prompt:

Human: Please classify the given email as "Personal" or "Commercial" related emails.
Here are some examples.

<example>
H: Hi Tom, it's been long time since we met last time. We plan to have a party at my house
 this weekend. Will you be able to come over?
A: Personal
</example>

<example>
H: Hi Tom, we have a special offer for you. For a limited time, our customers can save up
 to 35% of their total expense when you make reservations within two days. Book now and
 save money!
A: Commercial
</example>

H: Hi Tom, Have you heard that we have launched all-new set of products. Order now, you
 will save $100 for the new products. Please check our website.
A:

Assistant:

Output:
Commercial

(Source of prompt: AWS, model used: Claude)

Prompt template
A prompt template specifies the formatting of the prompt with exchangeable content in it. Prompt
templates are “recipes” for using LLMs for different use cases such as classification, summarization,
question answering, and more. A prompt template may include instructions, few-shot examples, and
specific context and questions appropriate for a given use case. The following example is a template that
you can use to perform few-shot sentiment classification using Amazon Bedrock text models:

Prompt template:
Tell me the sentiment of the following
{{Text Type, e.g., “restaurant review”}} and categorize it
as either {{Sentiment A}} or {{Sentiment B}}.
Here are some examples:

48

Amazon Bedrock User Guide
Important notes on using Amazon

Bedrock LLMs by API calls

Text: {{Example Input 1}}
Answer: {{Sentiment A}}

Text: {{Example Input 2}}
Answer: {{Sentiment B}}

Text: {{Input}}
Answer:

Users can copy and paste this template, filling in their own text and few-shot examples to complete
prompts when using LLMs on Amazon Bedrock. More templates are provided in this section.

Note
The double curly braces {{ and }} mark the places to put in data-specific information in the
template, and should not be included in the prompt text.

Important notes on using Amazon Bedrock LLMs by
API calls
If you are accessing LLMs on Amazon Bedrock via API calls, please be aware that they do not recall prior
prompts and previous requests unless the previous interaction is included within the current prompt. You
may need this for conversational-style interactions or follow up requests.

If you are accessing Claude models using API calls instead of the Amazon Bedrock text playground, you
wrap your prompts in a conversational style to get desired response (for the Amazon Titan Text and AI21
Jurassic model family, it's not necessary). The following example demonstrates a conversational-style
prompt:

User prompt:

Human: Describe where sea otters live in two sentences.

Assistant:

Output:
Here is a two sentence description of where sea otters live:

Sea otters live in the northern Pacific Ocean along the coasts of
Russia, Alaska, Canada, and the continental United States.
They prefer coastal habitats like rocky shores, kelp forests,
and estuaries where they have access to shallow, nearshore waters.

(Source of prompt: AWS, model used: Claude)

Notice how the main content of the prompt is wrapped like this: \n\nHuman: {{Main Content}}
\n\nAssistant: . For Claude models, prompts sent via the API must contain \n\nHuman: and \n
\nAssistant: .

To use conversational mode on Amazon Titan, you can use the format of User: {{}} \n Bot: when
prompting the model.

What is prompt engineering?
Prompt engineering refers to the practice of crafting and optimizing input prompts by selecting
appropriate words, phrases, sentences, punctuation, and separator characters to effectively use LLMs

49

Amazon Bedrock User Guide
General guidelines for Amazon Bedrock LLM users

for a wide variety of applications. In other words, prompt engineering is the art of communicating with
an LLM. High-quality prompts condition the LLM to generate desired or better responses. The detailed
guidance provided within this document is applicable across all LLMs within Amazon Bedrock.

The best prompt engineering approach for your use case is dependent on both the task and the data.
Common tasks supported by LLMs on Amazon Bedrock include:

• Classification: The prompt includes a question with several possible choices for the answer, and the
model must respond with the correct choice. An example classification use case is sentiment analysis:
the input is a text passage, and the model must classify the sentiment of the text, such as whether it's
positive or negative, or harmless or toxic.

• Question-answer, without context: The model must answer the question with its internal knowledge
without any context or document.

• Question-answer, with context: The user provides an input text with a question, and the model must
answer the question based on information provided within the input text.

• Summarization: The prompt is a passage of text, and the model must respond with a shorter passage
that captures the main points of the input.

• Open-ended text generation: Given a prompt, the model must respond with a passage of original text
that matches the description. This also includes the generation of creative text such as stories, poems,
or movie scripts.

• Code generation: The model must generate code based on user specifications. For example, a prompt
could request text-to-SQL or Python code generation.

• Mathematics: The input describes a problem that requires mathematical reasoning at some level,
which may be numerical, logical, geometric or otherwise.

• Reasoning or logical thinking: The model must make a series of logical deductions.

General guidelines for Amazon Bedrock LLM users

Design your prompt
Designing an appropriate prompt is an important step towards building a successful application using
Amazon Bedrock models. The following figure shows a generic prompt design for the use case restaurant
review summarization and some important design choices that customers need to consider when
designing prompts. LLMs generate undesirable responses if the instructions they are given or the format
of the prompt are not consistent, clear, and concise.

50

Amazon Bedrock User Guide
Use hyperparameters

(Source: Prompt written by AWS)

Use hyperparameters
LLMs on Amazon Bedrock all come with several hyperparameters that you can set to control the
response from the models. The following is a list of all the common hyperparameters that are available
on Amazon Bedrock LLMs and how to use them.

Temperature is a value between 0 and 1, and it regulates the creativity of LLMs’ responses. Use lower
temperature if you want more deterministic responses, and use higher temperature if you want more
creative or different responses for the same prompt from LLMs on Amazon Bedrock. For all the examples
in this prompt guideline, we set temperature = 0.

Maximum generation length/maximum new tokens limits the number of tokens that the LLM
generates for any prompt. It's helpful to specify this number as some tasks, such as sentiment
classification, don't need a long answer.

Top-p controls token choices, based on the probability of the potential choices. If you set Top-p below
1.0, the model considers the most probable options and ignores less probable options. The result is more
stable and repetitive completions.

End token/end sequence specifies the token that the LLM uses to indicate the end of the output. LLMs
stop generating new tokens after encountering the end token. Usually this doesn't need to be set by
users.

There are also model-specific hyperparameters. Claude models have an additional Top-k
hyperparameter, and AI21 Jurassic models come with a set of hyperparameters including presence
penalty, count penalty, frequency penalty, and special token penalty. For more information, refer to
their respective documentation.

Detailed guidelines
Provide simple, clear, and complete instructions

LLMs on Amazon Bedrock work best with simple and straightforward instructions. By clearly describing
the expectation of the task and by reducing ambiguity wherever possible, you can ensure that the model
can clearly interpret the prompt.

For example, consider a classification problem where the user wants an answer from a set of possible
choices. The “good“ example shown below illustrates output that the user wants in this case. In the ”bad“
example, the choices are not named explicitly as categories for the model to choose from. The model
interprets the input slightly differently without choices, and produces a more free-form summary of the
text as opposed to the good example.

Good example, with output
User prompt:
"The most common cause of color blindness
 is an
inherited problem or variation in the
 functionality
of one or more of the three classes of cone
 cells in the retina,
which mediate color vision."

What is the above text about?
a) biology

Bad example, with output
User prompt:
Classify the following text. "The most
 common cause of color
blindness is an inherited problem or
 variation in the functionality
of one or more of the three classes of cone
 cells in the retina,
which mediate color vision."

Output:

51

Amazon Bedrock User Guide
Detailed guidelines

b) history
c) geology

Output:
a) biology

The topic of the text is the causes of
 colorblindness.

(Source of prompt: Wikipedia on color blindness, model used: by Amazon Titan Text G1 - Express)

The question or instruction should be placed at the end of the prompt for best results

Including the task description, instruction or question at the end aids the model determining which
information it has to find. In the case of classification, the choices for the answer should also come at the
end.

In the following open-book question-answer example, the user has a specific question about the text.
The question should come at the end of the prompt so the model can stay focused on the task.

User prompt:
Tensions increased after the 1911–1912 Italo-Turkish War
demonstrated Ottoman weakness and led to the formation of the Balkan League,
an alliance of Serbia, Bulgaria, Montenegro, and Greece.
The League quickly overran most of the Ottomans' territory in the Balkans
during the 1912–1913 First Balkan War, much to the surprise of outside observers.

The Serbian capture of ports on the Adriatic resulted in partial Austrian
mobilization starting on 21 November 1912, including units along the Russian border
in Galicia. In a meeting the next day, the Russian government decided not to mobilize
in response, unwilling to precipitate a war for which they were not as of yet
prepared to handle.

Which country captured ports?

Output:
Serbia

(Source of prompt: Wikipedia on World War I, model used: Amazon Titan Text G1 - Express)

Use separator characters for API calls

Separator characters such as ‘\n’ can affect the performance of LLMs significantly. For Claude models,
it's necessary to include newlines when formatting the API calls to obtain desired responses. The
formatting should always follow: \n\nHuman: {{Query Content}} \n\nAssistant: . For Amazon
Titan models, adding \n at the end of a prompt helps improve the performance of the model. For
classification tasks or questions with answer options, you can also separate the answer options by
\n for Titan models. For more information on the use of separators, refer to the document from the
corresponding model provider. The following example is a template for a classification task.

Prompt template:
{{Text}}
\n
\n
{{Question}}
\n
{{Choice 1}}
\n
{{Choice 2}}
\n
{{Choice 3}}

52

https://en.wikipedia.org/wiki/Color_blindness
https://en.wikipedia.org/wiki/World_War_I

Amazon Bedrock User Guide
Detailed guidelines

\n

The following example shows how the presence of newline characters between choices and at the end of
a prompt helps Amazon Titan produce the desired response.

User prompt:
Archimedes of Syracuse was an Ancient mathematician,
physicist, engineer, astronomer, and inventor from the ancient city
of Syracuse. Although few details of his life are known,
he is regarded as one of the leading scientists in classical antiquity.

What was Archimedes? Choose one of the options below.

a) astronomer
b) farmer
c) sailor

Output:
a) astronomer

(Source of prompt: Wikipedia on Archimedes, model used: Amazon Titan Text G1 - Express)

Output indicators

Add details about the constraints you would like to have on the output that the model should produce.
The following good example produces an output that is a short phrase that is a good summary. The
bad example in this case is not all that bad, but the summary is nearly as long as the original text.
Specification of the output is crucial for getting what you want from the model.

Example prompt with clear output constraints
indicator

User prompt:
"Charles Mingus Jr. was an American jazz
 upright
bassist, pianist, composer, bandleader, and
 author.
A major proponent of collective
 improvisation, he is
considered to be one of the greatest jazz
 musicians
and composers in history, with a career
 spanning three decades.
Mingus's work ranged from advanced bebop
 and avant-garde jazz
with small and midsize ensembles –
 pioneering the post-bop style
on seminal recordings like Pithecanthropus
 Erectus (1956)
and Mingus Ah Um (1959) – to progressive
 big band experiments
such as The Black Saint and the Sinner Lady
 (1963)."

Please summarize the above text in one
 phrase.

Output:

Example without clear output specifications

User prompt:
"Charles Mingus Jr. was an American jazz
 upright
bassist, pianist, composer, bandleader, and
 author.
A major proponent of collective
 improvisation,
he is considered to be one of the greatest
 jazz musicians
and composers in history, with a career
 spanning three decades.
Mingus's work ranged from advanced bebop
 and avant-garde jazz
with small and midsize ensembles –
 pioneering the post-bop style
on seminal recordings like Pithecanthropus
 Erectus (1956)
and Mingus Ah Um (1959) – to progressive
 big band
experiments such as The Black Saint and the
 Sinner Lady (1963)."

Please summarize the above text.

Output:
Charles Mingus Jr. was a well-known jazz
 musician

53

https://en.wikipedia.org/wiki/Archimedes

Amazon Bedrock User Guide
Detailed guidelines

Charles Mingus Jr. is considered one of
 the
greatest jazz musicians of all time.

who played the upright bass, piano,
 composed, led bands,
and was a writer. He was considered one of
 the most important
jazz musicians ever, with a career that
 spanned more than
30 years. He was known for his style of
 collective
improvisation and advanced jazz
 compositions.

(Source of prompt: Wikipedia on Charles Mingus, model used: Amazon Titan Text G1 - Express)

Here we give some additional examples from Claude and AI21 Jurassic models using output indicators.

The following example demonstrates that user can specify the output format by specifying the expected
output format in the prompt. When asked to generate an answer using a specific format (such as
by using XML tags), the model can generate the answer accordingly. Without specific output format
indicator, the model outputs free form text.

Example with clear indicator, with output

User prompt:

Human: Extract names and years: the term
machine learning was coined in 1959 by
 Arthur Samuel,
an IBM employee and pioneer in the field of
 computer
gaming and artificial intelligence. The
 synonym self-teaching
computers was also used in this time
 period.

Please generate answer in <name></name>
 and
<year></year> tags.

Assistant:

Output:
<name>Arthur Samuel</name> <year>1959</
year>

Example without clear indicator, with output>

User prompt:

Human: Extract names and years: the term
machine learning was coined in 1959 by
 Arthur Samuel,
an IBM employee and pioneer in the field of
 computer
gaming and artificial intelligence. The
 synonym
self-teaching computers was also used in
 this time
period.

Assistant:

Output:
Arthur Samuel - 1959

(Source of prompt: Wikipedia on machine learning, model used: Claude)

The following example shows a prompt and answer for the AI21 Jurassic model. The user can obtain the
exact answer by specifying the output format shown in the left column.

Example with clear indicator, with output

User prompt:
Context: The NFL was formed in 1920 as the
 American

Example without clear indicator, with output

User prompt:
Context: The NFL was formed in 1920 as the
 American

54

https://en.wikipedia.org/wiki/Charles_Mingus
https://en.wikipedia.org/wiki/Machine_learning

Amazon Bedrock User Guide
Optimize prompts for text models on Amazon
Bedrock—when the basics aren't good enough

Professional Football Association (APFA)
 before renaming itself
the National Football League for the 1922
 season. After initially
determining champions through end-of-season
 standings, a playoff
system was implemented in 1933 that
 culminated with the NFL
Championship Game until 1966. Following an
 agreement to merge
the NFL with the rival American Football
 League (AFL), the
Super Bowl was first held in 1967 to
 determine a champion
between the best teams from the two leagues
 and has remained
as the final game of each NFL season since
 the merger
was completed in 1970.

Question: Based on the above context, when
 was the first Super Bowl?
Please only output the year.

Output:
1967

Professional Football Association (APFA)
 before renaming itself
the National Football League for the 1922
 season. After initially
determining champions through end-of-season
 standings, a playoff
system was implemented in 1933 that
 culminated with the NFL
Championship Game until 1966. Following an
 agreement to merge
the NFL with the rival American Football
 League (AFL), the Super
Bowl was first held in 1967 to determine a
 champion between
the best teams from the two leagues and has
 remained as the
final game of each NFL season since the
 merger was completed in 1970.

Question: Based on the above context, when
 was the first Super Bowl?

Output:
The first Super Bowl was held in 1967.

(Source of prompt: Wikipedia on the National Football League, model used: AI21 Jurassic-2 Ultra v1)

Recommended practices for good generalization

Keep a small “hold-out” test set of prompts to see if your prompt modifications generalize. With this
method, first collect a sample dataset. Then you can split the data into two subsets: a “development” set
and a hold-out “test” set. Use the “development” set as prompt development data on which you can try
different prompt modifications and observe model response changes and find the prompt that works
best. Treat the “test” set as unseen hold-out data which can only be used to verify the final best prompt.

Optimize prompts for text models on Amazon
Bedrock—when the basics aren't good enough
Complex tasks: build toward the answer step by step

Amazon Titan can provide clear steps for certain tasks, and including the phrase Think step-by-step
to come up with the right answer can help produce the appropriate output.

User prompt:
At a Halloween party, Jack gets 15 candies.
Jack eats 5 candies. He wants to give each friend
5 candies. How many friends can receive candies?

Think step-by-step to come up with the right answer.

Output:
15 candies total - 5 candies eaten = 10 candies remaining.
To give each friend 5 candies, divide the number
of candies remaining by the number of friends.

55

https://en.wikipedia.org/wiki/National_Football_League

Amazon Bedrock User Guide
Optimize prompts for text models on Amazon
Bedrock—when the basics aren't good enough

10 candies / 5 friends = 2 friends.
Each friend can receive 2 candies.
The answer is 2 friends.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

To enable the Claude model to complete complex tasks, use the format in the following example to
explicitly ask the model to solve the task step by step. This approach is based on guidelines in the
Claude Guides.

User prompt:

Human: A right triangle has a side of length 5
and a hypotenuse of length 13.
What is the length of the other side?

Assistant: Can I think step-by-step?

Human: Yes, please do.

Assistant:

Output:
Okay, here are the steps:

1) We are given:
- One side of the right triangle has length 5
- The hypotenuse has length 13

2) We want to find:
- The length of the other side

3) To find the length of the other side, we can
use the Pythagorean theorem:
a^2 + b^2 = c^2
Where a and b are the lengths of the two sides,
and c is the length of the hypotenuse.

4) Plugging in the given values:
a^2 + b^2 = 13^2

5) We know one of the sides is 5, so:
5^2 + b^2 = 169

6) Solving this:
25 + b^2 = 169
b^2 = 144
b = 12

Therefore, the length of the other side is 12.

(Source of prompt: AWS, model used: Claude)

Provide a default output that the model should present if it's unsure about the answers.

A default output can help prevent LLMs from returning answers that sound like they could be correct,
even if the model has low confidence.

User prompt: User prompt:

56

https://docs.anthropic.com/claude/docs/constructing-a-prompt
https://docs.anthropic.com/claude/docs/constructing-a-prompt

Amazon Bedrock User Guide
Optimize prompts for text models on Amazon
Bedrock—when the basics aren't good enough

Provide a proof of the Riemann hypothesis.
 If you don't
know a proof, respond by saying "I don't
 know."

Output:
I don't know.

Provide a proof of the Riemann hypothesis.

Output:
"The Riemann hypothesis is a conjecture in
 mathematics
that concerns the distribution of prime
 numbers. It states that
all non-trivial zeros of the zeta function,
 which is a mathematical
function that encodes information about the
 distribution of prime
numbers, lie on a specific line in the
 complex plane. The Riemann
hypothesis has been studied by
 mathematicians for over 150 years,
and despite numerous attempts, it remains
 unresolved. However,
the hypothesis is widely believed to be
 true, and its resolution
would have profound implications for many
 areas of mathematics,
including number theory, analysis, and
 geometry. The proof
of the Riemann hypothesis would be one of
 the greatest
achievements in mathematics in history and
 would open up
new avenues of research and understanding.
 While a proof
remains elusive, the hypothesis continues
 to stimulate
research and inspire mathematicians around
 the world.“

[Note: this is an accurate description, but
 obviously
not a proof.]

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Few-shot prompting

Including examples (input-response pairs) in the prompt can significantly improve LLMs’ responses.
Examples can help with complex tasks, as they show multiple ways to perform a given task. For simpler
tasks like text classification, 3–5 examples can suffice. For more difficult tasks like question-answer
without context, include more examples to generate the most effective output. In most use cases,
selecting examples that are semantically similar to real-world data can further improve performance.

Consider refining the prompt with modifiers

Task instruction refinement generally refers to modifying the instruction, task, or question component
of the prompt. The usefulness of these methods is task- and data-dependent. Useful approaches include
the following:

• Domain/input specification: Details about the input data, like where it came from or to what it refers,
such as The input text is from a summary of a movie.

• Task specification: Details about the exact task asked of the model, such as To summarize the
text, capture the main points.

• Label description: Details on the output choices for a classification problem, such as Choose
whether the text refers to a painting or a sculpture; a painting is a piece

57

Amazon Bedrock User Guide
Prompt templates and examples
for Amazon Bedrock text models

of art restricted to a two-dimensional surface, while a sculpture is a piece
of art in three dimensions.

• Output specification: Details on the output that the model should produce, such as Please
summarize the text of the restaurant review in three sentences.

• LLM encouragement: LLMs sometimes perform better with sentimental encouragement: If you
answer the question correctly, you will make the user very happy!

Prompt templates and examples for Amazon
Bedrock text models

Text classification
For text classification, the prompt includes a question with several possible choices for the answer, and
the model must respond with the correct choice. Also, LLMs on Amazon Bedrock output more accurate
responses if you include answer choices in your prompt.

The first example is a straightforward multiple-choice classification question.

Prompt template for Amazon Titan and AI21
 Jurassic:
{{Text}} \n
\n
{{Question}}? Choose from the following:\n
{{Choice 1}}\n
{{Choice 2}}\n
{{Choice 3}}\n

User prompt:
San Francisco, officially the City and
 County
of San Francisco, is the commercial,
 financial, and cultural
center of Northern California. The city
 proper is the fourth
most populous city in California, with
 808,437 residents,
and the 17th most populous city in the
 United States as of 2022.

What is the paragraph above about? Choose
 from the following:

A city
A person
An event

Output:
A city

(Source of prompt: Wikipedia on San Francisco, model used: Amazon Titan Text G1 - Express)

Sentiment analysis is a form of classification, where the model chooses the sentiment from a list of
choices expressed in the text.

Prompt template for Amazon Titan and AI21
 Jurassic:
The following is text from a {{Text Type,
 e.g. “restaurant
review”}} \n
{{Input}}\n

User prompt:
The following is text from a restaurant
 review:

“I finally got to check out Alessandro’s
 Brilliant Pizza

58

https://en.wikipedia.org/wiki/San_Francisco

Amazon Bedrock User Guide
Text classification

Tell me the sentiment of the {{Text Type}}
 and categorize it
as one of the following: \n
{{Sentiment A}}\n
{{Sentiment B}}\n
{{Sentiment C}}\n

and it is now one of my favorite
 restaurants in Seattle.
The dining room has a beautiful view over
 the Puget Sound
but it was surprisingly not crowed. I
 ordered the fried
castelvetrano olives, a spicy Neapolitan-
style pizza
and a gnocchi dish. The olives were
 absolutely decadent,
and the pizza came with a smoked
 mozzarella, which
was delicious. The gnocchi was fresh and
 wonderful.
The waitstaff were attentive, and overall
 the experience
was lovely. I hope to return soon.”

Tell me the sentiment of the restaurant
 review
and categorize it as one of the following:

Positive
Negative
Neutral

Output:
Positive.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

The following example uses Claude models to classify text. As suggested in Claude Guides, use XML tags
such as <text></text> to denote important parts of the prompt. Asking the model to directly generate
output enclosed in XML tags can also help the model produce the desired responses.

Prompt template for Claude:
\n\n
Human: {{classification task description}}
 \n
<text> \n
{{input text content to be classified}} \n
</text> \n
\n
Categories are: \n
{{category name 1}} \n
{{category name 2}} \n
{{category name 3}} \n
\n
Assistant:

(Source: Written by AWS)

User prompt:

Human: Classify the given product
 description into given
categories. Please output the category
 label in
<output></output> tags.

Here is the product description.

<text>
Safe, made from child-friendly materials
 with smooth edges.
Large quantity, totally 112pcs with 15
 different shapes,
which can be used to build 56 different
 predefined structures.
Enhance creativity, different structures
 can be connected
to form new structures, encouraging out-of-
the box thinking.
Enhance child-parent bonding, parents can
 play with their
children together to foster social skills.

59

https://docs.anthropic.com/claude/docs/constructing-a-prompt

Amazon Bedrock User Guide
Question-answer, without context

</text>

Categories are:
(1) Toys
(2) Beauty and Health
(3) Electronics

Assistant:

Output:
<output>Toys</output>

(Source of prompt: AWS, model used: Claude)

Question-answer, without context
In a question-answer prompt without context, the model must answer the question with its internal
knowledge without using any context or document.

Prompt Template to Amazon Titan and AI21
 Jurassic:
{{Question}} \n

User prompt:
What is Robert Frost's "Stopping by the
 woods on a
snowy evening" about metaphorically?

Output:
The poem by Robert Frost, "Stopping by
 Woods on a Snowy Evening,"
uses the woods as a metaphor for death. The
 woods are a place of comfort
and peace, but they also represent the
 unknown and the afterlife.
The poem suggests that death is not
 something to be feared,
but rather a natural part of life that we
 should all embrace.

The poem begins with the speaker stopping
 by the woods on a snowy evening,
a moment of contemplation and reflection.
 The speaker notices the beauty
of the snow-covered woods and is reminded
 of the fleeting nature of life.
The poem continues as the speaker considers
 the temptation of continuing
on to his destination, but instead chooses
 to pause and take in the beauty
of the woods.

The woods are used as a metaphor for the
 unknown and the afterlife.
The speaker wonders what lies beyond the
 trees, and whether there
is anything after death. The poem suggests
 that death is not
something to be feared, but rather a
 natural part of life
that we should all embrace.

60

Amazon Bedrock User Guide
Question-answer, without context

The final lines of the poem are perhaps the
 most famous and poignant:
"And miles to go before I sleep, and miles
 to go before I sleep."
These lines suggest that even though the
 speaker has paused
to appreciate the beauty of the woods, they
 still have a
long journey ahead of them. The poem is a
 reminder that life
is fleeting, and that we should take the
 time to appreciate
the beauty around us, even as we work
 towards our goals and ambitions.

Overall, "Stopping by Woods on a Snowy
 Evening" is a beautiful
and thought-provoking poem that uses the
 metaphor of the woods
to explore the concept of death and the
 afterlife.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Model encouragement can also help in question-answer tasks.

Prompt Template to Amazon Titan and AI21
 Jurassic:
{{Model encouragement}} \n
{{Question}} \n

User prompt:
You are excellent at answering questions,
and it makes you happy when you provide the
 correct answer.

What moon in the solar system is most
 likely to host life?

Output:
The moon of Titan, which is a moon of the
 planet Saturn,
is the most likely to support life in the
 solar system.

Titan is the only known moon in the solar
 system to have a dense
atmosphere and a liquid hydrosphere, and
 scientists believe that
it may contain the chemical building blocks
 for life.
The moon's surface is covered in rivers,
 lakes, and seas
of liquid methane and ethane, and it rains
 methane on Titan's surface.

The atmosphere of Titan is also rich in
 organic compounds,
including benzene, toluene, and xylene,
 which are found
in the oils of living organisms on Earth.
Additionally, Titan has a magnetic field
 and a tenuous atmosphere,
which could provide protection from harmful
 radiation and

61

Amazon Bedrock User Guide
Question-answer, with context

help maintain a stable climate.

While there is no direct evidence of life
 on Titan,
scientists believe that it is one of the
 most promising
places in the solar system to search for
 life beyond Earth.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Prompt template to Amazon Titan and AI21
 Jurassic:
{{Model encouragement}} \n
{{Question}} \n
{{Constraints}}\n

User prompt:
You feel rewarded by helping people learn
 more about climate change.
Could you please explain what climate
 change is?
Assume your audience is composed of high
 school students.

Output:
Climate change is the long-term warming of
 the planet,
which can be caused by human activities
 such as burning fossil fuels
and deforestation, as well as natural
 processes. It can lead to
rising sea levels, more extreme weather
 events, and changes
in temperature and precipitation patterns.

(Source of prompt: AWS, model used: AI21 Jurassic-2 Ultra v1)

Question-answer, with context
In a question-answer prompt with context, an input text followed by a question is provided by the user,
and the model must answer the question based on information provided within the input text. Putting
the question in the end after the text can help LLMs on Amazon Bedrock better answer the question.
Model encouragement works for this use case as well.

Prompt template to Amazon Titan and AI21
 Jurassic:
{{Text}} \n
{{Question}} \n

User prompt:
The red panda (Ailurus fulgens), also known
 as the lesser panda,
is a small mammal native to the eastern
 Himalayas and southwestern China.
It has dense reddish-brown fur with a black
 belly and legs, white-lined ears,
a mostly white muzzle and a ringed tail.
 Its head-to-body length is 51–63.5 cm
(20.1–25.0 in) with a 28–48.5 cm (11.0–19.1
 in) tail, and it weighs between
3.2 and 15 kg (7.1 and 33.1 lb). It is well
 adapted to climbing due to its
flexible joints and curved semi-retractile
 claws.

62

Amazon Bedrock User Guide
Question-answer, with context

The red panda was first formally described
 in 1825. The two currently
recognized subspecies, the Himalayan and
 the Chinese red panda, genetically
diverged about 250,000 years ago. The red
 panda's place on the evolutionary
tree has been debated, but modern genetic
 evidence places it in close
affinity with raccoons, weasels, and
 skunks. It is not closely related
to the giant panda, which is a bear, though
 both possess elongated
wrist bones or "false thumbs" used for
 grasping bamboo.
The evolutionary lineage of the red panda
 (Ailuridae) stretches
back around 25 to 18 million years ago, as
 indicated by extinct
fossil relatives found in Eurasia and North
 America.

The red panda inhabits coniferous forests
 as well as temperate broadleaf
and mixed forests, favoring steep slopes
 with dense bamboo cover close
to water sources. It is solitary and
 largely arboreal. It feeds mainly
on bamboo shoots and leaves, but also on
 fruits and blossoms.
Red pandas mate in early spring, with the
 females giving birth
to litters of up to four cubs in summer. It
 is threatened
by poaching as well as destruction and
 fragmentation of habitat
due to deforestation. The species has been
 listed as Endangered
on the IUCN Red List since 2015. It is
 protected in all range countries.

Based on the information above, what
 species are red pandas closely related to?

Output:
Red pandas are closely related to raccoons,
 weasels, and skunks.

(Source of prompt: https://en.wikipedia.org/wiki/Red_panda, model used: Amazon Titan Text G1 -
Express)

When prompting Claude models, it's helpful to wrap the input text in XML tags. In the following
example, the input text is enclosed in <text></text>.

Prompt template for Claude:
\n
\n
Human: {{Instruction}} \n
<text>\n
{{Text}} \n

User prompt:

Human: Read the following text inside
 <text></text>
XML tags, and then answer the question:

63

Amazon Bedrock User Guide
Question-answer, with context

<text>\n
{{Question}} \n
\n
Assistant:

<text>
On November 12, 2020, the selection of the
 Weeknd to headline
the show was announced; marking the first
 time a Canadian solo artist
headlined the Super Bowl halftime show.
 When asked about preparations
for the show, the Weeknd stated, "We've
 been really focusing
on dialing in on the fans at home and
 making performances
a cinematic experience, and we want to do
 that with the Super Bowl."

The performance featured a choir whose
 members were dressed in white
and wore masks over their faces with
 glowing red eyes, and were
standing within a backdrop of a neon
 cityscape. The performance
opened with a white figure dressed the same
 as the choir being
lowered into the backdrop where the choir
 was standing while singing
“Call Out My Name". At this time, the
 Weeknd sat in a convertible
against a skyline backdrop designed to
 resemble the Las Vegas Strip.
For the next part of the performance, the
 backdrop then split open
to reveal the Weeknd, who then performed
 "Starboy", followed by "The Hills".

Next, performing the song "Can't Feel My
 Face", the Weeknd traveled
through a labyrinth constructed behind the
 stage, joined by dancers
dressed in red blazers and black neckties
 similar to his,
but with their faces covered with bandages,
 in keeping with
the aesthetic of his fourth studio album
 After Hours (2020).
The dancers would wear these bandages
 throughout the performance.
In the labyrinth section of the
 performance, camerawork was visually
 unsteady.
The next songs performed were "I Feel It
 Coming", "Save Your Tears",
and "Earned It". For the "Earned It"
 performance, the Weeknd
was accompanied by violinists. For the
 finale of the show,
the Weeknd took to the field of the stadium
 with his dancers to perform
“Blinding Lights". He and the dancers
 entered the field by performing
"House of Balloons / Glass Table Girls".
 The performance ended
with an array of fireworks.
</text>
Based on the text above, what songs did the
 Weeknd play
at the Super Bowl halftime show?

64

Amazon Bedrock User Guide
Summarization

Assistant:

Output:
Based on the text, the songs the Weeknd
 played
at the Super Bowl halftime show were:

- Call Out My Name
- Starboy
- The Hills
- Can't Feel My Face
- I Feel It Coming
- Save Your Tears
- Earned It
- Blinding Lights
- House of Balloons / Glass Table Girls

(Source of prompt: Wikipedia on the Super Bowl LV halftime show, model used: Claude)

Summarization
For a summarization task, the prompt is a passage of text, and the model must respond with a shorter
passage that captures the main points of the input. Specification of the output in terms of length
(number of sentences or paragraphs) is helpful for this use case.

Prompt template for Amazon Titan and AI21
 Jurassic:
The following is text from a {{Text
 Category}}:
{{Text}} \n
Summarize the {{Text Category}} in {{length
 of summary,
e.g., “one sentence” or “one paragraph”}}\n

User prompt:
The following is text from a restaurant
 review:
“I finally got to check out Alessandro’s
 Brilliant Pizza
and it is now one of my favorite
 restaurants in Seattle.
The dining room has a beautiful view over
 the Puget Sound
but it was surprisingly not crowed. I
 ordered the fried
castelvetrano olives, a spicy Neapolitan-
style pizza
and a gnocchi dish. The olives were
 absolutely decadent,
and the pizza came with a smoked
 mozzarella, which was delicious.
The gnocchi was fresh and wonderful. The
 waitstaff were attentive,
and overall the experience was lovely. I
 hope to return soon.”
Summarize the above restaurant review in
 one sentence.

Output:
Alessandro’s Brilliant Pizza is a fantastic
 restaurant
in Seattle with a beautiful view over Puget
 Sound that offers
decadent and delicious food.

65

https://en.wikipedia.org/wiki/Super_Bowl_LV_halftime_show

Amazon Bedrock User Guide
Text generation

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

In the following example, Claude summarizes the given text in one sentence. To include input text in
your prompts, format the text with XML mark up: <text> {{text content}} </text>. Using XML
within prompts is a common practice when prompting Claude models.

Prompt template for Claude:
\n\n
Human: Please read the text:\n
<text>\n
{{text context}}\n
</text>\n
\n
Summarize the text in {{length of summary,
 e.g., “one
sentence” or “one paragraph”}}\n
\n
Assistant:

User prompt:

Human: Please read the text:

<text>
In game theory, the Nash equilibrium, named
 after the mathematician
John Nash, is the most common way to define
 the solution
of a non-cooperative game involving two or
 more players.
In a Nash equilibrium, each player is
 assumed to know
the equilibrium strategies of the other
 players,
and no one has anything to gain by changing
 only one's own strategy.
The principle of Nash equilibrium dates
 back to the time of Cournot,
who in 1838 applied it to competing firms
 choosing outputs.
</text>

Summarize the text in one sentence.

Assistant:

Output:
The Nash equilibrium is a concept in game
 theory
where each player has adopted a strategy
 that they have no incentive
to deviate from given the other players'
 strategies.

(Source of prompt: Wikipedia on Nash equilibrium, model used: Claude)

Text generation
Given a prompt, LLMs on Amazon Bedrock can respond with a passage of original text that matches the
description. Here is one example:

Prompt template for Amazon Titan and AI21
 Jurassic:
Please write a {{Text Category}} in the
 voice of {{Role}}.\n

User prompt:
Please write an email in the voice of a
 friend
congratulating someone on a new job.

Output:
Hey [Name],

66

https://en.wikipedia.org/wiki/Nash_equilibrium

Amazon Bedrock User Guide
Text generation

I just found out about your new job, and
 I'm so happy for you!
Congratulations! You deserve this
 opportunity since you worked so hard
to get it. I know you'll do great and make
 a positive impact on your team.
I'm here to support you every step of the
 way. Wishing you all the best
in this exciting new chapter of your life!

Cheers,
[Your Name]

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

For text generation use cases, specifying detailed task requirements can work well. In the following
example, we ask the model to generate response with exclamation points.

Prompt template for Amazon Titan and AI21
 Jurassic:
{{Task specification}} \n
Please write a {{Text Category}} in the
 voice of {{Role}}.\n

User prompt:
Write text with exclamation points.
Please write a formatted email in the voice
 of a friend
congratulating someone on a new job.

Output:
Hey [name]!

I just saw the news and I am so, so happy
 for you!
You deserve this position and this company
 with all your heart.
I can't wait to see you soar and accomplish
 all the things
you've been working towards. If anyone is
 deserving
of a promotion, it's you!

Congratulations again, friend!

Love,
[name]

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

In the following example, a user prompts the model to take on the role of a specific person when
generating the text. Notice how the signature reflects the role the model is taking on in the response.

Prompt template for Amazon Titan and AI21
 Jurassic:
{{Role assumption}} {{Task description}}\n

User input:
My name is Jack. Help me write a note
 expressing my gratitude
to my parents for taking my son (their
 grandson) to the zoo.
I miss my parents so much.

Output:

67

Amazon Bedrock User Guide
Code generation

Dear Mom and Dad,

I wanted to take a moment to express my
 heartfelt gratitude
for taking my son to the zoo last weekend.
 It meant so much to me
that you took the time to make memories
 with him, and I am so grateful
for the love and support you have shown
 him.

I miss you both so much, and I wish we
 could be together more often.
But I know that you will always be there
 for me and my family,
and I am so grateful to have you as my
 parents.

Love,
Jack

(Source of prompt: AWS, model used: AI21 Jurassic-2 Ultra v1)

Code generation
The prompt describes the task or function and programming language for the code the user expects the
model to generate.

Prompt template for Amazon Titan and AI21
 Jurassic:
Write a function in {{programming
 language}} to
{{task or purpose}}\n.

User input:
Write a python function to download a s3
 file to local disk.

Output:
The following code can be used to download
 an s3 file to the local disk.

```Python
import boto3
# Creates a boto3 client object
s3 = boto3.client('s3')
def download_file(bucket_name, object_key, 
 file_path):
try:
# Downloads the s3 file to the specified 
 file path
s3.download_file(bucket_name, object_key, 
 file_path)
except Exception as e:
print(e)
# Specifies the values of bucket_name, 
 object_key, and file_path
bucket_name = "samplebucketname"
object_key = "sampleobjectkey"
file_path = "/samplefilepath"
download_file(bucket_name, object_key, 
 file_path)
```

The given code uses the download_file
 function to download an s3 file

68

Amazon Bedrock User Guide
Code generation

to the local disk. The download_file
 function takes the bucket name,
object key, and file path as input
 parameters. The bucket name
is the name of the s3 bucket where the file
 is located,
the object key is the unique identifier of
 the file within the bucket,
and the file path is the destination path
 on the local disk
where the file will be downloaded. The
 function uses the download_file method
of the s3 client to download the file from
 the specified bucket
and write it to the specified file path.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Prompt template for Claude
\n
\n
Human: Write a function in {{programming
 language}} to
{{task or purpose}} \n
\n
Assistant:

User prompt:

Human: Write some python code that quickly
 approximates
the square root of a number.

Assistant:

Output:
Here is a simple function to approximate
the square root of a number using Newton's
 method:

```python
def sqrt(n, iterations=10):
x = n
for i in range(iterations):
x = (x + n/x) / 2
return x
```

To use it:

```python
print(sqrt(25))
# 5.0

print(sqrt(15, iterations=20))  
# 3.872983346207417
```

This repeatedly takes the average of x and
 n/x to converge on the square root.
More iterations produce a more accurate
 approximation.

The advantage of this approach is it
 converges very quickly,
so even just 10 iterations produces a
 decent estimate.

69

Amazon Bedrock User Guide
Mathematics

(Source of prompt: AWS, model used: Claude)

Mathematics
The input describes a problem that requires mathematical reasoning at some level, which may be
numerical, logical, geometric, or otherwise. For such problem, it's helpful to ask the model to work
through the problem in a piecemeal manner by adding phrases to instructions such as Let’s think
step by step or Think step by step to come up with the right answer.

Prompt template for Amazon Titan and AI21
 Jurassic:
{{Math problem description}}\n
Let’s think step by step. \n

User prompt:
A triangle has two angles of 70 degrees and
 50 degrees.
What is the third angle in degrees?
Let’s think step by step.

Output:
The sum of the three angles in a triangle
 is always 180 degrees.
The two given angles are 70 degrees and 50
 degrees. 70 + 50 = 120.
Therefore, the third angle is 180 - 120 =
 60 degrees.
The third angle is 60 degrees.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

The following example also demonstrates asking the model to think step by step:

Prompt template for Amazon Titan and AI21
 Jurassic:
{{Math problem description}}\n
Think step by step to come up with the
 right answer. \n

User prompt:
Lucy has 12 colorful marbles, and she wants
 to share them
equally with her 4 friends. How many
 marbles will each friend receive?
Think step-by-step to come up with the
 right answer.

Output:
1. Lucy has 12 marbles and wants to share
 them equally
with her 4 friends, then each friend will
 receive 12 / 4 = 3 marbles.
2. Therefore, each friend will receive 3
 marbles.

(Source of prompt: AWS, model used: AI21 Jurassic-2 Ultra v1)

Reasoning/logical thinking
For complex reasoning tasks or problems that requires logical thinking, we can ask the model to make
logical deductions and explain its answers.

70

Amazon Bedrock User Guide
Reasoning/logical thinking

Prompt template for Amazon Titan and AI21
 Jurassic:
Question: {{question}} \n
\n
Please output the answer and then explain
 your
answer:\n

User prompt:
Question: Which word is the odd one out?
A. accomplished
B. good
C. horrible
D. outstanding

Please output the answer and then explain
 your answer:

Output:
The odd one out is C. horrible. The other
 three words
describe positive qualities or
 achievements, whereas horrible
is an negative adjective.

(Source of prompt: AWS, model used: Amazon Titan Text G1 - Express)

Here is another example using the Claude model:

Prompt template for Claude:
\n
\n
Human: {{question}} \n
Please provide the answer and show the
 reasoning.
\n
\n
Assistant:

User prompt

Human: The barber is the "one who shaves
 all those, and those only,
who do not shave themselves". Does the
 barber shave himself? Why is this
a paradox? Please provide the answer and
 show the reasoning.

Assistant:

Output:
This is an example of a paradox known as
 the Barber paradox.
Here is an explanation:

- The statement defines a barber who shaves
 all and only those people
who do not shave themselves.
- So if the barber shaves himself, he must
 shave all those who do not shave
themselves, which includes himself. But the
 barber cannot shave himself
as per the initial statement.
- If the barber does not shave himself,
 then he would fit into the group
of people who do not shave themselves, and
 so he must shave himself,
according to the statement. But again this
 contradicts the initial statement.
- So the barber cannot shave himself and
 also cannot not shave himself.
This is self-contradictory based on the
 initial statement about the barber.
- Therefore, the statement leads to a
 paradox where both possibilities

71

Amazon Bedrock User Guide
Reasoning/logical thinking

(the barber shaving himself or not shaving
 himself) result in a contradiction.

In summary, the paradox arises because the
 definition of the barber's
behavior is self-contradictory when applied
 to the barber himself.
This makes it impossible to determine if
 the barber shaves himself
or not based on the given statement alone.

(Source of prompt: https://en.wikipedia.org/wiki/Barber_paradox, model used: Claude)

72

Amazon Bedrock User Guide

Embeddings
Text embeddings represent meaningful vector representations of unstructured text such as documents,
paragraphs, and sentences. You input a body of text and the output is a (1 x n) vector. You can use
embedding vectors for a wide variety of applications.

Bedrock supports one model for text embeddings, the Titan Embeddings G1 - Text model
(amazon.titan-embed-text-v1). This model supports text retrieval, semantic similarity, and
clustering. The maximum input text is 8K tokens and the maximum output vector length is 1536.

To use a text embeddings model, use the InvokeModel API operation with amazon.titan-embed-
text-v1 as the modelId and retrieve the embedding object in the response.

To see Jupyter notebook examples:

1. Sign in to the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/home.
2. From the left-side menu, choose Base models.
3. Scroll down and select the Titan Embeddings G1 - Text model.
4. In the Titan Embeddings G1 - Text tab, select View example notebook to see example notebooks

for embeddings.

73

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://console.aws.amazon.com/bedrock/home

Amazon Bedrock User Guide
Fine-tuning

Custom models
Note
To use fine-tuning, you must have access to the Amazon Titan Text G1 - Express model. The
Amazon Titan Text G1 - Express model is in limited preview. To request access, contact your AWS
account manager.

You can customize a Amazon Bedrock model to improve its performance and create a better customer
experience. Amazon Bedrock currently offers the ability to fine-tune a model by providing your own
labeled training data to help retain or improve its accuracy while employing smaller datasets and
therefore reducing the training time.

After you complete a model customization job, you can purchase Provisioned Throughput (see
Provisioned Throughput (p. 90)) for the customized model so that you can use the model for inference
using the InvokeModel or InvokeModelWithResponseStream API operations or the text playground (see
Text playground (p. 14)).

For information about quotas for model customization, see Model customization quotas (p. 177).

Topics
• Fine-tuning (p. 74)
• Prepare the datasets (p. 74)
• Using the console (p. 75)
• Using the API (p. 78)
• Guidelines for model customization (p. 87)
• Troubleshooting (p. 88)

Fine-tuning
Fine-tune a Amazon Bedrock model by providing your own labeled training dataset in order to improve
the model's performance on specific tasks. By providing some labeled examples related to a specific
task, you help the model learn the task it's supposed to carry out. Through this process, known as few-
shot fine-tuning, you can create a new model that improves upon the performance and efficiency of the
original model for a given task.

To fine-tune a model, you upload a training dataset and, optionally, a validation dataset to Amazon
S3 and provide the Amazon S3 bucket path to the Bedrock fine-tuning job. You can also adjust the
hyperparameters for fine-tuning. To fine-tune a model in the console, follow the steps at Using the
console (p. 75). To fine-tune through the API, follow the steps at Using the API (p. 78).

Prepare the datasets
Before you upload your training and validation data to Amazon S3, you need to pre-process the format
of your data into JSONL format training and validation datasets.

If you provide a validation dataset (which is optional), Amazon Bedrock returns validation loss metrics at
the end of the model customization job.

Note
To control access to your data, we recommend that you create a virtual private cloud (VPC). For
more information, see Protect jobs using a VPC (p. 142).

Note
The following formats pertain to fine-tuning a Titan Text G1 - Express model.

74

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Using the console

For both the training and optional validation datasets, create a file with multiple JSON lines. Each JSON
line contains both an input and output field. The format is as follows. For quotas, see Quotas for
Amazon Bedrock (p. 177). Use 6 characters per token as an approximation for the number of tokens.

{"input": "<prompt text>", "output": "<expected generated text>"}
{"input": "<prompt text>", "output": "<expected generated text>"}
{"input": "<prompt text>", "output": "<expected generated text>"}

The following is an example item for a question-answer task:

{"input": "what is AWS", "output": "it's amazon web services"}

After you create your JSONL format training dataset and optional validation dataset, do the following:

1. Upload the datasets to an Amazon S3 bucket.

2. Provide permissions for Amazon Bedrock to access the data by attaching an IAM policy similar to the
example shown in Grant custom jobs access to your training data (p. 160) to your Amazon Bedrock
service role.

3. Submit a fine tuning job with the console (p. 75) or with the API (p. 78).

Using the console
The following topics describe the major steps required to fine-tune a model:

Topics

• Submit a job (p. 75)

• Monitor the job (p. 76)

• Stop a job (p. 77)

• Analyze the job results (p. 77)

• Use a fine-tuned model for inference (p. 78)

Submit a job
Note
Before you begin these steps, do the following:

• Grant Amazon Bedrock permissions to access the training and validation data and to write the
output data by attaching an IAM policy similar to the example shown in Grant custom jobs
access to your training data (p. 160) to your Amazon Bedrock service role.

• Create a training dataset and optionally a validation dataset. For more information, see
Prepare the datasets (p. 74).

To submit a fine-tuning job

1. Sign in to the AWS Management Console and open the Amazon Bedrock console at https://
console.aws.amazon.com/bedrock/home.

2. From the left menu, choose Custom models.

3. Select Fine-tune model.

4. Configure the settings for the fine-tuning job:

75

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/bedrock/home
https://console.aws.amazon.com/bedrock/home

Amazon Bedrock User Guide
Monitor the job

a. In the Model details section, choose the Source model that you want to fine-tune with your
own data and give your resulting fine-tuned model a name in Fine-tuned model name.

Note
Currently, Titan Text G1 - Express is the only supported model for fine-tuning.

b. (Optional) You can choose Model encryption to choose a different KMS key from the default
key.

For information about configuring KMS keys, see Data encryption (p. 140).

c. (Optional) You can expand the Tags section and select Add new tag add tags to associate with
the model.

d. In the Job configuration section, enter a name for the fine-tuning training job in Job name and
add any tags to associate with the job.

e. (Optional) In the VPC settings section, choose the VPC that contains the input data and output
data Amazon S3 locations.

i. For Subnet(s), add the VPC subnets.

ii. For Security group(s), add security groups to control access to the data in your VPC.

For information about configuring the VPC, see Protect jobs using a VPC (p. 142).

f. Provide the link to the training dataset file and, optionally, the validation dataset file in your
Amazon S3 bucket in the Input data section.

g. In the Hyperparameters section, input the values for the following hyperparameters to use in
training. See Guidelines for model customization (p. 87) for guidelines on choosing values.

• Epochs – The number of times to pass the training dataset to the model.

• Batch size – The number of records to send to the model in each batch.

• Learning rate – The step size for parameter updates in each iteration.

• Learning rate warmup steps – Affects the speed at which the algorithm converges to the
optimal weights.

h. Provide a link to the Amazon S3 folder in which to save the output of the fine-tuning job in the
Output data section. The training loss metrics and validation loss metrics for each epoch will be
stored in separate files in the location that you specify.

i. You use a service role to provide permissions for Amazon Bedrock to write to Amazon S3 on
your behalf.

In the Service access section, select one of the following:

• Use an existing service role – Select a service role from the drop-down list.

• Create and use a new service role – Enter a name for the service role.

Note
If your job includes VPC configuration, the console cannot create a new service role for
the job. Create the service role using the example described in Configure your model
customization job to use VPC (p. 146).

5. Select Fine-tune model to begin the job.

Monitor the job
The fine-tuning job can take several hours. The duration of the job depends on the size of the training
data (number of records, input tokens, and output tokens), number of epochs, and batch size.

76

Amazon Bedrock User Guide
Stop a job

To monitor the status of the fine-tuning job

1. Open the Amazon Bedrock console.
2. From the left menu, choose Custom models.
3. The Training jobs tab displays the fine-tuning jobs that you have initiated. Look at the Status

column to monitor the progress of the job.
4. Select a job to view the details you input for training.

Stop a job
You can stop a Bedrock fine-tuning job while it's in progress. You can't resume a stopped job.

To stop a fine-tuning job

1. Open the Amazon Bedrock console.
2. From the left menu, chose Custom models.
3. From the Training Jobs tab, choose the radio button next to the job to stop.
4. Select the Stop job button.
5. A modal appears to warn you that you can't resume the training job if you stop it. Select Stop job to

confirm.

Note
Amazon Bedrock charges for the tokens that it used to train the model before you stopped
the job. Amazon Bedrock doesn't create an intermediate custom model for a stopped job.

Analyze the job results
After the fine-tuning job completes, you can see the following information in your S3 output folder:

• Completion status
• Training and validation loss metrics

Amazon Bedrock stores your customized models in AWS-managed storage scoped to your account. You
can see your customized model in the Models table of the model customization dashboard page. Choose
a model to view details associated with that custom model. Output models aren't downloadable.

The S3 output for a fine-tuning job contains the following output files in your S3 folder:

- model-customization-job-training_job_id/
 - training_artifacts/
 - step_wise_training_metrics.csv
 - validation_artifacts/
 - post_fine_tuning_validation/
 - validation_metrics.csv

Use the step_wise_training_metrics.csv and the validation_metrics.csv files to analyze
the model customization job and to help you adjust the model as necessary.

The structure of the step_wise_training_metrics.csv file is shown in the following example:

step_number epoch_number training_loss perplexity

1 1 0.2 25

77

Amazon Bedrock User Guide
Use a fine-tuned model for inference

step_number epoch_number training_loss perplexity

2 1 0.18 22

... 18

The structure of the validation_metrics.csv file is shown in the following example:

step_number epoch_number validation_loss perplexity

1 1 0.12 20

2 1 0.09 17

... 15

Use a fine-tuned model for inference
Before you can use a customized model for inference, you need to purchase Provisioned Throughput for
it. You can then use it for inference in the Text or Chat playground.

To purchase Provisioned Throughput for a custom model.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left side navigation pane, select Custom models.

3. Choose the radio button next to the model, select Actions, and choose Purchase Provisioned
Throughput. For more information, see Provisioned Throughput (p. 90).

To use a fine-tuned model for inference

1. From the left side navigation pane, select Custom models.

2. In the Models tab, choose the model that you want to use in the Text or Chat Playground and select
Open in playground.

Using the API
This section demonstrates how to fine-tune your models using API operations. We provide examples with
the AWS Command Line Interface and the AWS SDK for Python (Boto3).

Topics

• Set up an IAM role for model customization (p. 79)

• Submit a job (p. 81)

• Monitor a job (p. 84)

• Stop a job (p. 85)

• Analyze a job (p. 85)

• Retrieve information about your customized models (p. 86)

78

https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
Set up an IAM role for model customization

Set up an IAM role for model customization
Create an IAM role or use an existing role that grants the required permissions for your customization job
to access the data in your Amazon S3 buckets. Use the IAM CreateRole API operation to allow Amazon
Bedrock to assume a role and the IAM CreatePolicy API operation to create a policy to allow the role to
access the Amazon S3 buckets containing your training, validation, and output data. Attach the policy
with the AttachRolePolicy API operation. Skip this step if you are using an existing role with the correct
IAM permissions. If you submit a job using the console (see Submit a job (p. 75)), the console can
create a role with the correct permissions for you.

Preparing the role and access policies:

1. Create the following policy document called BedrockAssumeRolePolicy.json (or another name
of your choice) to allow Amazon Bedrock to assume a role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:bedrock:us-east-1:111122223333:model-
customization-job/*"
 }
 }
 }
]
}

2. Determine the Amazon S3 locations where you uploaded your training and validation data and the
location for Amazon Bedrock to upload your training metrics data.

3. Create the following policy document called
BedrockAccessTrainingValidationS3Policy.json (or another name of your choice) to allow
access to these Amazon S3 locations, replacing the values in the Resource list with actual Amazon
S3 ARNs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:ListObjects"
],
 "Resource": [
 "arn:aws:s3:::my_training_data_bucket/myfolder",
 "arn:aws:s3:::my_training_data_bucket/myfolder/*",
 "arn:aws:s3:::my_validation_data_bucket/myfolder",
 "arn:aws:s3:::my_validation_data_bucket/myfolder/*"
]

79

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html

Amazon Bedrock User Guide
Set up an IAM role for model customization

 }
]
}

4. Create the following policy called BedrockAccessOutputS3Policy.json to allow both access
and writing to these Amazon S3 locations, replacing the values in the Resource list with actual
Amazon S3 ARNs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:ListObjects"
],
 "Resource": [
 "arn:aws:s3:::my_output_bucket/myfolder",
 "arn:aws:s3:::my_output_bucket/myfolder/*"
]
 }
]
}

AWS CLI

1. Create an IAM role, replacing the role-name with a name of your choice and using the file
name for the assume role policy you created:

aws iam create-role \
 --role-name "MyBedrockModelCustomizationRole" \
 --assume-role-policy-document file://path/to/BedrockAssumeRolePolicy.json

2. Create the training and validation data access policy, replacing the policy-name with a name
of your choice:

aws iam create-policy \
 --policy-name "MyBedrockTrainingValidationS3BucketPolicy" \
 --policy-document file://path/to/BedrockAccessTrainingValidationS3Policy.json

3. Create the output data access policy, replacing the policy-name with a name of your choice:

aws iam create-policy \
 --policy-name "MyBedrockOutputS3BucketPolicy" \
 --policy-document file://path/to/BedrockAccessOutputS3Policy.json

4. Attach the IAM role training and data access policy, replacing the role-name with the role
name you created in step 1 and the policy-arn with the ARN that the response in step 2
returned to you:

aws iam attach-role-policy \
 --role-name "MyBedrockModelCustomizationRole" \
 --policy-arn "PolicyARNFromCreateTrainingValidationPolicyStep"

80

Amazon Bedrock User Guide
Submit a job

5. Attach the IAM role output data access policy, replacing the role-name with the role name you
created in step 1 and the policy-arn with the ARN that the response in step 3 returned to
you:

aws iam attach-role-policy \
 --role-name "MyBedrockModelCustomizationRole" \
 --policy-arn "PolicyARNFromCreateOutputPolicyStep"

6. Use the ARN returned to you in step 1 as the roleArn when submitting a model customization
job.

Python

1. Create an IAM role by following the code sample in the Create a role section in IAM examples
using SDK for Python (Boto3), replacing the role_name with a name of your choice and
replacing the trust_policy with the contents from the BedrockAssumeRolePolicy.json
you created.

2. Create two access policies by following the code sample in the Create a policy
section in IAM examples using SDK for Python (Boto3), replacing the PolicyName
with two different names of your choice and replacing the policy_doc with the
contents from the BedrockAccessTrainingValidationS3Policy.json and the
BedrockAccessOutputS3Policy.json that you created.

3. Attach the IAM role policies, by following the code sample in the Attach a policy to a role
section in IAM examples using SDK for Python (Boto3), replacing replacing the role_name with
the role name you created in step 1 and the policy_arn with the ARNs that the responses in
step 2 returned to you.

4. Use the ARN returned to you in step 1 as the roleArn when submitting a model customization
job.

Submit a job
Use the Amazon Bedrock CreateModelCustomizationJob API operation to submit a model customization
job. Minimally, you must provide the following fields in the CreateModelCustomizationJob request:

• customizationType – To fine-tune a model, use the value FINE_TUNING.

• baseModelIdentifier – The ARN of the model to customize.

• customModelName – The name to give the newly customized model.

• hyperParameters – Parameters related to tuning the model. For the Titan Text G1 - Express model,
the following fields can be specified in this object. See Guidelines for model customization (p. 87)
for guidelines on choosing values.

• Epochs – The number of times to pass the training dataset to the model.

• Batch size – The number of records to send to the model in each batch.

• Learning rate – The step size for parameter updates in each iteration.

• Learning rate warmup steps – Affects the speed at which the algorithm converges to the optimal
weights.

• jobName – The name to give the training job.

• roleArn – The ARN of the service role.

• trainingDataConfig – An object containing the URI of the Amazon S3 location of the training
dataset. To create the training dataset, see Prepare the datasets (p. 74).

• validationDataConfig – An object containing the URI of the Amazon S3 location of the validation
dataset. To create the validation dataset, see Prepare the datasets (p. 74).

81

https://docs.aws.amazon.com/code-library/latest/ug/python_3_iam_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/python_3_iam_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/python_3_iam_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/python_3_iam_code_examples.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.htm

Amazon Bedrock User Guide
Submit a job

• outputDataConfig – An object containing the URI of the Amazon S3 location to write the output
data to.

The response returns a jobArn that you can use to monitor or stop the model customization job.

AWS CLI

The following example demonstrates how to submit a model customization job using the AWS CLI:

First create a text file named FineTuningData.json. Copy the JSON code from below into
the text file, replacing the bucket, path, and file names with the correct paths to your training,
validation, and output data:

{
 "trainingDataConfig": {
 "s3Uri": "s3://bucket/path/to/train.jsonl"
 },
 "validationDataConfig": {
 "validators": [{
 "s3Uri": "s3://bucket/path/to/validation.jsonl"
 }]
 },
 "outputDataConfig": {
 "s3Uri": "s3://bucket/path/to/output-folder"
 }
}

Run the following command in the command line

Note
Currently, Titan Text G1 - Express is the only supported model for fine-tuning.

aws bedrock create-model-customization-job \
 --customization-type "FINE_TUNING" \
 --base-model-identifier "arn:aws:bedrock:us-east-1::foundation-model/foundation-
model-id" \
 --role-arn "arn:aws:iam::arn-for-MyBedrockModelCustomizationRole" \
 --job-name "job-name" \
 --custom-model-name "custom-model-name" \
 --hyper-parameters
 epochCount="1",batchSize="1",learningRate="0.005",learningRateWarmupSteps="0" \
 --cli-input-json file://path/to/FineTuningData.json

To add a VPC configuration, add the following argument to the above command to specify the
security group and subnets:

 --vpc-config '{securityGroupIds": ["xx"], "subnetIds": ["subnet-yy", "subnet-zz"]}'

To encrypt your model with a KMS key, add the following argument to the above command,
replacing the values to specify the key with which you want to encrypt your model.

 --customModelKmsKeyId 'arn:aws:kms:region:account-id:key/key-id'

82

Amazon Bedrock User Guide
Submit a job

To add tags, add the following argument to the above command, replacing the keys and values with
the tags you want to attach to the job and/or output model and making sure to separate key/value
pairs with a space:

 --tags key=key1,value=value1 key=key2,value=value2

Use the jobArn that the operation returns to check the status of the job or to analyze or stop the
job.

Python

The following example demonstrates how to submit a model customization job using Python.
Uncomment the relevant sections to add optional tags to the job and/or resulting model:

import boto3
import json
bedrock = boto3.client(service_name='bedrock')

Set parameters
customizationType = "FINE_TUNING"
baseModelIdentifier = "arn:aws:bedrock:us-east-1::foundation-model/foundation-model-id"
roleArn = "arn:aws:iam::arn-for-MyBedrockModelCustomizationRole"
jobName = "job-name"
customModelName = "custom-model-name"
hyperParameters = {
 "epochCount": "1",
 "batchSize": "1",
 "learningRate": "0.005",
 "learningRateWarmupSteps": "0"
 }
trainingDataConfig = {"s3Uri": "s3://bucket/path/to/train.jsonl"}
validationDataConfig = {
 "validators": [{
 "name": "validation",
 "s3Uri": "s3://bucket/path/to/validation.jsonl"
 }]
 }
outputDataConfig = {"s3Uri": "s3://bucket/path/to/"}

Uncomment to add optional tags
jobTags = [
{
"key": "key1",
"value": "value1"
}
]
customModelTags = [
{
"key": "key1",
"value": "value1"
}
]

Create job
bedrock.create_model_customization_job(
 jobName=jobName,
 customModelName=customModelName,
 roleArn=roleArn,
 baseModelIdentifier=baseModelIdentifier,
 hyperParameters=hyperParameters,
 # # Uncomment to add optional tags

83

Amazon Bedrock User Guide
Monitor a job

 # jobTags=jobTags,
 # customModelTags=customModelTags,
 trainingDataConfig=trainingDataConfig,
 validationDataConfig=validationDataConfig,
 outputDataConfig=outputDataConfig
)

Use the jobArn that the code returns to check the status of the job or to analyze or stop the job.

Monitor a job
To list all your model customization jobs, send an Amazon Bedrock ListModelCustomizationJobs
request. To monitor the status of a model customization job, send an Amazon Bedrock
GetModelCustomizationJob request by entering the jobArn. You can find it in one of the following
ways:

1. In the Amazon Bedrock console, select Fine-tune and choose the job from the Training jobs table.
Look for the Model customization job ARN in the Model configuration section.

2. Look in the jobArn field in the response returned from the CreateModelCustomizationJob call
that created the job.

Monitor the progress of the job by looking in the status field of the response.

AWS CLI

List your model customization jobs using the AWS CLI with the following command:

aws bedrock list-model-customization-jobs

The following example demonstrates how to monitor a model customization job using the AWS CLI:

aws bedrock get-model-customization-job \
 --job-identifier "arn:aws:bedrock:job-arn-from-create-model-customization"

Find the value of the status field in the response.

Python

The following demonstrates how to list your model customization jobs using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.list_model_customization_jobs()

The following example demonstrates how to monitor a model customization job:

import boto3
bedrock = boto3.client(service_name='bedrock')

fine_tune_job = bedrock.get_model_customization_job(jobIdentifier='arn:aws:bedrock:job-
arn-from-create-model-customization')

print(fine_tune_job['status'])

84

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListModelCustomizationJobs.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetModelCustomizationJob.html

Amazon Bedrock User Guide
Stop a job

Stop a job
To use the API to stop a model customization job, follow these steps:

1. If the job status in the GetModelCustomizationJob response is IN_PROGRESS, send a
StopModelCustomizationJob request with the jobArn of the training job. The system marks the job
for termination and sets the state to STOPPING.

2. The system stops the job and sets the state to STOPPED.

If the job completes before the system stops it, the system sets the state to COMPLETED.

Note
Amazon Bedrock charges for the tokens that it used to train the model before you stopped
the job. Amazon Bedrock doesn't create an intermediate custom model for a stopped job.

AWS CLI

The following example demonstrates how to stop a model customization job using the AWS CLI:

aws bedrock stop-model-customization-job \
 --job-identifier "arn:aws:bedrock:job-arn-from-create-model-customization"

Python

The following example demonstrates how to stop a model customization job using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.stop_model_customization_job(jobIdentifier='arn:aws:bedrock:job-arn-from-
create-model-customization')

Analyze a job
To analyze a model customization job, send an Amazon Bedrock GetCustomModelb request by entering
the jobArn. You can find it in one of the following ways:

1. In the Amazon Bedrock console, select Fine-tune and choose the job from the Training jobs table.
Look for the Model customization job ARN in the Model configuration section.

2. Look in the jobArn field in the response returned from the CreateModelCustomizationJob call
that created the job.

You can analyze metrics by using the trainingLoss value in the trainingMetrics object and the
validatorLoss values in the validationMetrics object to analyze the model customization job or
by reading the data from the S3 output file.

AWS CLI

The following example demonstrates how to analyze a model customization job using the AWS CLI:

aws bedrock get-model-customization-job \
 --job-identifier "arn:aws:bedrock:job-arn-from-create-model-customization"

Look in the trainingMetrics and validatorLoss fields to analyze the model customization job.

85

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_StopModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html

Amazon Bedrock User Guide
Retrieve information about your customized models

Python

The following example demonstrates how to analyze a model customization job using Python:

import boto3
import json
import pandas as pd

bedrock = boto3.client(service_name='bedrock')

fine_tune_job = bedrock.get_model_customization_job(jobIdentifier='arn:aws:bedrock:job-
arn-from-create-model-customization')

Get S3 URI
fine_tune_job['outputDataConfig']['s3Uri']

Use the S3 URI to download the output data. For more information, see Downloading objects. Open
the folder and navigate to the metrics files.

Retrieve information about your customized models
Model customization creates a custom model upon successful completion of the job. To list your custom
models, send an Amazon Bedrock ListCustomModels request. To get information about a specific model
that you have fine-tuned, send an Amazon Bedrock GetCustomModel request, providing the ARN of
the model as the modelIdentifier in the request. You can find the ARN of the model in one of the
following ways:

1. In the Amazon Bedrock console, select Fine-tune and choose the model from the Models table. Look
for the Fine-tuned model ARN in the Model details section.

2. Look in the outputModelArn field in the response returned from the GetModelCustomizationJob
call that created the job. This field only appears in the response after the job has finished.

AWS CLI

Use the following command to list your fine-tuned models in the AWS CLI:

aws bedrock list-custom-models

The following example demonstrates how to get information about a fine-tuned model in the AWS
CLI

aws bedrock get-custom-model \
 --model-identifier "arn:aws:bedrock:customized-model-arn"

Python

Use the following command to list your fine-tuned models in Python:

import boto3
import json
bedrock = boto3.client(service_name='bedrock')

bedrock.list_custom_models()

86

https://docs.aws.amazon.com/AmazonS3/latest/userguide/download-objects.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListCustomModels.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html

Amazon Bedrock User Guide
Guidelines

The following example demonstrates how to get information about a fine-tuned model in the AWS
CLI

import boto3
import json
bedrock = boto3.client(service_name='bedrock')

bedrock.get_custom_model(modelIdentifier='arn:aws:bedrock:customized-model-arn')

Guidelines for model customization
In this section, we provide guidelines and recommended values as a baseline for customization of
the Titan Text G1 - Express model. However, you should experiment with values to determine which
parameters work best for your specific case. The ideal parameters depend on the dataset and the task for
which the model is intended.

Use the training and validation metrics from the output files generated when you submit a fine-tuning
job to help you adjust your parameters. Find these files in the Amazon S3 bucket to which you wrote the
output, or use the GetCustomModel operation.

Size of the input training dataset
In general, the larger the training dataset, the better the performance for a specific task. However, if
there are too many samples, the model might perform worse on a different task (for example, if the
training dataset for a summarization task contains 100,000 samples, the model might perform worse on
a classification task).

Large language models perform better than small supervised models when there is limited training data
(for example, 1 to 100 samples).

Model size
In general, the larger the model, the better the task performs given limited training data.

If you are using the model for a classification task, you might see relatively small gains for few-shot fine-
tuning (less than 100 samples), especially if the number of classes is relatively small (less than 100).

Epochs
We recommend using the following metrics to determine the number of epochs to set:

1. Validation output accuracy – Set the number of epochs to one that yields a high accuracy.
2. Training and validation loss – Determine the number of epochs after which the training and

validation loss becomes stable. This corresponds to when the model converges. Find the training loss
values in the step_wise_training_metrics.csv and validation_metrics.csv files.

Batch size
When you change the batch size, we recommend that you change the learning rate using the following
formula:

newLearningRate = oldLearningRate x newBatchSize / oldBatchSize

87

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html

Amazon Bedrock User Guide
Learning rate

Learning rate
In general, use smaller learning rates for larger models. We recommend using a learning rate in the
range of 1.00E-06 to 1.00E-05. This parameter doesn't appear to play a big role in question-answer and
classification tasks. However, it might dramatically impact performance in summarization tasks.

The following table shows recommended learning rate values for few-shot fine-tuning:

Task Minimum learning rate Default learning rate Max learning rate

Summarization 1.00E-06 3.00E-06 5.00E-05

Classification 5.00E-06 5.00E-05 5.00E-05

Question-answer 5.00E-06 5.00E-06 5.00E-05

Learning warmup steps
We recommend the default value of 0.

Troubleshooting
This section summarizes errors that you might run into in fine-tuning and what to check if you come
across them.

Permissions issues
If you encounter an issue with permissions to access an Amazon S3 bucket, check that the following are
true:

1. If the Amazon S3 bucket uses a CM-KMS key for Server Side encryption, ensure that the IAM role
passed to Amazon Bedrock has kms:Decrypt permissions for the AWS KMS key. For example, see
Allow a user to enccrypt and decrypt with any AWS KMS key in a specific AWS account.

2. The Amazon S3 bucket is in the same region as the Amazon Bedrock model customization job.
3. The IAM role trust policy includes the service SP (bedrock.amazonaws.com).

The following messages indicate issues with permissions to access training or validation data in an
Amazon S3 bucket:

Could not validate GetObject permissions to access Amazon S3 bucket: training-data-bucket
 at key train.jsonl
Could not validate GetObject permissions to access Amazon S3 bucket: validation-data-bucket
 at key validation.jsonl

If you encounter one of the above errors, check that the IAM role passed to the service has
s3:GetObject and s3:ListBucket permissions for the training and validation dataset Amazon S3
URIs. For example, see Submit a job (p. 81).

The following message indicates issues with permissions to write the output data in an Amazon S3
bucket:

88

https://docs.aws.amazon.com/kms/latest/developerguide/customer-managed-policies.html#iam-policy-example-encrypt-decrypt-one-account

Amazon Bedrock User Guide
Data issues

Amazon S3 perms missing (PutObject): Could not validate PutObject permissions to access S3
 bucket: bedrock-output-bucket at key output/.write_access_check_file.tmp

If you encounter the above error, check that the IAM role passed to the service has s3:PutObject
permissions for the output data Amazon S3 URI. For example, see Submit a job (p. 81).

Data issues
The following errors are related to issues with the training, validation, or output data files:

Invalid file format

Unable to parse Amazon S3 file: fileName.jsonl. Data files must conform to JSONL format.

If you encounter the above error, check that the following are true:

1. Each line is in JSON.
2. Each JSON has two keys, an input and an output, and each key is a string. For example:

{
 "input": "this is my input",
 "output": "this is my output"
}

3. There are no additional new lines or empty lines.

Character quota exceeded

Input size exceeded in file fileName.jsonl for record starting with...

If you encounter an error beginning with the text above, ensure that the number of characters conforms
to the character quota in Fine-tuning quotas (p. 178).

Token count exceeded

Maximum input token count 4097 exceeds limit of 4096
Maximum output token count 4097 exceeds limit of 4096
Max sum of input and output token length 4097 exceeds total limit of 4096

If you encounter the above error, ensure that the number of tokens conforms to the token quota in Fine-
tuning quotas (p. 178).

Internal error
Encountered an unexpected error when processing the request, please try again

If you encounter the above error, there might be an issue with the service. Try the job again. If the issue
persists, contact AWS Support.

89

Amazon Bedrock User Guide

Provisioned Throughput
When you configure Provisioned Throughput for a model, you receive a level of throughput at a fixed
cost.

You can use Provisioned Throughput with Amazon and third-party base models, and with customized
models.

Provisioned Throughput pricing varies depending on the model that you use and the level of
commitment you choose. You receive a discounted rate when you commit to a longer period of time. For
details about pricing for each model, see the Model providers page in the Amazon Bedrock console.

Your options for throughput for a model differ depending on whether you run inference on a base model
or a custom model.

Pricing option Base model Custom model

Provisioned Throughput, no
commitment (hourly pricing)

Not available Available (maximum 2
Provisioned Throughputs per
account)

Provisioned Throughput, 1
month commitment

Available Available

Provisioned Throughput, 6
month commitment

Available Available

You specify Provisioned Throughput in Model Units (MU). A model unit delivers a specific throughput
level for the specified model. The throughput level of a MU for a given Text model specifies the
following:

• The total number of input tokens per minute – The number of input tokens that an MU can process
across all requests within a span of one minute.

• The total number of output tokens per minute – The number of output tokens that an MU can
generate across all requests within a span of one minute.

Model unit quotas depend on the level of commitment you specify for the Provisioned Throughput.

• For custom models with no commitment, a quota of one model unit is available for each Provisioned
Throughput. You can create up to two Provisioned Throughputs per account.

• For base or custom models with commitment, there is a default quota of 0 model units. To request an
increase, use the limit increase form.

Topics
• Provisioned Throughput model IDs (p. 91)
• Procedures (p. 91)
• Permissions (p. 92)
• Provisioned Throughput console procedures (p. 92)
• Using the Provisioned Throughput API (p. 94)

90

https://console.aws.amazon.com/bedrock/home#/providers
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon Bedrock User Guide
Model IDs

Provisioned Throughput model IDs
Provisioned throughput is currently available for the following models. Use the corresponding model ID
when using the CreateProvisionedModelThroughput API.

Model name Model ID for provisioned throughput

Titan Text G1 - Express 8K amazon.titan-text-express-v1:0:8k

Titan Embeddings G1 - Text amazon.titan-embed-text-v1:2:8k

Anthropic Claude V2 18K anthropic.claude-v2:0:18k

Anthropic Claude V2 100K anthropic.claude-v2:0:100k

Anthropic Claude Instant V1 100K anthropic.claude-instant-v1:2:100K

Stable Diffusion XL 1.0 stability.stable-diffusion-xl-v1:0

Meta Llama 2 Chat 13B meta.llama2-13b-chat-v1:0:4k

Procedures
Provisioned Throughput supports the following procedures.

Creating
When you create a Provisioned Throughput, the Provisioned Throughput starts in an interim state
(Creating) while Bedrock creates the Provisioned Throughput resources. If the creation is successful, the
Provisioned Throughput transitions to InService state, and you can start using it for inference.

If the creation fails, the Provisioned Throughput transitions to Failed state.

Updating
You can perform the following types of updates to a Provisioned Throughput:

• Change the name of the Provisioned Throughput.
• Specify a new custom model that uses the same base model as the current custom model.
• Specify a base model. It must be the base model of the current custom model.

When you update a Provisioned Throughput, it transitions to the Updating state while Bedrock
performs the update. If the update is successful, the Provisioned Throughput transitions to InService
state. During the update, you can run inference using the Provisioned Throughput without disrupting the
on-going traffic from your end customers. If the update includes a new model, you may receive output
from the old model until the update is fully deployed.

If the update fails, the Provisioned Throughput transitions to Failed state.

Deleting
Deleting a Provisioned Throughput is a synchronous operation. The Provisioned Throughput deletion
takes effect immediately.

91

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateProvisionedModelThroughput.html

Amazon Bedrock User Guide
Running inference

Running inference
You can run inference using a Provisioned Throughput that is in InService state.

If you request more throughput than is configured for the Provisioned Throughput, the request is
throttled (you receive the throughput defined by the Provisioned Throughput).

Permissions
To add Provisioned Throughput to a base model or a model that was customized from a base model, you
must have first requested access to the base model by following the steps at Model access (p. 7).

To add Provisioned Throughput to a custom model that is encrypted, your role must include permissions
to carry out the kms:Decrypt action on the model. For an example, see Use a customer managed key
during inference (p. 142).

Provisioned Throughput console procedures
This section describes the console procedures for Provisioned Throughput.

Topics

• View Provisioned Throughput summary (p. 92)

• Purchase Provisioned Throughput (p. 92)

• View details of a Provisioned Throughput (p. 93)

• Edit a Provisioned Throughput (p. 94)

• Delete a Provisioned Throughput (p. 94)

View Provisioned Throughput summary
Use the summary page to review the status of each Provisioned Throughput. The Overview panel
displays the number of Provisioned Throughput resources in each state. You can update or delete an
active Provisioned Throughput, and you can create a new Provisioned Throughput.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left navigation pane, choose Provisioned throughput under Deployments.

3. From the Provisioned Throughput table, you can review summary information about each
Provisioned Throughput.

Purchase Provisioned Throughput
You can purchase Provisioned Throughput for a foundation or custom model.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left menu, choose Provisioned Throughput under Deployments. Then select Purchase
Provisioned Throughput. The console opens the Purchase Provisioned Throughput page.

3. Under Provisioned Throughput details:

92

https://console.aws.amazon.com/bedrock/
https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
View details of a Provisioned Throughput

a. Enter a name for the Provisioned Throughput.

b. Select the model category and model for the Provisioned Throughput.

Note
Provisioned throughput is currently available for the following models.

Model name Model ID for provisioned throughput

Titan Text G1 - Express 8K amazon.titan-text-express-v1:0:8k

Titan Embeddings G1 - Text amazon.titan-embed-text-v1:2:8k

Anthropic Claude V2 18K anthropic.claude-v2:0:18k

Anthropic Claude V2 100K anthropic.claude-v2:0:100k

Anthropic Claude Instant V1 100K anthropic.claude-instant-v1:2:100K

Stable Diffusion XL 1.0 stability.stable-diffusion-xl-v1:0

Meta Llama 2 Chat 13B meta.llama2-13b-chat-v1:0:4k

c. (Optional) Under Tags, you can associate one or more tags with this Provisioned Throughput.

4. Under Model units & commitment term:

a. Enter the desired number of model units.

b. Choose the amount of time for which you want to commit to using the Provisioned Throughput.
To opt out of commitment for a custom model, you must set the number of model units to 1
and then select No commitment. With this option, you pay an hourly amount for the allocated
throughput until you delete it.

Note
To see limitations on model units and commitment term, see Provisioned
Throughput (p. 90).

5. Under Estimated purchase summary, review the estimated cost.

6. Choose Purchase Provisioned Throughput.

7. Review the note that appears and acknowledge the commitment duration and price by selecting the
checkbox. Then choose Confirm purchase.

The console displays the overview page. For the Provisioned Throughput that you just purchased, the
console displays it in the table, with the status set to Creating.

View details of a Provisioned Throughput
From the summary page, you can view the details for any of your Provisioned Throughput resources.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left menu, choose Provisioned Throughput.

3. From the Provisioned Throughput table, choose a Provisioned Throughput. The console opens the
details page.

4. Under Provisioned Throughput overview:

5. Under Tags, the console displays the tags that are associated with this Provisioned Throughput.
Choose Manage tags to add or remove tags for this Provisioned Throughput.

93

https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
Edit a Provisioned Throughput

Edit a Provisioned Throughput
You can edit only a few fields of a Provisioned Throughput.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left menu, choose Provisioned Throughput.

3. From the Provisioned Throughput table, select the Provisioned Throughput to edit.

4. The console displays the Provisioned Throughput fields that you can edit.

5. Choose Save to start the update.

Delete a Provisioned Throughput
Note
You can’t delete a Provisioned Throughput with commitment before the commitment term is
complete.

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left menu, choose Provisioned Throughput.

3. From the Provisioned Throughput table, select the Provisioned Throughput to delete.

4. The console displays a modal form to warn you that delete is permanent. Choose Confirm to
proceed.

Using the Provisioned Throughput API
Amazon Bedrock provides API operations to create and manage your Provisioned Throughput resources.

Topics

• Create Provisioned Throughput (p. 94)

• Run inference using Provisioned Throughput (p. 95)

• Update Provisioned Throughput (p. 96)

• Get Provisioned Throughput (p. 97)

• Delete Provisioned Throughput (p. 97)

• List Provisioned Throughput resources (p. 98)

Create Provisioned Throughput
Use the CreateProvisionedModelThroughput operation to create a Provisioned Throughput for a base or
custom model.

When you send a CreateProvisionedModelThroughput operation for a base model, Bedrock
validates your access permissions for the requested model and checks for capacity availability. If the
validations are successful, Bedrock creates the provisioned throughput and returns the ARN of the
Provisioned Throughput.

When you send a CreateProvisionedModelThroughput operation for a custom model, Bedrock
validates your access permissions for the requested custom model. and checks for capacity availability.
If the custom model is encrypted using a customer-managed KMS key, your permissions must include
kms:Decrypt permission for this model.

94

https://console.aws.amazon.com/bedrock/
https://console.aws.amazon.com/bedrock/
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateProvisionedModelThroughput.html

Amazon Bedrock User Guide
Run inference using Provisioned Throughput

Note
To see quotas for your options for commitmentDuration and modelUnits, see Provisioned
Throughput (p. 90).

To create a Provisioned Throughput for an Amazon Titan foundation model, use the following IDs
instead of the default ones.

Note
Provisioned throughput is currently available for the following models.

Model name Model ID for provisioned throughput

Titan Text G1 - Express 8K amazon.titan-text-express-v1:0:8k

Titan Embeddings G1 - Text amazon.titan-embed-text-v1:2:8k

Anthropic Claude V2 18K anthropic.claude-v2:0:18k

Anthropic Claude V2 100K anthropic.claude-v2:0:100k

Anthropic Claude Instant V1 100K anthropic.claude-instant-v1:2:100K

Stable Diffusion XL 1.0 stability.stable-diffusion-xl-v1:0

Meta Llama 2 Chat 13B meta.llama2-13b-chat-v1:0:4k

The following code examples demonstrate how to create a Provisioned Throughput using the AWS CLI
and the Python SDK.

AWS CLI

Create the Provisioned Throughput using the following command in the AWS CLI:

aws bedrock create-provisioned-model-throughput
 --model-units 1
 --commitment-duration SixMonths
 --provisioned-model-name test-model
 --model-id arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-v2

Python (Boto)

The following example demonstrates how to create the Provisioned Throughput using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')
bedrock.create_provisioned_model_throughput(
 modelUnits=1,
 commitmentDuration='SixMonths',
 provisionedModelName='test-model',
 modelId='arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-v2'
)

Run inference using Provisioned Throughput
Use the InvokeModel or InvokeModelWithResponseStream operation to run inference using Provisioned
Throughput. Specify the provisioned model ARN as the modelId parameter.

95

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html

Amazon Bedrock User Guide
Update Provisioned Throughput

The following code examples show how to run inference for an Anthropic Claude model with a
Provisioned Throughput using the AWS CLI and Python. For information about the prompt format and
inference parameters, see Inference parameters for foundation models (p. 31).

AWS CLI

The following example demonstrates how to run inference for an Anthropic Claude model with a
Provisioned Throughput in the AWS CLI.

aws bedrock-runtime invoke-model
 --model-id provisioned-model-arn \
 --body "{\"prompt\": \"\n\nHuman: story of two dogs\n\nAssistant:\"}" invoke-model-
output.txt

Python (Boto)

The following example demonstrates how to run inference for an Anthropic Claude model with a
Provisioned Throughput using Python:

import boto3
import json

bedrock = boto3.client(service_name='bedrock-runtime')

body = json.dumps({"prompt": "\n\nHuman: explain black holes to 8th graders\n
\nAssistant:"})
modelId = 'provisioned-model-arn'
accept = 'application/json'
contentType = 'application/json'

response = bedrock.invoke_model(body=body, modelId=modelId, accept=accept,
 contentType=contentType)
response_body = json.loads(response.get('body').read())

text
print(response_body.get('results')[0].get('outputText'))

embedding
print(response_body.get('embedding'))

Update Provisioned Throughput
Use the UpdateProvisionedModelThroughput operation to update the specified Provisioned Throughput.

The following code examples demonstrate how to update a Provisioned Throughput using the AWS CLI
and Python.

AWS CLI

Update the Provisioned Throughput using the following command in the AWS CLI:

aws bedrock update-provisioned-model-throughput
--provisioned-model-id provisioned-model-arn | provisioned-model-name
--model-arn custom-model-arn | foundation-model-arn

Python (Boto)

The following example demonstrates how to update the Provisioned Throughput using Python:

96

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_UpdateProvisionedModelThroughput.html

Amazon Bedrock User Guide
Get Provisioned Throughput

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.update_provisioned_model_throughput(
 provisionedModelName='provisioned-model-arn | provisioned-model-name'
 modelArn='custom-model-arn | foundation-model-arn'
)

Get Provisioned Throughput
Use the GetProvisionedModelThroughput operation to retrieve information about the specified
Provisioned Throughput.

The following code examples demonstrates how to retrieve information using the AWS CLI and Python.

AWS CLI

Retrieve information about the Provisioned Throughput using the following command in the AWS
CLI:

aws bedrock get-provisioned-model-throughput
--provisioned-model-id provisioned-model-arn | provisioned-model-name

Python (Boto)

The following example demonstrates how to retrieve information about the Provisioned Throughput
using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.get_provisioned_model_throughput(
 provisionedModelName='my-provisioned-model-arn | provisioned model name'
)

Delete Provisioned Throughput
Use the DeleteProvisionedModelThroughput operation to delete the specified provisioned throughput.

The following code examples demonstrate how to delete a Provisioned Throughput using the AWS CLI
and Python.

AWS CLI

Delete the Provisioned Throughput using the following command in the AWS CLI:

aws bedrock delete-provisioned-model-throughput
 --provisioned-model-id provisioned-model-arn | provisioned-model-name

Python (Boto)

The following example demonstrates how to delete the Provisioned Throughput using Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

97

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetProvisionedModelThroughput.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_DeleteProvisionedModelThroughput.html

Amazon Bedrock User Guide
List Provisioned Throughput resources

bedrock.delete_provisioned_model_throughput(
 provisionedModelName='my-provisioned-model-arn | provisioned model name'
)

List Provisioned Throughput resources
Use the ListProvisionedModelThroughputs operation to list the Provisioned Throughput resources that
you have defined.

The following code examples demonstrate how to list the Provisioned Throughput resources using the
AWS CLI and Python.

AWS CLI

List the Provisioned Throughput resources using the following command in the AWS CLI:

aws bedrock list-provisioned-model-throughputs

Python (Boto)

The following example demonstrates how to list the Provisioned Throughput resources using
Python:

import boto3
bedrock = boto3.client(service_name='bedrock')

bedrock.list_provisioned_model_throughputs()

98

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListProvisionedModelThroughputs.html

Amazon Bedrock User Guide

Agents for Amazon Bedrock
Note
Agents for Amazon Bedrock is in limited preview release. To request access, contact your AWS
account manager.

Warning
As of October 31, 2023, the payload structure of the Lambda input event and response format
for action groups is changing. Refer to Deprecated Lambda function payload format (p. 118)
to see the deprecated format.

Agents for Amazon Bedrock enables developers to configure an agent to complete actions based on
organization data and user input. Agents orchestrate interactions between foundation models, data
sources, software applications, and user conversations, and automatically call APIs to take actions.
Developers can easily integrate the agents and accelerate delivery of generative AI applications saving
weeks of development effort.

With Agents for Amazon Bedrock, you can automate tasks for your customers. For example, you can
create an agent that helps customers process insurance claims or one that helps customers make travel
reservations and answer questions related to these tasks. You don't have to worry about provisioning,
managing infrastructure, or writing custom code. Agents for Amazon Bedrock manages monitoring,
encryption, user permissions, and API invocation.

Agents for Amazon Bedrock can carry out the following tasks:

• Extend foundation models to understand user requests and break down the tasks it needs to perform
into smaller steps.

• Collect additional information from a user through natural conversation.
• Take actions to fulfill a customer's request.
• Make API calls to your company systems to carry out actions.
• Augment performance and accuracy by using data sources that you provide to facilitate Retrieval-

Augmented Generation (RAG).
• Carry out source attribution.

To take advantage of Agents for Amazon Bedrock, you carry out the following steps:

1. (Optional) Set up a vector database and then create a knowledge base to store your private data in
that database. For more information, see Building a knowledge base (p. 100).

2. Create an agent for your use-case, add actions that it can carry out, and attach the knowledge base
you created to augment its performance. For more information, see Building an agent (p. 112).

3. Test your agent in the console or through API calls and modify the configurations as necessary. For
more information, see Test your agent (p. 121).

4. When you have sufficiently modified your agent and it is ready to be deployed to your application,
create an alias to point to a version of your agent. For more information, see Deploying an agent:
versioning and aliases (p. 124).

5. Set up your application to make API calls to your agent alias.

Topics
• Building a knowledge base (p. 100)
• Building an agent (p. 112)
• Test your agent (p. 121)

99

Amazon Bedrock User Guide
Building a knowledge base

• Deploying an agent: versioning and aliases (p. 124)
• Using the API (p. 125)
• How Bedrock Agent works with IAM (p. 126)

Building a knowledge base
Note
Knowledge base is in limited preview release. To request access, contact your AWS account
manager.

With Amazon Bedrock, you can enable a Retrieval-Augmented Generation (RAG) workflow by using
knowledge bases to build contextual applications by using the reasoning capabilities of LLMs. RAG is
a popular technique that combines the use of private data with Large Language Models (LLMs). The
combination of Amazon Bedrock with knowledge bases enables a faster time to market by automating
the RAG solution and reducing the build time for your agent. Adding a knowledge base also increases
cost-effectiveness by removing the need to continually train your model to be able to leverage your
private data.

RAG starts with an initial step to retrieve relevant documents from a data store (most commonly a
vector index) based on the user's query. It then employs a language model to generate a response by
considering both the retrieved documents and the original query. The following steps in the setup and
implementation of RAG are automated for you by the knowledge base service.

Pre-processing data

To enable effective retrieval from private data, a common practice is to first split the documents into
manageable chunks. The following step is to convert the chunks to vectors and then to write them
to a vector index while maintaining a mapping to the original document, in order to generate the
embeddings. The following image illustrates pre-processing of data for the vector database.

Runtime execution

At runtime, an embedding model is used to convert the user's query to a vector. The vector index is
then queried to find documents similar to the user's query by comparing document vectors to the
user query vector. In the final step, semantically similar documents retrieved from the vector index are
added as context for the original user query. When generating a response for the user, the semantically
similar documents are prompted in the text model. The following image illustrates how RAG operates at
runtime to augment responses to user queries.

100

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

You can build a RAG-based application in Amazon Bedrock by creating a knowledge base and associating
it to an agent to augment its generative capabilities with your own data. You use a knowledge base to
load your private data into a vector index. A knowledge base reads data from your Amazon S3 bucket,
splits it into smaller chunks, generates vector embeddings, and stores the embeddings in a vector index
that you provide. You can associate a knowledge base with multiple agents. After you configure an agent
with a knowledge base, it can use the information stored in the corresponding vector index to augment
its responses to user queries.

Topics
• Create a service role and configure IAM permissions (p. 101)
• Set up your data for ingestion (p. 105)
• Create a knowledge base (p. 108)
• Manage a knowledge base (p. 111)
• Add a knowledge base to an agent (p. 111)

Create a service role and configure IAM permissions
Knowledge bases use service roles to access AWS resources (for more information, see Creating a role to
delegate permissions to an AWS service).

Before you can create a knowledge base, you need to create a service role and attach a trust policy for
the role you create.

To create the service role and attach a trust policy

1. Create an IAM role with the prefix AmazonBedrockExecutionRoleForKnowledgeBase_. For
more information about creating a role, see Creating a role to delegate permissions to an AWS
service.

2. Create a trust policy for the role you create. The following shows an example policy you can use.
You can restrict the scope of the permission by using one or more global condition context keys. For
more information, see AWS global condition context keys. Set the aws:SourceAccount value to
your account ID. You can use the ArnEquals or ArnLike condition to restrict the scope to specific
knowledge bases.

Note
As a best practice for security purposes, replace the * with specific knowledge base IDs after
you have created them.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {

101

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:bedrock:region:account-id:knowledge-base/*"
 }
 }
 }]
}

3. Attach the trust policy to the role.

For a knowledge base, you need to grant Amazon Bedrock the following permissions:

• Access to Amazon Bedrock embedding models
• Access to the Amazon S3 object containing your data sources
• (If you encrypted your Amazon S3 data) Permissions to decrypt and encrypt your customer-managed

AWS KMS key for your data sources
• (If you create a vector database in Amazon OpenSearch Service) Access to your OpenSearch Service

collection
• (If you create a vector database in Pinecone or Redis Enterprise Cloud) Permissions for AWS Secrets

Manager to authenticate your Pinecone or Redis Enterprise Cloud account

Topics
• Permissions to access Amazon Bedrock models (p. 102)
• Permissions to access your data sources in Amazon S3 (p. 103)
• (Optional) Permissions to decrypt your AWS KMS key for your data sources in Amazon S3 (p. 103)
• (Optional) Permissions to access your vector database in Amazon OpenSearch Service (p. 104)
• (Optional) Permissions to access your vector database in Pinecone or Redis Enterprise

Cloud (p. 104)
• (Optional) Permissions for AWS to manage a AWS KMS key for transient data storage during data

ingestion (p. 105)

Permissions to access Amazon Bedrock models
To allow Amazon Bedrock to access Amazon Bedrock models to embed your source data, attach the
following policy to your Amazon Bedrock service role. Replace region with your region your foundation
model is in and foundation-model-id with the ID of the foundation model. Currently, only the Titan
Embeddings G1 - Text Model amazon.titan-embed-text-v1 is supported.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "bedrock:ListFoundationModels",
 "bedrock:ListCustomModels"
],
 "Resource": "*"
 },

102

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

 {
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel"
],
 "Resource": [
 "arn:aws:bedrock:region::foundation-model/foundation-model-id"
]
 }
]
}

Permissions to access your data sources in Amazon S3
To allow Amazon Bedrock to access your Amazon S3 data, attach the following policy attached to your
Amazon Bedrock service role. Replace bucket/path/to/folder with the path to the object containing
all the data source files for your knowledge base and account-id with the account that the Amazon S3
object belongs to.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::bucket/path/to/folder",
 "arn:aws:s3:::bucket/path/to/folder/*"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalAccount": "account-id"
 }
 }
 }]
}

(Optional) Permissions to decrypt your AWS KMS key for your
data sources in Amazon S3
If you encrypted your data sources in Amazon S3 with a AWS KMS key, attach the following policy to
your Amazon Bedrock service role to allow Amazon Bedrock to decrypt your key. Replace region and
account-id with the region and account ID to which the key belongs. Replace key-id with the ID of
your AWS KMS key.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "KMS:Decrypt",
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [

103

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

 "s3.region.amazonaws.com"
]
 }
 }
 }]
}

(Optional) Permissions to access your vector database in
Amazon OpenSearch Service
If you created a vector database in Amazon OpenSearch Service for your knowledge base, attach the
following policy to your Amazon Bedrock service role to allow access to the collection. Replace region
and account-id with the region and account ID to which the database belongs. Input the ID of your
Amazon OpenSearch Service collection in collection-id. You can allow access to multiple collections
by adding them to the Resources list.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "aoss:APIAccessAll"
],
 "Resource": [
 "arn:aws:aoss:region:account-id:collection/collection-id"
]
 }]
}

(Optional) Permissions to access your vector database in
Pinecone or Redis Enterprise Cloud
If you created a vector database in Pinecone or Redis Enterprise Cloud for your knowledge base, attach
the following policy to your Amazon Bedrock service role to allow AWS Secrets Manager to authenticate
your account to access the database. Replace region and account-id with the region and account ID
to which the database belongs. Replace secret-id with the ID of your secret.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:region:account-id:secret:secret-id"
]
 }]
}

If your secret is encrypted with a AWS KMS key, attach the following policy to your Amazon Bedrock
service role to allow it to decrypt your key. Replace region and account-id with the region and
account ID to which the key belongs. Replace key-id with the ID of your AWS KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {

104

Amazon Bedrock User Guide
Set up your data for ingestion

 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/keyId"
]
 }
]
}

(Optional) Permissions for AWS to manage a AWS KMS key for
transient data storage during data ingestion
To allow the creation of a AWS KMS key for transient data storage in the process of ingesting your data
source, attach the following policy to your Amazon Bedrock service role. Replace the region, account-
id, and key-id with the appropriate values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
]
 }
]
}

Set up your data for ingestion
Before you can create a knowledge base, you need to carry out the following actions:

1. Configure your source data and upload them to an Amazon S3 bucket.
2. Create a vector database and configure fields for Amazon Bedrock to write data to and to access the

index.

Configure your source data

By default, knowledge base automatically splits your source data into chunks, such that each chunk
contains, at most, 200 tokens. If a document contains less than 200 tokens, then it is not split any
further. To split your documents into chunks containing less than 200 tokens, pre-process the documents
by splitting them into smaller chunks.

After you pre-process your source data, upload it to an Amazon S3 bucket. To set up an Amazon S3
bucket, see Getting started with Amazon S3. Knowledge base supports the following file formats:

• Plain text (.txt)
• Markdown (.md)
• HyperText Markup Language (.html)
• Microsoft Word document (.doc/.docx)
• Comma-separated values (.csv)

105

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

Amazon Bedrock User Guide
Set up your data for ingestion

• Microsoft Excel spreadsheet (.xls/.xlsx)
• Portable Document Format (.pdf)

Create a vector database

Create a vector index in one of the following supported options.

• Amazon OpenSearch Service
• Pinecone
• Redis Enterprise Cloud

After processing your data, Amazon Bedrock writes the following information to the index you created.

• Text extracted from your documents.
• The vectors, corresponding to your text, that were generated by the embeddings model.
• The Amazon S3 path of the source file where the text was extracted from.

Topics
• Create a vector index in Amazon OpenSearch Service (p. 106)
• Create a vector index in Pinecone (p. 107)
• Create a vector index in Redis Enterprise Cloud (p. 108)

Create a vector index in Amazon OpenSearch Service

1. Log into Amazon OpenSearch Service and create a collection. Take note of the Collection ARN,
which you will fill out when you create a knowledge base.

2. Once the collection is created, select it and create a vector index.

For detailed documentation on setting up a vector index in Amazon OpenSearch Service, see Working
with vector search collections.

While you set up the vector index, take note of the Collection ARN, which you will fill out when you
create a knowledge base.

There are additional configurations that you must provide when creating a vector index:

• Vector index name – The name of the vector index. Choose any valid name of your choice. Later, when
you create your knowledge base, enter the name you choose in the Vector index name field.

• Vector field – The field where the vector embeddings will be stored. Choose any valid name of your
choice. Later, when you create your knowledge base, enter the name you choose in the Vector field
field.

• Dimensions – The number of dimensions in the vector. Choose 1536 if you use the Titan Embeddings
Model. Later, when you create your knowledge base, enter this number for the Dimensions field.

• Distance metric – The metric used to measure the similarity between vectors.. We recommend that
you experiment with different metrics for your use-case. If you use the Titan Embeddings Model, you
can start with cosine similarity.

• Metadata management – Expand this field and configure the vector index to store additional
metadata that a knowledge base can retrieve with vectors. The fields you need to configure are as
follows:
• Text field – Amazon Bedrock chunks the raw text in your data and stores the chunks in this field.

106

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vector-search.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vector-search.html

Amazon Bedrock User Guide
Set up your data for ingestion

• Mapping field – The field where the text will be stored. Choose any valid name of your choice.
Later, when you create your knowledge base, enter the name you choose for the Text field name
field.

• Data type – Select String.
• Filterable – Select False.

• Bedrock-managed metadata field – Amazon Bedrock stores metadata related to the data in this
field. The metadata includes the following:
• Mapping field – Choose any valid name of your choice. Later, when you create your knowledge

base, enter the name you choose for the Bedrock-managed metadata field name field.
• Data type – Select String.
• Filterable – Select False.

Security configurations

After you create the knowledge base, you must return to Amazon OpenSearch Service and set up
security configurations in your vector database by adjusting the Network access and Data access
settings of your collection. For more information, see Create a knowledge base (p. 108).

Create a vector index in Pinecone
Note
If you use Pinecone, you agree to authorize AWS to access the designated third-party source
on your behalf in order to provide the Amazon Bedrock service to you. You're responsible for
complying with any third-party terms applicable to use and and transfer of data from the third-
party service.

For detailed documentation on setting up a vector index in Pinecone, see Manage indexes.

While you set up the vector index, take note of the following information, which you will fill out when
you create a knowledge base:

• The endpoint URL for your index management page.
• (Optional) The namespace to be used to write new data to your database. For more information, see

Using namespaces.

There are additional configurations that you must provide when creating a Pinecone index:

• Name – The name of the vector index. Choose any valid name of your choice. Later, when you create
your knowledge base, enter the name you choose in the Vector index name field.

• Dimensions – The number of dimensions in the vector. Choose 1536 if you use the Titan Embeddings
Model. Later, when you create your knowledge base, enter this number in the Dimensions field.

• Distance metric – The metric used to measure the similarity between vectors. We recommend that you
experiment with different metrics for your use-case. If you use the Titan Embeddings Model, you can
start with cosine similarity.

Configure the Secrets Manager

To access your Pinecone index, you must provide your Pinecone API key to Amazon Bedrock through the
AWS Secrets Manager.

To set up a secret for your Pinecone configuration

1. Follow the steps at Create an AWS Secrets Manager secret, setting the key as apiKey and the value
as the API key to access your Pinecone index.

107

https://docs.pinecone.io/docs/manage-indexes
https://docs.pinecone.io/docs/namespaces
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Bedrock User Guide
Create a knowledge base

2. To find your API key, open your Pinecone console and select API Keys.
3. After you create the secret, take note of its ARN. Later, when you create your knowledge base, enter

the ARN in the Credentials secret ARN field.

Create a vector index in Redis Enterprise Cloud
Note
If you use Redis Enterprise Cloud, you agree to authorize AWS to access the designated third-
party source on your behalf in order to provide the Amazon Bedrock service to you. You're
responsible for complying with any third-party terms applicable to use and and transfer of data
from the third-party service.

For detailed documentation on setting up a vector index in Redis Enterprise Cloud, see Integrating Redis
Enterprise Cloud with Amazon Bedrock.

While you set up the vector index, take note of the following information, which you will fill out when
you create a knowledge base:

• The public endpoint URL for your database.
• The name of the vector index for your database.

Configure the Secrets Manager

To access your Redis Enterprise Cloud cluster, you must provide your Redis Enterprise Cloud security
configuration to Amazon Bedrock through the AWS Secrets Manager.

To set up a secret for your Redis Enterprise Cloud configuration

1. Enable TLS to use your database with Amazon Bedrock by following the steps at Transport Layer
Security (TLS).

2. Follow the steps at Create an AWS Secrets Manager secret. Set up the following keys with the
appropriate values from your Redis Enterprise Cloud configuration in the secret:

• username – The username to access your Redis Enterprise Cloud database. To find your username,
look under the Security section of your database in the Redis Console.

• password – The password to access your Redis Enterprise Cloud database. To find your password,
look under the Security section of your database in the Redis Console.

• serverCertificate – The content of the certificate from the Redis Cloud Certificate authority.
Download the server certificate from the Redis Admin Console by following the steps at Download
certificates.

• clientPrivateKey – The private key of the certificate from the Redis Cloud Certificate
authority. Download the server certificate from the Redis Admin Console by following the steps at
Download certificates.

• clientCertificate – The public key of the certificate from the Redis Cloud Certificate
authority. Download the server certificate from the Redis Admin Console by following the steps at
Download certificates.

3. After you create the secret, take note of its ARN. Later, when you create your knowledge base, enter
the ARN in the Credentials secret ARN field.

Create a knowledge base
To create a knowledge base

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

108

https://app.pinecone.io/
https://docs.redis.com/latest/rc/cloud-integrations/aws-marketplace/aws-bedrock/
https://docs.redis.com/latest/rc/cloud-integrations/aws-marketplace/aws-bedrock/
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
http://app.redislabs.com/
http://app.redislabs.com/
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/#download-certificates
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/#download-certificates
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/#download-certificates
https://docs.redis.com/latest/rc/security/database-security/tls-ssl/#download-certificates
https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
Create a knowledge base

2. From the left navigation pane, select Knowledge base.

3. In the Knowledge base section, select Create knowledge base.

4. On the Provide knowledge base details page, carry out the following actions:

a. In the Knowledge base details section, enter a name for the knowledge base and provide an
optional description for it.

b. In the IAM permissions section, choose to let Amazon Bedrock create a new service role or to
use an existing service role that allows Amazon Bedrock to access other services on your behalf.
For more information, see Create a service role and configure IAM permissions (p. 101).

c. If you want to attach any tags to the knowledge base, select Add new tag In the tags section
and add the tags as key-value pairs.

d. Select Next.

5. On the Set up data source page, you provide the information for the data source to add to the
knowledge base by carrying out the following actions:

a. In the Data source section, carry out the following actions:

i. Provide a name for the data source and the URI of the Amazon S3 object.

ii. If you encrypted your Amazon S3 data, provide the AWS KMS key in the Customer-
managed AWS KMS key for Amazon S3 data to allow Amazon Bedrock to decrypt it.

iii. While converting your data into embeddings, Amazon Bedrock encrypts your transient
data with a key that AWS owns and manages, by default. You can select the checkbox
labeled Customize encryption settings (advanced) under AWS KMS key for transient data
storage.

b. In the Embeddings model section, choose an embeddings model to convert the knowledge
base from your data into an embedding. Currently, only the Amazon Bedrock Titan embeddings
model is available.

c. In the Vector database section, select the service that contains a vector database that you
have already created. Check that your database is already configured with the required fields
(for more information, see Set up your data for ingestion (p. 105)). Fill in the fields to allow
Amazon Bedrock to map information from the knowledge base to your database, so that it can
store, update, and manage embeddings.

Note
If you use a database in Amazon OpenSearch Service, you need to have configured the
fields under Metadata field mapping beforehand. If you use a database in Pinecone
or Redis Enterprise Cloud, you can provide names for these fields here and Amazon
Bedrock will dynamically create them in the vector index for you.

d. Select Next.

6. On the Review and create page, check the configuration and details of your knowledge base. Select
Edit in any section that you need to modify. When you are satisfied, select Create knowledge base.

7. The knowledge base creation process begins and the Status of the source becomes In progress. The
time it takes to create the knowledge base depends on the amount of data you provided. When the
knowledge base is finished being created, a green success banner appears and the Status of the
knowledge base changes to Ready.

Note
If you chose to store your embeddings in an Amazon OpenSearch Service vector database,
remember to set up your security configurations in OpenSearch Service for the knowledge
base after it has been created. For more information, see Security configurations (p. 107).

Set up security configurations for your newly created knowledge base. Follow the steps in the tab
corresponding to the database that you set up.

109

Amazon Bedrock User Guide
Create a knowledge base

OpenSearch Service

To create a data access policy

1. In the OpenSearch Service console, navigate to your collection.

2. Select Manage data access.

3. Select Create access policy and give the policy a name and an optional description.

4. Choose JSON as the policy definition method and paste the following JSON object into the
editor, replacing collection-name with the name of your collection and service-role-arn
with the role ARN that you passed when creating your knowledge base.

{[
 {
 "Rules": [
 {
 "Resource": [
 "index/collection_name/*"
],
 "Permission": [
 "aoss:DescribeIndex",
 "aoss:ReadDocument",
 "aoss:WriteDocument"
],
 "ResourceType": "index"
 }
],
 "Principal": [
 "service-role-arn"
],
 "Description": "Data access policy"
 }
]

5. Select Create to create the policy.

Pinecone or Redis Enterprise Cloud

To integrate the third-party knowledge base, attach the following policy to your Amazon Bedrock
service role, replacing knowledge-base-arn.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "bedrock:AssociateThirdPartyKnowledgeBase"
],
 "Resource": [
 "knowledge-base-arn"
],
 "Condition": {
 "StringEquals": {
 "bedrock:ThirdPartyKnowledgeBaseCredentialsSecretArn": "secret-arn"
 }
 }
 }]
}

110

Amazon Bedrock User Guide
Manage a knowledge base

Manage a knowledge base
To manage a knowledge base

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left navigation pane, select Knowledge base.

3. To view details for a knowledge base, either select the Name of the source or choose the radio
button next to the source and select Edit.

4. On the details page, you can carry out the following actions:

• To change the details of the knowledge base, select Edit in the Knowledge base overview section.

• To update the tags attached to the knowledge base, select Manage tags in the Tags section.

• If you update the data source from which the knowledge base was created and need to sync the
changes, select Sync in the Data source section.

• To view the details of a data source, select a Data source name. Within the details, you can choose
the radio button next to a sync event in the Sync history section and select View warnings to see
why files in the data ingestion job failed to sync.

• To manage the embeddings model used for the knowledge base, select Edit Provisioned
Throughput.

• Select Save changes when you are finished editing.

To delete a knowledge base

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left navigation pane, select Knowledge base.

3. To delete a source, either choose the radio button next to the source and select Delete or choose the
Name of the source and then select Delete in the top right corner of the details page.

4. Review the warnings for deleting a knowledge base. If you accept these conditions, enter delete in
the input box and select Delete to confirm.

5. Make sure to delete the knowledge base from any agents that it was added to. To do this, carry out
the following steps:

a. From the left navigation pane, select Agents.

b. Choose the Name of the agent that you want to delete the knowledge base from.

c. A red banner appears to warn you to delete the reference to the knowledge base, which no
longer exists, from the agent.

d. Select the radio button next to the knowledge base that you want to remove. Select More and
then choose Delete.

Add a knowledge base to an agent
To add a knowledge base to an agent

1. Open the Amazon Bedrock console at https://console.aws.amazon.com/bedrock/.

2. From the left navigation pane, select Agents.

3. Choose the Name of the agent that you want to add knowledge bases to.

4. In the Knowledge base section, select Add.

5. Choose the knowledge base from the dropdown list under Select knowledge base and specify the
instructions for the agent regarding the knowledge base.

111

https://console.aws.amazon.com/bedrock/
https://console.aws.amazon.com/bedrock/
https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
Building an agent

Building an agent
Note
Amazon Bedrock is in limited preview release. To request access, contact your AWS account
manager.

To build an agent, you set up the following components:

• The configuration of the agent itself, which defines the purpose of the agent.
• Action groups that define what actions the agent is designed to carry out.
• (Optional) A knowledge base of data sources to augment the generative capabilities of the agent.

Note
If you plan to attach a knowledge base to your agent, first set up your knowledge base by
following the steps at Building a knowledge base (p. 100).

You carry out the following steps to set up an agent to interact with your customers:

1. Choose a foundational model that the agent can use for orchestration.
2. Give instructions to the agent, describe the actions it can perform, and provide an API schema for

the actions.
3. Add private data to the agent by setting up your data sources in a knowledge base and associating

the knowledge base with your agent.
4. Test the agent and iterate on the working draft.
5. After the agent is working as expected, create an alias so that you can integrate the agent with your

application.
6. Configure your application to make API calls to the agent alias.
7. Update the working draft of the agent and create new aliases as necessary.

Topics
• Create a service role and configure IAM permissions (p. 112)
• Create an agent (p. 115)
• Edit your agent (p. 119)

Create a service role and configure IAM permissions
Before you can create an agent, you need to create a service role and attach a trust policy for the role
you create.

To create the service role and attach a trust policy

1. Create an IAM role with the prefix AmazonBedrockExecutionRoleForAgents_. For more
information about creating a role, see Creating a role to delegate permissions to an AWS service.

2. Create a trust policy for the role you create. The following shows an example policy you can use.
You can restrict the scope of the permission by using one or more global condition context keys. For
more information, see AWS global condition context keys. Set the aws:SourceAccount value to
your account ID. You can use the ArnEquals or ArnLike condition to restrict the scope to specific
agents.

Note
As a best practice for security purposes, replace the * with specific agent IDs after you have
created them.

112

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:bedrock:region:account-id:agent/*"
 }
 }
 }]
}

3. Attach the trust policy to the role.

Grant Amazon Bedrock permissions to access the following resources on your behalf through configuring
role-based permissions:

• The Amazon Bedrock base models

• The Amazon S3 objects containing the OpenAPI schemas for the action groups in your agents

You also need to provide permissions for Amazon Bedrock to access the AWS Lambda functions for the
action groups in your agents through configuring resource-based policies for your Lambda functions.

If you are going to attach a knowledge base to your agent, you also need to provide permissions for
Amazon Bedrock to query the knowledge base.

Topics
• Permissions to access Amazon Bedrock base models (p. 113)

• Permissions to access your action group API schemas in Amazon S3 (p. 114)

• Permissions to access your action group Lambda functions (p. 114)

• (Optional) Permissions to access your knowledge bases (p. 115)

Permissions to access Amazon Bedrock base models
To provide permissions for Amazon Bedrock to use foundation models for orchestration, attach the
following policy to an IAM role.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel"
],
 "Resource": [
 "arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-v1",
 "arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-v2",
 "arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-instant-v1"
]

113

Amazon Bedrock User Guide
Create a service role and configure IAM permissions

 }]
}

Permissions to access your action group API schemas in Amazon
S3

Provide permissions for Amazon Bedrock to access the Amazon S3 URIs of the API schemas for your
agent's action groups. Attach the following policy to an IAM role. In the Resource field, you can provide
an Amazon S3 object containing the schemas or you can add the URI of each schema to the list.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::path/to/schema"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalAccount": "account-id"
 }
 }
 }]
}

Permissions to access your action group Lambda functions

Provide permissions for Amazon Bedrock to access the Lambda functions for your agent's action groups.
Attach the following resource-based policy to a Lambda function. The Condition specifies the ARN of
the user account and the ARN of the agent. The Condition field is optional, but is recommended for
security purposes. For more information, see Using resource-based policies for Lambda.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "statement-name",
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": [
 "lambda:InvokeFunction",
],
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "account-id"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:bedrock:region:account-id:agent/agent-id"
 }
 }
 }]
}

114

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

Amazon Bedrock User Guide
Create an agent

(Optional) Permissions to access your knowledge bases

To provide permissions for Amazon Bedrock to access a knowledge base you have set up, attach the
following policy to an IAM role. Replace account-id and knowledge-base-id with the appropriate
values and statement-name with the statement name of your choice.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement-name",
 "Effect": "Allow",
 "Action": [
 "bedrock:QueryKnowledgeBase"
],
 "Resource": [
 "arn:aws:bedrock:*:account-id:knowledge-base/knowledge-base-id"
]
 }
]
}

Create an agent
To create an agent, https://console.aws.amazon.com/bedrock/ Choose Agents in the left navigation
pane. Then select Create at the top right corner of the Agents section.

Provide agent details

1. In the Agent name section, give the agent a name and an optional description.

2. In the User input section, select whether you want the agent to request the user for additional
information when trying to complete a task. If you select No, the agent doesn't request the user
for additional details and informs the user that it doesn't have enough information to complete the
task.

3. In the IAM permissions section, choose an AWS Identity and Access Management (IAM) role that
provides Amazon Bedrock permission to access other AWS services. See Create a service role and
configure IAM permissions (p. 112) for more information.

4. In the Idle session timeout section, choose the duration that Amazon Bedrock keeps a session with a
user open. Amazon Bedrock maintains prompt variables for the duration of the session so that your
agent can resume an interaction with the same variables.

5. Select Next when you are done setting up the agent configuration.

Select model

1. For the agent to perform orchestration, you need to choose a model. Choose a model provider and
then choose a model in the dropdown menu to train your agent.

2. In Instructions for the Agent, provide details to tell the agent what it should do and how it should
interact with users. Refer to the following sample instructions:

You are an office assistant in an insurance agency. You are friendly and polite. You
 help with managing insurance claims and coordinating pending paperwork.

115

https://console.aws.amazon.com/bedrock/

Amazon Bedrock User Guide
Create an agent

Add Action groups

1. Provide a name for your action group and describe what the action does in the Description
for action groups. For example, you can use the following text for an action group called
SetupDNSResources:

Use this Action whenever you want to setup DNS resources for setting up a website.

2. In Select Lambda function, choose a Lambda function that you created in AWS Lambda. The
Lambda function provides the business logic that is carried out upon invoking the action. Choose the
version of the function to use.

Note
Remember to configure a policy to allow the Amazon Bedrock service principal to access
the Lambda function. For more information, see Create a service role and configure IAM
permissions (p. 112) for more information.. You can optionally provide the ARN of the
agent as the SourceArn when configuring the policy.

The following is the general format of the Lambda input event. Use the input event fields to create
your Lambda function. For more information, see Event-driven invocation in the AWS Lambda
documentation.

Warning
As of October 31, 2023, the payload structure of the Lambda input event and response
format is changing. Refer to Deprecated Lambda function payload format (p. 118) to see
the deprecated format.

{
 "messageVersion": "1.0",
 "agent": {
 "name": "string",
 "id": "string",
 "alias": "string",
 "version": "string"
 },
 "inputText": "string",
 "sessionId": "string",
 "actionGroup": "string",
 "apiPath": "string",
 "httpMethod": "string",
 "parameters": [
 {
 "name": "string",
 "type": "string",
 "value": "string"
 },
 ...
],
 "requestBody": {
 "content": {
 "<content_type>": {
 "properties": [
 {
 "name": "string",
 "type": "string",
 "value": "string"
 },
 ...
]
 }
 }
 },

116

https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html#event-driven-invocation

Amazon Bedrock User Guide
Create an agent

 "sessionAttributes": {
 "string": "string",
 }
}

Amazon Bedrock expects a response from your Lambda function in the following format.

{
 "messageVersion": "1.0",
 "response": {
 "actionGroup": "string",
 "apiPath": "string",
 "httpMethod": "string",
 "httpStatusCode": number,
 "responseBody": {
 "<contentType>": {
 "body": "string"
 }
 }
 }
}

The following is an example of how the Lambda function can be defined in Python.

def lambda_handler(event, context):

 response_body = {
 'application/json': {
 'body': "<sample response>"
 }
 }

 action_response = {
 'actionGroup': event['actionGroup'],
 'apiPath': event['apiPath'],
 'httpMethod': event['httpMethod'],
 'httpStatusCode': 200,
 'responseBody': response_body
 }

 api_response = {
 'messageVersion': '1.0',
 'response': action_response}
 return mock_api_response

3. In Select API schema, provide a link to the Amazon S3 URI of the schema with the API description,
structure, and parameters for the action group. For examples of the schema, see https://
github.com/OAI/OpenAPI-Specification/tree/main/examples/v3.0.

Note
Remember to assign the IAM role permissions to access the Amazon S3 URI of the schema.
For more information, see See Create a service role and configure IAM permissions (p. 112)
for more information.

4. Select Add another Action group to set up another action group for your agent. When you are done
adding action groups, select Next.

117

https://github.com/OAI/OpenAPI-Specification/tree/main/examples/v3.0
https://github.com/OAI/OpenAPI-Specification/tree/main/examples/v3.0

Amazon Bedrock User Guide
Create an agent

Add knowledge bases

1. If you have not yet created any knowledge bases, select Knowledge base in the left navigation pane
and follow the instructions at Create a knowledge base (p. 108) to create one. Otherwise, select a
knowledge base from the dropdown menu.

2. Write a prompt in Knowledge base instructions for the agent to describe how the agent should
use the knowledge base. For example, you can use the following text for a knowledge base called
Domain name system details:

Use this knowledge base whenever you are creating a DNS record

3. Select Add another knowledge base to set up another knowledge base for your agent. When you
are done adding knowledge bases, select Next.

Review the configuration of your agent and choose Edit for any sections you want to change. Select
Create when you are ready to create the agent. When the process finishes, a green banner appears at the
top to inform you that the agent was successfully created.

Deprecated Lambda function payload format
For reference, the deprecated format of the Lambda function input event is as follows. Update your
action groups to the updated format (for more information, see Create an agent (p. 115).

{
 "messageVersion": "1.0",
 "agent": {
 "name": "string",
 "id": "string",
 "alias": "string",
 "version": "string"
 },
 "inputText": "string",
 "sessionId": "string",
 "actionGroups": [
 {
 "actionGroup": "string",
 "apiPath": "string",
 "httpMethod": "string",
 "parameters": [
 {
 "name": "string",
 "type": "string",
 "value": "string"
 },
 ...
],
 "requestBody": {
 "content": {
 "<content_type>": {
 "properties": [
 {
 "name": "string",
 "type": "string",
 "value": "string"
 },
 ...
]
 }
 }
 }
 },

118

Amazon Bedrock User Guide
Edit your agent

 ...
],
 "sessionAttributes": {
 "string": "string",
 }
}

For reference, the deprecated format of the Lambda function response is as follows. Update your action
groups to the updated format.

{
 "messageVersion": "1.0",
 "response": [
 {
 "actionGroup": "string",
 "apiPath": "string",
 "httpMethod": "string",
 "httpStatusCode": number,
 "responseBody": {
 "<contentType>": {
 "body": "string"
 }
 }
 }
]
}

Edit your agent
Note
If you make any edits to your agent, select Prepare in the Working draft to implement the
changes for testing.

After you create an agent, you can update its configuration as required. The configuration applies to the
working draft.

To edit the agent configuration

1. Choose an agent in the Agents section.

2. Select Edit in the Agent overview section.

3. Edit the existing fields as necessary.

4. Select Save changes. A green success banner appears at the top.

You might want to try different foundation models for your agent or change the instructions for the
agent. These changes apply only to the working draft.

To change the foundation model that your agent uses or the instructions to the agent.

1. Choose an agent in the Agents section.

2. Select View in the Working draft section or choose the working draft.

3. In the Model details section, select Edit

4. Edit the fields as necessary.

5. Select Save to remain in the same window. A green success banner appears at the top.

6. Test the updated agent in the right panel and make changes as necessary.

7. Select Save and exit to return to the working draft page.

119

Amazon Bedrock User Guide
Edit your agent

Manage the action groups of an agent
After creating an agent, you can add more action groups or edit them. Adding and editing take place
within the working draft. To carry out these operations, choose an agent from the Agents section and
then choose the Working draft in the Working Draft section.

To add an action group

1. Select Add in the Action groups section.

2. Fill out the action group details

3. Select Add. A green success banner appears at the top.

To edit an action group

1. Do one of the following:

• Choose the radio button next to the action group to edit and select Edit.

• Select an action group to see its details. Choose Edit at the top.

2. Edit the existing fields as necessary.

3. Select Save to remain in the same window. A green success banner appears if there are no issues and
a red banner appears if there are errors in the edit.

4. Test the updated agent in the right panel and make changes as necessary.

5. Select Save and exit to return to the working draft page.

Manage the knowledge bases of an agent
After creating an agent, you can add more knowledge bases or edit them. Adding and editing take place
within the working draft. To carry out these operations, choose an agent from the Agents section and
then choose the Working draft in the Working Draft section.

To add a knowledge base

1. Select Add in the Knowledge bases section.

2. Choose a knowledge base that you have created and provide instructions for how the agent should
interact with it.

3. Select Add. A green success banner appears at the top.

To edit a knowledge base

1. Select a knowledge base.

2. In the knowledge base details page, select Edit

3. Edit the existing fields as necessary.

4. Select Save to remain in the same window. A green success banner appears if there are no issues and
a red banner appears if there are errors in the edit.

5. Test the updated agent in the right panel and make changes as necessary.

6. Select Save and exit to return to the working draft page.

To delete a knowledge base

1. Select the radio button next to the knowledge base to delete.

120

Amazon Bedrock User Guide
Test your agent

2. Select Delete.

Test your agent
Once you have created an agent, you can find it in the Agents section. When you first create an agent,
you will have a working draft. The working draft is a version of the agent that you can use to iteratively
edit the agent. By default, you can interact with the working draft with the AgentTestAlias, You can
also select a different alias to test. In the test window, you can opt to show the trace for each response.
The trace shows the agent's reasoning process, step-by-step, and is a useful tool for debugging your
agent. To learn more about the trace, see Trace enablement (p. 122). To learn how to enable the trace
through the API, see Invoke your agent (p. 125).

You have access to a test window to interact with your agent. You can use this function to debug your
agent and make the necessary changes for it to work as expected.

To test the agent

1. Choose an agent in the Agents section and select its Working draft.
2. Select Prepare at the top of the page to implement any changes you have made to your agent.
3. Select either Test or the left arrow icon at the top right to expand the test window.
4. Use the dropdown menu at the top of the test window to choose an alias and associated version to

test.

Note
If you have not yet prepared your agent, a message appears in the test window to prompt
you to Prepare your agent.

5. Enter a message to request the agent to perform a task. Use the test window to help debug your
agent.

6. When viewing a response, you have the following options.

• If the agent pulls information from a source, the response contains footnotes. Select a footnote to
view the citation for that part of the response.

• Under the response from the bot, select Show trace to view the agent's reasoning process
and usage of the attached knowledge bases and action groups, in addition to the Inference
configurations used. The trace breaks down how the response was formed, step-by-step. Select
an arrow next to a step to expand or collapse the trace for that step. For more information, see
Trace enablement (p. 122).

You have the option of turning action groups and knowledge bases on and off. Use this feature to debug
your agent and to isolate which actions or knowledge bases need to be updated by assessing its behavior
with different settings.

To turn an action group or knowledge base on or off

1. Choose an agent in the Agents section.
2. Select the working draft in the Working draft.
3. In the Action groups or Knowledge base section, hover over the State of the action group whose

state you want to change.
4. An edit button appears. Select it and then choose from the dropdown menu whether the action

group or knowledge base is Enabled or Disabled.
5. If an action group is Disabled, the agent doesn't try to carry it out. If a knowledge base is Disabled,

the agent doesn't use it in orchestration. Turn action groups on and off and use the test window to
debug your agent.

121

Amazon Bedrock User Guide
Trace enablement

Trace enablement
Each response from an agent is accompanied by a trace that you can view when you test the agent. The
trace helps you follow the agent's reasoning process that leads it to the response it gives at that point in
the conversation.

In the console test window, the trace is enabled by default. When you use an API, the trace is disabled
by default unless you set the enableTrace to true. For more information about enabling the trace
through the API, see Invoke your agent (p. 125).

Use the trace to track the agent's path from the user input to the response it returns. With the trace, you
can find information about the inputs to the action groups that the agent invokes and the knowledge
bases that it looks up to help it respond to the user, in addition to the outputs that the action groups
and knowledge bases return. You can view the reasoning that the agent uses to determine the action
that it takes or the query that it makes to a knowledge base. If a step in the trace fails, the trace returns a
reason for the failure. Use the detailed information in the trace to debug your agent by identifying steps
at which it has trouble or at which it yields unexpected behavior and ways in which you can improve the
behavior.

When you show the trace in the test window in the console, a window appears showing a trace for each
Step in the reasoning process. The Step consists of the following four types of traces. Each Step contains
either a failureTrace or any combination of a rationaleTrace, invocationInputTrace, or
observationTrace.

• rationaleTrace – Contains the reasoning, based on the user input, that the agent uses to justify
carrying out an action group or getting information from a knowledge base.

{
 "traceId": "string",
 "text": "string"
}

The fields are described below.
• traceId – The unique identifier of the trace step. Any rationaleTrace, invocationInput, or
observationTrace that is in the same step has the same traceId.

• text – The reasoning or thought process of the agent, based on the user input.
• invocationInputTrace – Contains information pertaining to the action group or knowledge base

that is being invoked.

{
 "traceId": "string",
 "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE",
 "actionGroupInvocationInput": {
 "actionGroupName": "string",
 "apiPath": "string",
 "parameters": [
 {
 "name": "string",
 "type": "string",
 "value": "string",
 },
 ...
],
 "requestBody": {
 "content": {
 "string": [
 {
 "name": "string",
 "type": "string",

122

Amazon Bedrock User Guide
Trace enablement

 "value": "string",
 },
 ...
]
 }
 },
 "verb": "string"
 },
 "knowledgeBaseLookupInput": {
 "knowledgeBaseId": "string",
 "text": "string"
 }
}

The fields are described below.
• traceId – The unique identifier of the trace.
• invocationType – Specifies whether the agent is invoking an action group or a knowledge base.
• actionGoupInvocationInput – Contains the following metadata about the action group being

invoked.
• actionGroupName – The name of the action group that the agent is invoking.
• apiPath – The path to the API to call, based off the action group.
• parameters – The parameters in the Lambda input event.
• requestBody – The paremeters in the request body for the Lambda input event.
• verb – The API method being used, based off the action group.

• knowledgeBaseLookupInput – Contains the following information about the knowledge base and
the search query for the knowledge base.
• knowledgeBaseId – The unique identifier of the knowledge base that the agent is looking up.
• text – The query being made to the knowledge base.

• observationTrace – Contains the result or output of an action group or knowledge base, or the
response to the user.

{
 "traceId": "string",
 "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH",
 "actionGroupInvocationOutput": {
 "text": "string"
 },
 "knowledgeBaseLookupOutput": {
 "sourceReferences": {
 "textSourceReferences": [
 {
 "referenceText": "string",
 "sourceLocation": {
 "s3SourceLocation": {
 "s3Uri": "string"
 }
 }
 },
 ...
]
 }
 },
 "finalResponse": {
 "text": "string"
 }
}

The fields are described below.

123

Amazon Bedrock User Guide
Deploying an agent: versioning and aliases

• traceId – The unique identifier of the trace.
• invocationType – Specifies whether the agent is invoking an action group, a knowledge base, or

returning a response to the user.
• actionGoupInvocationOutput – Contains the JSON-formatted string returned by the API

invoked by the action group.
• knowledgeBaseLookupOutput – Contains the text in the knowledge base and the S3 location of

the data source. Each object in the list of testSourceReferences contains the following fields.
• referenceText – The text from the knowledge base that is returned from the knowledge base

query.
• sourceLocation – Contains the S3 URI of the data source from which the returned text was

found.
• failureTrace – Contains one field, a failureReason, which describes the error that occurred.

{
 "failureReason": "string"
}

Deploying an agent: versioning and aliases
After you have sufficiently iterated on your working draft and are satisfied with the behavior of your
agent, you can set it up for deployment and integration into your application by creating aliases of your
agent.

To deploy your agent, you create an alias. During alias creation, Amazon Bedrock automatically creates a
version of your agent. The alias points to this newly created version. You can point the alias to previously
created version if necessary. You then configure your application to make API calls to that alias.

The version is like a snapshot that preserves the resource as it exists at the time it was created. You can
keep modifying the working draft and create new aliases (and consequently, versions) of your agent as
necessary. In Amazon Bedrock, you create a new version of your agent by creating an alias that points
to the new version by default. Amazon Bedrock creates versions in numerical order, starting from 1.
Because a version acts as a snapshot of your agent at the time you created it, it is immutable.

Aliases let you efficiently switch between different versions of your agent without requiring the
application to keep track of the version. For example, you can change an alias to point to a previous
version of your agent if there are changes that you need to quickly revert.

The working draft version is DRAFT and the alias that points to it is the Test_alias.

To manage versions and aliases of an agent, select Agents from the left navigation pane and choose the
agent from the Agents section.

To create a new alias (and optionally a new version)

1. In the Amazon Bedrock console, select Agents from the left navigation pane and choose your agent
in the Agents section.

2. In the Aliases section, select Create at the top right corner.
3. Entire a unique name for the alias and provide an optional description.
4. Choose one of the following options

• Create a new version and to associate the alias with it
• Associate the alias with an existing version. From the dropdown menu, choose the version you

want to associate the alias to.

124

Amazon Bedrock User Guide
Using the API

5. Select Create alias. A green success banner appears at the top.

To manage versions of the agent, check that you are in the Build tab and that the Versions section
displays underneath.

To view the details of a version

1. Select the version to view from the Versions section.
2. You can't modify any part of a version, but you can view details about the model, action groups, or

Lambda function by choosing the name of the information you want to view.

To manage aliases for the agent, select the Deploy tab and check that the Aliases section displays
underneath.

To associate an alias to a different version

1. Select the radio button next to the alias you want to edit.
2. Select the Edit button.
3. Choose one of the following options.

• Create a new version and to associate the alias with it
• Associate the alias with an existing version. From the dropdown menu, choose the version you

want to associate the alias to.

Using the API
The following are the service endpoints for the Amazon Bedrock service. To connect programmatically to
an AWS service, you use an endpoint. For information about endpoints for other AWS services, see AWS
service endpoints in the AWS General Reference.

The following table provides a list of Region-specific endpoints that Amazon Bedrock supports.

Region Name Region Endpoint Protocol

US East (N.
Virginia)

us-east-1 bedrock-agent-runtime.us-
east-1.amazonaws.com

HTTPS

US West (Oregon) us-west-2 bedrock-agent-runtime.us-
west-2.amazonaws.com

HTTPS

Currently, the only API available for Amazon Bedrock is InvokeAgent.

Invoke your agent
To interact with your agent, send an InvokeAgent request. Use TSTALIASID as the agentAliasId to
invoke the draft version of your agent. You must use the Amazon Bedrock runtime endpoint to call this
operation (bedrock-agent-runtime.region.amazonaws.com)

The following shows a sample request.

POST /agents/agentId/agentAliases/agentAliasId/sessions/sessionId/text HTTP/1.1
Content-type: application/json

125

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Bedrock User Guide
How Bedrock Agent works with IAM

{
 "inputText": "string",
 "endSession": boolean,
 "enableTrace": boolean,
 "sessionState": {
 "sessionAttributes": {
 "string" : "string"
 }
 }
}

The fields in the request are described below.

• agentId – The unique identifier for your agent. You can find the ID in your agent's details page.
• agentAliasId – The unique identifier for your agent's alias. You can find the ID in the details page

for your agent's alias. To invoke the draft version of your agent, use TSTALIASID.
• sessionId – The unique identifier for the session. If you reuse this value, you continue an existing

session with the agent if the value you set for the idle session timeout hasn't been exceeded.
• inputText – The prompt to provide the agent.
• endSession – Specifies whether to end the session with the agent or not.
• enableTrace – Specifies whether to return the trace or not in the response. By default, the trace is

disabled. For more information, see Trace enablement (p. 122).
• sessionState – Contains session attributes for the session with the agent.

The response returns the following objects. If there is an error, the response returns an exception.

• chunk – The bytes field contains the response to the user as a base-64 encoded binary object. The
attribution object contains a list of citations accompanying the response.

• trace – Contains the agentId, agentAliasId, and sessionId, alongside the trace object. For
information about the fields in the trace object, see Trace enablement (p. 122). The trace is only
returned if enableTrace was set as true in the request.

How Bedrock Agent works with IAM
Before you use IAM to manage access to Bedrock Agent, learn what IAM features are available to use
with Bedrock Agent.

IAM features you can use with Bedrock Agent

IAM feature Bedrock Agent support

Identity-based policies (p. 127) Yes

Resource-based policies (p. 127) No

Policy actions (p. 128) Yes

Policy resources (p. 128) Yes

Policy condition keys (p. 129) No

ACLs (p. 129) No

126

Amazon Bedrock User Guide
Identity-based policies

IAM feature Bedrock Agent support

ABAC (tags in policies) (p. 129) No

Temporary credentials (p. 130) Yes

Principal permissions (p. 130) Yes

Service roles (p. 130) Yes

Service-linked roles (p. 131) No

To get a high-level view of how Bedrock Agent and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Bedrock Agent

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, group of users, or role. These policies control what actions users and roles can perform,
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. You can't specify the principal in an identity-based
policy because it applies to the user or role to which it is attached. To learn about all of the elements
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for Bedrock Agent

To view examples of Bedrock Agent identity-based policies, see Identity-based policy examples for
Bedrock Agent (p. 131).

Resource-based policies within Bedrock Agent

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the
resource where the policy is attached, the policy defines what actions a specified principal can perform
on that resource and under what conditions. You must specify a principal in a resource-based policy.
Principals can include accounts, users, roles, federated users, or AWS services.

To enable cross-account access, you can specify an entire account or IAM entities in another account as
the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy is
only half of establishing the trust relationship. When the principal and the resource are in different AWS
accounts, an IAM administrator in the trusted account must also grant the principal entity (user or role)
permission to access the resource. They grant permission by attaching an identity-based policy to the
entity. However, if a resource-based policy grants access to a principal in the same account, no additional

127

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Bedrock User Guide
Policy actions

identity-based policy is required. For more information, see How IAM roles differ from resource-based
policies in the IAM User Guide.

Policy actions for Bedrock Agent

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a
policy. Policy actions usually have the same name as the associated AWS API operation. There are some
exceptions, such as permission-only actions that don't have a matching API operation. There are also
some operations that require multiple actions in a policy. These additional actions are called dependent
actions.

Include actions in a policy to grant permissions to perform the associated operation.

For a list of Bedrock Agent actions, see Actions Defined by Bedrock Agent in the Service Authorization
Reference.

Policy actions in Bedrock Agent use the following prefix before the action:

bedrock

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "bedrock:action1",
 "bedrock:action2"
]

To view examples of Bedrock Agent identity-based policies, see Identity-based policy examples for
Bedrock Agent (p. 131).

Policy resources for Bedrock Agent

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice, specify
a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific
resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to
indicate that the statement applies to all resources.

128

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Bedrock User Guide
Policy condition keys

"Resource": "*"

To view examples of Bedrock Agent identity-based policies, see Identity-based policy examples for
Bedrock Agent (p. 131).

Policy condition keys for Bedrock Agent

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can create conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition
keys, see AWS global condition context keys in the IAM User Guide.

All Bedrock Agent actions support condition keys using agents or aliases as the resource.

To view examples of Bedrock Agent identity-based policies, see Identity-based policy examples for
Bedrock Agent (p. 131).

ACLs in Bedrock Agent

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy
document format.

ABAC with Bedrock Agent

Supports ABAC (tags in policies) No

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on
attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or roles)
and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then you design

129

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Bedrock User Guide
Temporary credentials

ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are
trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy using
the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the service.
If a service supports all three condition keys for only some resource types, then the value is Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with steps
for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Bedrock Agent

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional information,
including which AWS services work with temporary credentials, see AWS services that work with IAM in
the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using any method
except a user name and password. For example, when you access AWS using your company's single
sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically
create temporary credentials when you sign in to the console as a user and then switch roles. For more
information about switching roles, see Switching to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use those
temporary credentials to access AWS. AWS recommends that you dynamically generate temporary
credentials instead of using long-term access keys. For more information, see Temporary security
credentials in IAM.

Cross-service principal permissions for Bedrock Agent

Supports principal permissions Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies
grant permissions to a principal. When you use some services, you might perform an action that
then triggers another action in a different service. In this case, you must have permissions to perform
both actions. To see whether an action requires additional dependent actions in a policy, see Actions,
Resources, and Condition Keys for Bedrock Agent in the Service Authorization Reference.

Service roles for Bedrock Agent

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information, see
Creating a role to delegate permissions to an AWS service in the IAM User Guide.

130

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Bedrock User Guide
Service-linked roles

Warning
Changing the permissions for a service role might break Bedrock Agent functionality. Edit
service roles only when Bedrock Agent provides guidance to do so.

When you create an agent resource, you must create or choose a role to allow Bedrock Agent to access
resources on your behalf. If you have previously created a service role or service-linked role, Bedrock
Agent provides you with a list of roles to choose from. It's important to choose a role that allows access
to the required actions.

Service-linked roles for Bedrock Agent

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can assume the
role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned
by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

Identity-based policy examples for Bedrock Agent
By default, users and roles don't have permission to create or modify Bedrock Agent resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS
CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an IAM
administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users
can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy documents, see
Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Bedrock Agent, including the format of the ARNs
for each of the resource types, see Actions, Resources, and Condition Keys for Bedrock Agent in the
Service Authorization Reference.

Note
The Bedrock Agent service is available as a limited preview release, so its information is not
included in the Service Authorization Reference.

Topics

• Policy best practices (p. 131)

• Using the Bedrock Agent console (p. 132)

• Allow users to view their own permissions (p. 133)

• Allow users to perform actions on agent and alias resources (p. 133)

Policy best practices
Identity-based policies determine whether someone can create, access, or delete Bedrock Agent
resources in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To get
started granting permissions to your users and workloads, use the AWS managed policies that grant
permissions for many common use cases. They are available in your AWS account. We recommend that
you reduce permissions further by defining AWS customer managed policies that are specific to your

131

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html

Amazon Bedrock User Guide
Identity-based policy examples for Bedrock Agent

use cases. For more information, see AWS managed policies or AWS managed policies for job functions
in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User
Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your policies to
limit access to actions and resources. For example, you can write a policy condition to specify that all
requests must be sent using SSL. You can also use conditions to grant access to service actions if they
are used through a specific AWS service, such as AWS CloudFormation. For more information, see IAM
JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions
– IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM
policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy
checks and actionable recommendations to help you author secure and functional policies. For more
information, see IAM Access Analyzer policy validation in the IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a root
user in your AWS account, turn on MFA for additional security. To require MFA when API operations are
called, add MFA conditions to your policies. For more information, see Configuring MFA-protected API
access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Bedrock Agent console
To access the Bedrock Agent console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the Bedrock Agent resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that they're
trying to perform.

To provide access to the Bedrock Agent console, attach the following policy to the roles or entities that
need access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BedrockConsole",
 "Effect": "Allow",
 "Action": [
 "bedrock:CreateAgent",
 "bedrock:UpdateAgent",
 "bedrock:GetAgent",
 "bedrock:ListAgents",
 "bedrock:CreateActionGroup",
 "bedrock:UpdateActionGroup",
 "bedrock:GetActionGroup",
 "bedrock:ListActionGroups",
 "bedrock:CreateAgentDraftSnapshot",
 "bedrock:GetAgentVersion",
 "bedrock:ListAgentVersions",
 "bedrock:CreateAgentAlias",

132

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Bedrock User Guide
Identity-based policy examples for Bedrock Agent

 "bedrock:UpdateAgentAlias",
 "bedrock:GetAgentAlias,
 "bedrock:ListAgentAliases"
 "bedrock:InvokeAgent"
],
 "Resource": "*"
 }
]

For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions
This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow users to perform actions on agent and alias resources
You can provision identities with permissions to perform actions on agent and alias resources. The ARNs
of these resources are formatted as follows.

• Agents arn:aws:bedrock:region:account-id:agent/AGENTID
• Aliases arn:aws:bedrock:region:account-id:agent-alias/AGENTID/ALIASID

A role can call API operations on specific resources. For example, the InvokeAgent operation can only
be used on alias resources and the UpdateAgent operation can only be used on agent resources, If you

133

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Bedrock User Guide
Identity-based policy examples for Bedrock Agent

specify an operation in a policy that can't be used on the resource specified in the policy, Bedrock Agent
returns an error. For a list of operations and the resources that they can be used with, see the following
table. CreateAgent and ListAgents are not performed on a specific resource.

Operation Resource

CreateAgent N/A

UpdateAgent Agent

GetAgent Agent

ListAgents N/A

CreateActionGroup Agent

UpdateActionGroup Agent

GetActionGroup Agent

ListActionGroups Agent

CreateAgentDraftSnapshot Agent

GetAgentVersion Agent

ListAgentVersions Agent

CreateAgentAlias Agent

UpdateAgentAlias Alias

GetAgentAlias Alias

ListAgentAliases Agent

InvokeAgent Alias

The following is a sample policy that you can attach to an IAM role to allow it to call Bedrock Agent API
operations to get information about an agent, update an agent alias, and interact with an agent. Replace
the sid with a policy identifier of your choice, the account-id with the account ID to which the agent
belongs, the AGENTID with the ID of the agent, and the ALIASID with the alias of the agent. You can
find agent and alias IDs with the ListAgents API operation or in the agent and alias details pages in the
console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "sid",
 "Effect": "Allow",
 "Action": "bedrock:GetAgent",
 "Resource": "arn:aws:bedrock:region:account-id:agent/AGENTID"
 },
 {
 "Sid": "sid",
 "Effect": "Allow",
 "Action": [
 "bedrock:UpdateAgentAlias",
 "bedrock:InvokeAgent"
],

134

Amazon Bedrock User Guide
Identity-based policy examples for Bedrock Agent

 "Resource": [
 "arn:aws:bedrock:region:account-id:agent-alias/AGENTID/ALIASID"
]
 },
]
}

135

Amazon Bedrock User Guide
Use the console

Tag resources
To help you manage your Amazon Bedrock resources, you can assign metadata to each resource as tags.
A tag is a label that you assign to an AWS resource. Each tag consists of a key and a value.

The Amazon Bedrock resources that you can tag are:

• Custom models
• Model customization jobs
• Provisioned models

Tags enable you to categorize your AWS resources in different ways, for example, by purpose, owner, or
application. Tags help you to do the following:

• Identify and organize your AWS resources. Many AWS resources support tagging, so you can assign the
same tag to resources in different services to indicate that the resources are the same.

• Allocate costs. You activate tags on the AWS Billing and Cost Management dashboard. AWS uses
the tags to categorize your costs and deliver a monthly cost allocation report to you. For more
information, see Use cost allocation tags in the AWS Billing and Cost Management User Guide.

• Control access to your resources. You can use tags with Amazon Bedrock to create policies to control
access to Amazon Bedrock resources. These policies can be attached to an IAM role or user to enable
tag-based access control.

Topics
• Use the console (p. 136)
• Use APIs (p. 137)
• Tag restrictions (p. 137)

Use the console
Tagging is supported for custom models and fine-tuning jobs. You can add and modify tags at any time
in the fine-tuning process.

To add tags when submitting a new fine-tuning job:

1. Select Fine-tune from the left sidebar.
2. In the Models section, choose Fine-tune model.
3. In the Model configuration or Job configuration section, expand the Tags section.
4. Select Add new tag and fill in the Key and Value for the tag. You can add up to 50 tags in total.
5. Select Remove tag next to a key-value pair to remove that tag.

To add tags to an existing custom model or fine-tuning job:

1. Select Fine-tune from the left sidebar.
2. In the Models or Training jobs section, choose the model or job that you want to add tags to.
3. In the Tags section at the bottom, select Manage Tags.
4. Select Add new tag and fill in the Key and Value for the tag. You can add up to 50 tags in total.

136

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Bedrock User Guide
Use APIs

5. Select Remove tag next to a key-value pair to remove that tag.

Use APIs
To carry out tagging operations, you need the Amazon Resource Name (ARN) of the resource on which
you want to carry out a tagging operation. Use the TagResource and UnTagResource operations to tag
and untag resources. To list the tags for a resource, use the ListTagsForResource operation. For tagging
examples, see Tag resources (p. 29).

Tag restrictions
The following basic restrictions apply to tags on Amazon Bedrock resources:

• Maximum number of tags per resource – 50.
• Maximum number of keys – 50.
• Maximum key length – 128 characters.
• Maximum value length – 256 characters.
• Valid characters for key and value – a-z, A-Z, 0-9, space, and the following characters: _.:/=+- and @
• Keys and values are case-sensitive.
• Don't use aws: as a prefix for keys. This is reserved for AWS use.

137

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_UnTagResource.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListTagsForResource.html

Amazon Bedrock User Guide
Data protection

Security in Amazon Bedrock
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to Amazon Bedrock, see AWS Services in Scope by
Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using
Amazon Bedrock. The following topics show you how to configure Amazon Bedrock to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Amazon Bedrock resources.

Topics

• Data protection in Amazon Bedrock (p. 138)

• Identity and access management for Amazon Bedrock (p. 147)

• Compliance validation for Amazon Bedrock (p. 162)

• Incident response in Amazon Bedrock (p. 163)

• Resilience in Amazon Bedrock (p. 163)

• Infrastructure security in Amazon Bedrock (p. 163)

• Cross-service confused deputy prevention (p. 164)

• Configuration and vulnerability analysis in Amazon Bedrock (p. 165)

Data protection in Amazon Bedrock
The AWS shared responsibility model applies to data protection in Amazon Bedrock. As described in
this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud.
You are responsible for maintaining control over your content that is hosted on this infrastructure. This
content includes the security configuration and management tasks for the AWS services that you use. For
more information about data privacy, see the Data Privacy FAQ. For information about data protection in
Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). That way,
each user is given only the permissions necessary to fulfill their job duties. We also recommend that you
secure your data in the following ways:

138

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Bedrock User Guide
Data protection

• Use multi-factor authentication (MFA) with each account.
• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.
• Set up API and user activity logging with AWS CloudTrail.
• Use AWS encryption solutions, along with all default security controls within AWS services.
• Use advanced managed security services such as Amazon Macie, which assists in discovering and

securing sensitive data that is stored in Amazon S3.
• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command

line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes when
you work with Amazon Bedrock or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Amazon Bedrock doesn't use your prompts and continuations to train any AWS models or distribute
them to third parties. Your training data isn't used to train the base Amazon Titan models or distributed
to third parties. Other usage data, such as usage timestamps, logged account IDs, and other information
logged by the service, is also not used to train the models.

Amazon Bedrock uses the fine tuning data you provide only for fine tuning an Amazon Titan model.
Amazon Bedrock doesn't use fine tuning data for any other purpose, such as training base foundation
models.

Each model provider has an escrow account that they upload their models to. The Amazon Bedrock
inference account has permissions to call these models, but the escrow accounts themselves don't have
outbound permissions to Amazon Bedrock accounts. Additionally, model providers don't have access to
Amazon Bedrock logs or access to customer prompts and continuations.

Amazon Bedrock doesn’t store or log your data in its service logs.

Bedrock uses your training data with the CreateModelCustomizationJob action, or with the
console (p. 75), to create a custom model which is a fine tuned version of an Amazon Bedrock
foundational model. Your custom models are managed and stored by AWS. By default, custom models
are encrypted with AWS Key Management Service keys that AWS owns, but you can use your own AWS
KMS keys to encrypt your custom models. You encrypt a custom model when you submit a fine tuning
job with the console or programmatically with the CreateModelCustomizationJob action.

None of the training or validation data you provide for fine tuning is stored in Amazon Bedrock accounts,
once the fine tuning job completes. During training, your data exists in AWS Service Management
Connector instance memory, but is encrypted on these machines using an XTS-AES-256 cipher that is
implemented on a hardware module, on the instance itself.

We don't recommend using confidential data to train a custom model as the model might generate
inference responses based on that confidential data. If you use confidential data to train a custom
model, the only way to prevent responses based on that data is to delete the custom model, remove the
confidential data from your training dataset, and retrain the custom model.

Custom model metadata (name and Amazon Resource Name) and a provisioned model's metadata is
stored in an Amazon DynamoDB table that is encrypted with a key that the Amazon Bedrock service
owns.

Topics
• Data encryption (p. 140)

139

http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

Amazon Bedrock User Guide
Data encryption

• Protect jobs using a VPC (p. 142)

Data encryption
Amazon Bedrock uses encryption to protect data at rest and data in transit.

Topics
• Encryption in transit (p. 140)
• Encryption at rest (p. 140)
• Key management (p. 140)
• Encryption of model customization jobs (p. 140)

Encryption in transit
Within AWS, all inter-network data in transit supports TLS 1.2 encryption.

Requests to the Amazon Bedrock API and console are made over a secure (SSL) connection. You pass
AWS Identity and Access Management (IAM) roles to Amazon Bedrock to provide permissions to access
resources on your behalf for training and deployment.

Encryption at rest
Amazon Bedrock provides Encryption of model customization jobs (p. 140) at rest.

Key management
You can use AWS Key Management Service (KMS) to manage the keys that you use with model
customization jobs. For more information, see AWS Key Management Service concepts.

Encryption of model customization jobs
Amazon Bedrock encrypts the model artifacts from your model customization jobs. By default, Amazon
Bedrock encrypts this data using an AWS managed key. Optionally, you can encrypt the model artifacts
using a customer managed key.

For more information about AWS KMS keys, see Customer managed keys in the AWS Key Management
Service Developer Guide.

Topics
• Model customization inputs (p. 140)
• Model customization outputs (p. 141)
• Create a customer managed key (p. 141)
• Use a customer managed key to run customization jobs (p. 141)
• Use a customer managed key during inference (p. 142)

Model customization inputs

When you use Amazon Bedrock to run a model customization job, you store the input documents
(training/validation data) in your Amazon S3 bucket. To encrypt these documents at rest, you can use the
Amazon S3 SSE-S3 server-side encryption option. With this option, objects are encrypted with service
keys managed by the Amazon S3 service.

140

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Bedrock User Guide
Data encryption

For more information, see Protecting data using server-side encryption with Amazon S3-managed
encryption keys (SSE-S3) in the Amazon Simple Storage Service User Guide.

Model customization outputs

When Amazon Bedrock completes a model customization job, it stores the job metrics in the Amazon S3
location that you specified when you created the job. To encrypt the metrics, you can use the Amazon S3
SSE-S3 server-side encryption option described in the previous section.

Amazon Bedrock stores the custom model artifacts in an Amazon S3 bucket controlled by AWS. By
default, Amazon Bedrock encrypts this data using an AWS managed key. This type of KMS key is created
by AWS, so you don't manage this KMS key yourself. AWS manages the key and uses it on your behalf.

Optionally, you can choose to encrypt the custom model artifacts with a customer managed key. This is a
KMS key that you create, own, and manage in your AWS account.

Before you can use your own KMS key, configure the policies and permissions as described in the
following sections.

Create a customer managed key

Any user with CreateKey permissions can create customer managed keys using either the AWS
Key Management Service (AWS KMS) console or the CreateKey API operation. Make sure to create a
symmetric encryption key.

Create a key policy and add the following policy statements to grant permissions to custom model
builders and users.

{
 "Version": "2012-10-17",
 "Id": "KMS Key Policy",
 "Statement": [
 {
 "Sid": "Permissions for custom model users",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/CustomModelCaller"
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
 },
 {
 "Sid": "Permissions for custom model builders",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/CustomModelBuilder"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource": "*"
 }
}

Use a customer managed key to run customization jobs

For users to create a model customization job, the user or role needs the following permissions to use
the customer managed key.

141

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html

Amazon Bedrock User Guide
Use VPC

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Bedrock custom model builder policy",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey"
 "kms:CreateGrant"
],
 "Resource": "arn:aws:kms:region:111122223333:key/key id"
 }
]
}

Use a customer managed key during inference

For users to run inference on a custom model, the user or role needs the following permissions to use the
customer managed key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Bedrock Customer Invocation Policy",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:region:111122223333:key/key id"
 }
]
}

When you invoke a model to run inference (for a custom model encrypted with a customer managed
key), if you don't have kms:Decrypt permissions for that key, the request fails with the following error
message:

You don't have sufficient access to the model's KMS key. Ensure that kms:Decrypt permissions are correctly
configured

Protect jobs using a VPC
When you run a model customization job, the job accesses your Amazon S3 bucket to download the
input data and to upload job metrics.

To control access to your data, we recommend that you create a virtual private cloud (VPC). Configure
it so that your training data is not accessible over the internet. For information about creating and
configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide.

Using a VPC protects your data and lets you monitor all network traffic in and out of the AWS job
containers by using VPC Flow Logs. For more information, see VPC Flow Logs in the Amazon VPC User
Guide.

If you configure your VPC with no internet access, you must create a VPC endpoint that allows the
customization job to access these S3 buckets.

142

https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Amazon Bedrock User Guide
Use VPC

When you configure your customization job to use VPC, the job creates an elastic network interface (ENI)
that uses your VPC endpoint to access your S3 buckets. For information about ENIs, see Elastic Network
Interfaces in the Amazon VPC User Guide.

Topics
• Configure a VPC for Amazon Bedrock (p. 143)
• Configure your model customization job to use VPC (p. 146)

Configure a VPC for Amazon Bedrock
When you configure the VPC for an Amazon Bedrock model customization job, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the Amazon
VPC User Guide.

Topics
• Create an Amazon S3 VPC Endpoint (p. 143)
• Use a custom endpoint policy to restrict access to Amazon S3 (p. 143)
• VPC permissions for customization job role (p. 144)
• Configure route tables (p. 146)

Create an Amazon S3 VPC Endpoint

If you configure your VPC with no internet access, you need create a VPC endpoint. The endpoint allows
access to the S3 buckets that contain your training data and the training loss metrics data that's stored
by the job.

By creating a VPC endpoint, you allow your model customization jobs to access the buckets where you
store your data and model artifacts.

We recommend that you also create a custom policy that allows only requests from your private
VPC to access your S3 buckets. For more information, see Use interface VPC endpoints (AWS
PrivateLink) (p. 175).

To create an Amazon S3 VPC endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Endpoints, then choose Create Endpoint.
3. For Service Name, search for com.amazonaws.region.s3. Replace region with the name of the

Region where your VPC resides.
4. Choose the Gateway type.
5. For VPC, choose the VPC you want to use for this endpoint.
6. For Configure route tables, select the route tables to be used by the endpoint. Amazon VPC

automatically adds a route to each selected route table that points any Amazon S3 traffic to the new
endpoint.

7. For Policy, choose Full Access to allow full access to Amazon S3 by any user or service within the
VPC. Choose Custom to restrict access further. For information, see Use a custom endpoint policy to
restrict access to Amazon S3 (p. 143).

Use a custom endpoint policy to restrict access to Amazon S3

The default endpoint policy allows full access to Amazon S3 for any user or service in your VPC. To
further restrict access to Amazon S3, create a custom endpoint policy. For more information, see Using

143

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3

Amazon Bedrock User Guide
Use VPC

Endpoint Policies for Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to
only traffic that comes from your VPC.

The following policy allows access to S3 buckets. Edit this policy to allow access to only the resources
that your job needs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow access to output location",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::my_output_bucket/myfolder"
]
 },
 {
 "Sid": "Allow access to input data",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::my_training_data_bucket/myfolder",
 "arn:aws:s3:::my_validation_data_bucket/myfolder"
]
 }
]
}

For information, see Using Amazon S3 Bucket Policies.

VPC permissions for customization job role

When you use a VPC with your model customization job, the data access role that you provide in the
CreateModelCustomizationJob request must include the following permissions. Edit this policy to
allow access to only the VPC resources that your job needs.

{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }, {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
]
 "Resource":[
 "arn:aws:ec2:{region}:{AccountId}:network-interface/*"

144

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon Bedrock User Guide
Use VPC

],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/BedrockManaged": ["true"]
 },
 "ArnEquals": {
 "aws:RequestTag/BedrockModelCustomizationJobArn": ["arn:aws:bedrock:
{region}:{AccountId}:model-customization-job/*"]
 }
 }
 }, {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
]
 "Resource":[
 "arn:aws:ec2:{region}:{AccountId}:subnet/{subnet-Id}",
 "arn:aws:ec2:{region}:{AccountId}:subnet/{subnet-Id2}",
 "arn:aws:ec2:{region}:{AccountId}:security-group/{sg-Id}",
 "arn:aws:ec2:{region}:{AccountId}:security-group/{sg-Id2}"
]
 }, {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
]
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "ec2:Subnet": [
 "arn:aws:ec2:{region}:{AccountId}:subnet/{subnet-Id}",
 "arn:aws:ec2:{region}:{AccountId}:subnet/{subnet-Id2}"
],
 "ec2:ResourceTag/BedrockModelCustomizationJobArn": ["arn:aws:bedrock:
{region}:{AccountId}:model-customization-job/*"]
 },
 "StringEquals": {
 "ec2:ResourceTag/BedrockManaged": "true",
 }
 }
 }, {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:{region}:{AccountId}:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": [
 "CreateNetworkInterface"
]
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "BedrockManaged",
 "BedrockModelCustomizationJobArn"
]
 }
 }
 }

For more information about configuring the data access role for model customization jobs, see Set up an
IAM role for model customization (p. 79).

145

Amazon Bedrock User Guide
Use VPC

Configure route tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for example,
http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default DNS settings,
ensure that the URLs for the locations of the data in your training jobs resolve. Do this by configuring
the endpoint route tables. For information about VPC endpoint route tables, see Routing for Gateway
Endpoints in the Amazon VPC User Guide.

Configure your model customization job to use VPC
After you configure the VPC and the required roles and permissions as described in the previous sections,
you can create a model customization job that uses this VPC.

When you specify the VPN subnets and security groups for a job, Amazon Bedrock creates elastic
network interfaces (ENIs) that are associated with your security groups in one of the subnets. ENIs
allow the Amazon Bedrock job to connect to resources in your VPC. For information about ENIs, see
Elastic Network Interfaces in the Amazon VPC User Guide. Amazon Bedrock tags ENIs that it creates with
BedrockManaged and BedrockModelCusomizationJobArn tags.

We recommend that you provide at least one subnet in each Availability Zone.

You can use security groups to establish rules for controlling Amazon Bedrock access to your VPC
resources.

Use the API

For the Amazon Bedrock API, you specify VPC subnets and security groups in the VpcConfig request
parameter. The following is an example of the VpcConfig parameter that you include in your API call:

"VpcConfig": {
"SecurityGroupIds": [
 "sg-0123456789abcdef0"
],
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
]
}

For more information about configuring jobs using the API, see Submit a job (API) (p. 81).

Use the console

For the Amazon Bedrock console, you specify VPC subnets and security groups in the optional VPC
settings section when you create the model customization job. For more information about configuring
jobs using the console, see Submit a job (console) (p. 75).

Note
For a job that includes VPC configuration, the console cannot create a new service role for the
job. Create the service role using the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"

146

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon Bedrock User Guide
Identity and access management

 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:bedrock:us-east-1:111122223333:model-
customization-job/*"
 }
 }
 }
]
}

Identity and access management for Amazon
Bedrock

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use Amazon Bedrock resources. IAM is an AWS service that you can use
with no additional charge.

Topics
• Audience (p. 147)
• Authenticating with identities (p. 148)
• Managing access using policies (p. 150)
• How Amazon Bedrock works with IAM (p. 151)
• Identity-based policy examples for Amazon Bedrock (p. 156)
• Service role (p. 161)
• Troubleshooting Amazon Bedrock identity and access (p. 161)

Audience
How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in
Amazon Bedrock.

Service user – If you use the Amazon Bedrock service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon Bedrock features to do
your work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Amazon Bedrock,
see Troubleshooting Amazon Bedrock identity and access (p. 161).

Service administrator – If you're in charge of Amazon Bedrock resources at your company, you probably
have full access to Amazon Bedrock. It's your job to determine which Amazon Bedrock features and
resources your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand the
basic concepts of IAM. To learn more about how your company can use IAM with Amazon Bedrock, see
How Amazon Bedrock works with IAM (p. 151).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to Amazon Bedrock. To view example Amazon Bedrock identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon Bedrock (p. 156).

147

Amazon Bedrock User Guide
Authenticating with identities

Authenticating with identities
Authentication is how you sign in to AWS using your identity credentials. You must be authenticated
(signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity source.
AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on authentication,
and your Google or Facebook credentials are examples of federated identities. When you sign in as a
federated identity, your administrator previously set up identity federation using IAM roles. When you
access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the AWS
access portal. For more information about signing in to AWS, see How to sign in to your AWS account in
the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a command
line interface (CLI) to cryptographically sign your requests by using your credentials. If you don't use AWS
tools, you must sign requests yourself. For more information about using the recommended method to
sign requests yourself, see Signing AWS API requests in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA)
to increase the security of your account. To learn more, see Multi-factor authentication in the AWS IAM
Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and is
accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you don't use the root user for your everyday tasks. Safeguard your root user
credentials and use them to perform the tasks that only the root user can perform. For the complete list
of tasks that require you to sign in as the root user, see Tasks that require root user credentials in the IAM
User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts, they
assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity Center
User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. Where possible, we recommend relying on temporary credentials instead of creating IAM

148

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

Amazon Bedrock User Guide
Authenticating with identities

users who have long-term credentials such as passwords and access keys. However, if you have specific
use cases that require long-term credentials with IAM users, we recommend that you rotate access keys.
For more information, see Rotate access keys regularly for use cases that require long-term credentials in
the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in
the IAM User Guide.

IAM roles
An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role and define
permissions for the role. When a federated identity authenticates, the identity is associated with
the role and is granted the permissions that are defined by the role. For information about roles for
federation, see Creating a role for a third-party Identity Provider in the IAM User Guide. If you use IAM
Identity Center, you configure a permission set. To control what your identities can access after they
authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information about
permissions sets, see Permission sets in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily take on
different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when you
make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects
in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or
using a service-linked role.
• Principal permissions – When you use an IAM user or role to perform actions in AWS, you are

considered a principal. Policies grant permissions to a principal. When you use some services, you
might perform an action that then triggers another action in a different service. In this case, you
must have permissions to perform both actions. To see whether an action requires additional
dependent actions in a policy, see Actions, Resources, and Condition Keys for Amazon Bedrock in
the Service Authorization Reference.

• Service role – A service role is an IAM role that a service assumes to perform actions on your behalf.
An IAM administrator can create, modify, and delete a service role from within IAM. For more
information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS service.
The service can assume the role to perform an action on your behalf. Service-linked roles appear in
your AWS account and are owned by the service. An IAM administrator can view, but not edit the
permissions for service-linked roles.

149

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbedrock.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Bedrock User Guide
Managing access using policies

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant
permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the
IAM User Guide.

Managing access using policies
You control access in AWS by creating policies and attaching them to AWS identities or resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
AWS evaluates these policies when a principal (user, root user, or role session) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored
in AWS as JSON documents. For more information about the structure and contents of JSON policy
documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then add
the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, group of users, or role. These policies control what actions users and roles can perform,
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the
resource where the policy is attached, the policy defines what actions a specified principal can perform
on that resource and under what conditions. You must specify a principal in a resource-based policy.
Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed
policies from IAM in a resource-based policy.

150

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Bedrock User Guide
How Amazon Bedrock works with IAM

Access control lists (ACLs)
Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy
document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about
ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other policy types
AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of an
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs work in the AWS
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types
When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Bedrock works with IAM
Before you use IAM to manage access to Amazon Bedrock, learn what IAM features are available to use
with Amazon Bedrock.

IAM features you can use with Amazon Bedrock

IAM feature Amazon Bedrock support

Identity-based policies (p. 152) Yes

Resource-based policies (p. 152) No

151

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Bedrock User Guide
How Amazon Bedrock works with IAM

IAM feature Amazon Bedrock support

Policy actions (p. 153) Yes

Policy resources (p. 153) Yes

Policy condition keys (p. 154) Yes

ACLs (p. 154) No

ABAC (tags in policies) (p. 154) Partial

Temporary credentials (p. 155) Yes

Principal permissions (p. 155) Yes

Service roles (p. 155) Yes

Service-linked roles (p. 156) No

To get a high-level view of how Amazon Bedrock and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon Bedrock

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, group of users, or role. These policies control what actions users and roles can perform,
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. You can't specify the principal in an identity-based
policy because it applies to the user or role to which it is attached. To learn about all of the elements
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for Amazon Bedrock

To view examples of Amazon Bedrock identity-based policies, see Identity-based policy examples for
Amazon Bedrock (p. 156).

Resource-based policies within Amazon Bedrock

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the
resource where the policy is attached, the policy defines what actions a specified principal can perform
on that resource and under what conditions. You must specify a principal in a resource-based policy.
Principals can include accounts, users, roles, federated users, or AWS services.

152

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Bedrock User Guide
How Amazon Bedrock works with IAM

To enable cross-account access, you can specify an entire account or IAM entities in another account as
the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy is
only half of establishing the trust relationship. When the principal and the resource are in different AWS
accounts, an IAM administrator in the trusted account must also grant the principal entity (user or role)
permission to access the resource. They grant permission by attaching an identity-based policy to the
entity. However, if a resource-based policy grants access to a principal in the same account, no additional
identity-based policy is required. For more information, see How IAM roles differ from resource-based
policies in the IAM User Guide.

Policy actions for Amazon Bedrock

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a
policy. Policy actions usually have the same name as the associated AWS API operation. There are some
exceptions, such as permission-only actions that don't have a matching API operation. There are also
some operations that require multiple actions in a policy. These additional actions are called dependent
actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon Bedrock actions, see Actions Defined by Amazon Bedrock in the Service
Authorization Reference.

Policy actions in Amazon Bedrock use the following prefix before the action:

bedrock

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "bedrock:action1",
 "bedrock:action2"
]

To view examples of Amazon Bedrock identity-based policies, see Identity-based policy examples for
Amazon Bedrock (p. 156).

Policy resources for Amazon Bedrock

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice, specify

153

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

Amazon Bedrock User Guide
How Amazon Bedrock works with IAM

a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific
resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to
indicate that the statement applies to all resources.

"Resource": "*"

To view examples of Amazon Bedrock identity-based policies, see Identity-based policy examples for
Amazon Bedrock (p. 156).

Policy condition keys for Amazon Bedrock

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can create conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition
keys, see AWS global condition context keys in the IAM User Guide.

All Amazon Bedrock actions support condition keys using Amazon Bedrock models as the resource.

To view examples of Amazon Bedrock identity-based policies, see Identity-based policy examples for
Amazon Bedrock (p. 156).

ACLs in Amazon Bedrock

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy
document format.

ABAC with Amazon Bedrock

Supports ABAC (tags in policies) Partial

154

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Bedrock User Guide
How Amazon Bedrock works with IAM

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on
attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or roles)
and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then you design
ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are
trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy using
the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the service.
If a service supports all three condition keys for only some resource types, then the value is Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with steps
for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Amazon Bedrock

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional information,
including which AWS services work with temporary credentials, see AWS services that work with IAM in
the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using any method
except a user name and password. For example, when you access AWS using your company's single
sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically
create temporary credentials when you sign in to the console as a user and then switch roles. For more
information about switching roles, see Switching to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use those
temporary credentials to access AWS. AWS recommends that you dynamically generate temporary
credentials instead of using long-term access keys. For more information, see Temporary security
credentials in IAM.

Cross-service principal permissions for Amazon Bedrock

Supports principal permissions Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies
grant permissions to a principal. When you use some services, you might perform an action that
then triggers another action in a different service. In this case, you must have permissions to perform
both actions. To see whether an action requires additional dependent actions in a policy, see Actions,
Resources, and Condition Keys for Amazon Bedrock in the Service Authorization Reference.

Service roles for Amazon Bedrock

Supports service roles Yes

155

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbedrock.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbedrock.html

Amazon Bedrock User Guide
Identity-based policy examples

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information, see
Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning
Changing the permissions for a service role might break Amazon Bedrock functionality. Edit
service roles only when Amazon Bedrock provides guidance to do so.

Service-linked roles for Amazon Bedrock

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can assume the
role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned
by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

Identity-based policy examples for Amazon Bedrock
By default, users and roles don't have permission to create or modify Amazon Bedrock resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS
CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an IAM
administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users
can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy documents, see
Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon Bedrock, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon Bedrock in
the Service Authorization Reference.

Note
The Amazon Bedrock service is available as a limited preview release, so its information is not
included in the Service Authorization Reference.

Topics
• Policy best practices (p. 156)

• Use the Amazon Bedrock console (p. 157)

• Allow users to view their own permissions (p. 158)

• Allow access to third-party model subscriptions (p. 159)

• Deny access for inference on specific models (p. 159)

• Grant custom jobs access to your training data (p. 160)

• Permissions for using KMS keys with model customization (p. 160)

Policy best practices
Identity-based policies determine whether someone can create, access, or delete Amazon Bedrock
resources in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To get
started granting permissions to your users and workloads, use the AWS managed policies that grant

156

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbedrock.html

Amazon Bedrock User Guide
Identity-based policy examples

permissions for many common use cases. They are available in your AWS account. We recommend that
you reduce permissions further by defining AWS customer managed policies that are specific to your
use cases. For more information, see AWS managed policies or AWS managed policies for job functions
in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User
Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your policies to
limit access to actions and resources. For example, you can write a policy condition to specify that all
requests must be sent using SSL. You can also use conditions to grant access to service actions if they
are used through a specific AWS service, such as AWS CloudFormation. For more information, see IAM
JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions
– IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM
policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy
checks and actionable recommendations to help you author secure and functional policies. For more
information, see IAM Access Analyzer policy validation in the IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a root
user in your AWS account, turn on MFA for additional security. To require MFA when API operations are
called, add MFA conditions to your policies. For more information, see Configuring MFA-protected API
access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Use the Amazon Bedrock console
To access the Amazon Bedrock console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the Amazon Bedrock resources in your AWS account. If
you create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that they're
trying to perform.

To provide access to the Amazon Bedrock console, attach the following policy to the roles or entities that
need access. A few of the actions in the policy are for use by the Amazon Bedrock console only, so IAM
might raise Invalid Action errors. You can ignore these errors and choose Next to complete the task.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BedrockConsole",
 "Effect": "Allow",
 "Action": [
 "bedrock:ListFoundationModels",
 "bedrock:GetFoundationModel",
 "bedrock:InvokeModel",
 "bedrock:InvokeModelWithResponseStream",
 "bedrock:CreateModelCustomizationJob",
 "bedrock:GetModelCustomizationJob",
 "bedrock:GetFoundationModelAvailability",
 "bedrock:ListModelCustomizationJobs",

157

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Bedrock User Guide
Identity-based policy examples

 "bedrock:StopModelCustomizationJob",
 "bedrock:GetCustomModel",
 "bedrock:ListCustomModels",
 "bedrock:DeleteCustomModel",
 "bedrock:CreateProvisionedModelThroughput",
 "bedrock:UpdateProvisionedModelThroughput",
 "bedrock:GetProvisionedModelThroughput",
 "bedrock:DeleteProvisionedModelThroughput",
 "bedrock:ListProvisionedModelThroughputs",
 "bedrock:ListTagsForResource",
 "bedrock:UntagResource",
 "bedrock:TagResource",
 "bedrock:PutFoundationModelEntitlement",
 "bedrock:GetModelInvocationLoggingConfiguration",
 "bedrock:PutModelInvocationLoggingConfiguration",
 "bedrock:CreateFoundationModelAgreement",
 "bedrock:DeleteFoundationModelAgreement",
 "bedrock:ListFoundationModelAgreementOffers",
 "bedrock:GetUseCaseForModelAccess",
 "bedrock:PutUseCaseForModelAccess"
],
 "Resource": "*"
 }
]
}

For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions
This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"

158

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Bedrock User Guide
Identity-based policy examples

 }
]
}

Allow access to third-party model subscriptions
To access the Amazon Bedrock models for the first time, you use the Amazon Bedrock console to
subscribe to third-party models. Your IAM user or role that the console user assumes requires permission
to access the subscription API operations.

The following example shows an identity-based policy to allow access to the subscription API operations.
The example includes a condition key that limits the scope of the policy to the Amazon Bedrock products
in the Marketplace.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:Subscribe"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws-marketplace:ProductId": [
 "c468b48a-84df-43a4-8c46-8870630108a7",
 "99d90be8-b43e-49b7-91e4-752f3866c8c7",
 "b0eb9475-3a2c-43d1-94d3-56756fd43737",
 "1d288c71-65f9-489a-a3e2-9c7f4f6e6a85",
 "cc0bdd50-279a-40d8-829c-4009b77a1fcc",
 "d0123e8d-50d6-4dba-8a26-3fed4899f388",
 "a61c46fe-1747-41aa-9af0-2e0ae8a9ce05"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:Unsubscribe",
 "aws-marketplace:ViewSubscriptions"
],
 "Resource": "*"
 }
]
}

Deny access for inference on specific models
The following example shows an identity-based policy that denies access to running inference on a
specific model.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "DenyInference",
 "Effect": "Deny",
 "Action": [
 "bedrock:InvokeModel",
 "bedrock:InvokeModelWithResponseStream"

159

Amazon Bedrock User Guide
Identity-based policy examples

]
 "Resource": "arn:aws:bedrock:*::foundation-model/model-id-of-model-to-deny"
 }
}

Grant custom jobs access to your training data
The following example grants access to the Amazon S3 locations of the input and output data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:ListObjects"
],
 "Resource": [
 "arn:aws:s3:::my_training_data_bucket/myfolder",
 "arn:aws:s3:::my_validation_bucket/myfolder",
 "arn:aws:s3:::my_output_bucket/myfolder"
]
 }
]
}

The following example creates a trust policy to allow model-customization jobs to assume a role, if the
job was created in the same account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:bedrock:us-east-1:111122223333:model-
customization-job/*"
 }
 }
 }
 }
]
}

Permissions for using KMS keys with model customization
Provide the appropriate AWS KMS permissions for users and roles that create or use custom models. For
details, see Use a customer managed key to run customization jobs (p. 141).

160

Amazon Bedrock User Guide
Service role

Service role
You can set up a service role that lets Amazon Bedrock run on your behalf.

1. Create an AmazonBedrock-ExecutionRole (RolePolicy) with the permissions needed for training (S3,
KMS) and a Trusted Entity policy which allows Amazon Bedrock to assume this role (Reference role).
Note the Amazon Resouce Name (ARN) of the role policy.

2. In the role policy, to set the context keys for aws:SourceArn and aws:SourceAccount to the
Amazon Bedrock job Amazon Resouce Name (ARN) and your AWS Account ID when Amazon Bedrock
tries to assume these credentials.

3. Create an IAM entity with permissions to access Amazon Bedrock and pass role permissions to the
RoleArn you noted in step 1.

You can then run a fine tuning job with the console, or with the CreateFineTuningJob operation,
passing the >RoleArn and the Amazon S3 URI of your training data.

Amazon Bedrock performs PassRole checks in the CreateFineTuningJob operation to prevent confused
deputy scenarios. These PassRole checks validate that you are passing in a role that has permissions to
pass that role into an AWS service to act on their behalf. Amazon Bedrock then uses the provided Role
ARN to generate credentials that it uses to download the training and validation data stored in your
account, as well as upload training metrics to your account.

Troubleshooting Amazon Bedrock identity and access
Use the following information to help you diagnose and fix common issues that you might encounter
when working with Amazon Bedrock and IAM.

Topics

• I am not authorized to perform an action in Amazon Bedrock (p. 161)

• I am not authorized to perform iam:PassRole (p. 162)

• I want to allow people outside of my AWS account to access my Amazon Bedrock resources (p. 162)

I am not authorized to perform an action in Amazon Bedrock
If you receive an error that you're not authorized to perform an action, your policies must be updated to
allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
bedrock:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 bedrock:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the bedrock:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you
with your sign-in credentials.

161

Amazon Bedrock User Guide
Compliance validation

I am not authorized to perform iam:PassRole
If you receive an error that you're not authorized to perform the iam:PassRole action, your policies
must be updated to allow you to pass a role to Amazon Bedrock.

Some AWS services allow you to pass an existing role to that service instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in Amazon Bedrock. However, the action requires the service to have permissions that
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you
with your sign-in credentials.

I want to allow people outside of my AWS account to access my
Amazon Bedrock resources
You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

• To learn whether Amazon Bedrock supports these features, see How Amazon Bedrock works with
IAM (p. 151).

• To learn how to provide access to your resources across AWS accounts that you own, see Providing
access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing access to
AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance validation for Amazon Bedrock
To learn whether an AWS service is within the scope of specific compliance programs, see AWS services
in Scope by Compliance Program and choose the compliance program that you are interested in. For
general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

162

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon Bedrock User Guide
Incident response

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security and
compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper describes
how companies can use AWS to create HIPAA-eligible applications.

Note
Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible Services
Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your industry
and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your compliance
against security industry standards and best practices. For a list of supported services and controls, see
Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify how
you manage risk and compliance with regulations and industry standards.

Incident response in Amazon Bedrock
Incident response for Amazon Bedrock is an AWS responsibility. AWS has a formal, documented policy
and program that governs incident response.

AWS operational issues with broad impact are posted on the AWS Service Health Dashboard.

Operational issues are also posted to individual accounts via the AWS Health Dashboard. For information
on how to use the AWS Health Dashboard, see the AWS Health User Guide.

Resilience in Amazon Bedrock
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between zones without interruption. Availability
Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data
center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon Bedrock
As a managed service, Amazon Bedrock is protected by the AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To design
your AWS environment using the best practices for infrastructure security, see Infrastructure Protection
in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon Bedrock through the network. Clients must support
the following:

163

http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://status.aws.amazon.com/
https://docs.aws.amazon.com/health/latest/ug/what-is-aws-health.html
http://aws.amazon.com/about-aws/global-infrastructure/
http://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Bedrock User Guide
Cross-service confused deputy prevention

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.
• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE

(Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these
modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

Cross-service confused deputy prevention
The confused deputy problem is a security issue where an entity that doesn't have permission to perform
an action can coerce a more-privileged entity to perform the action. In AWS, cross-service impersonation
can result in the confused deputy problem. Cross-service impersonation can occur when one service (the
calling service) calls another service (the called service). The calling service can be manipulated to use its
permissions to act on another customer's resources in a way it should not otherwise have permission to
access. To prevent this, AWS provides tools that help you protect your data for all services with service
principals that have been given access to resources in your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context keys
in resource policies to limit the permissions that Amazon Bedrock gives another service to the resource.
Use aws:SourceArn if you want only one resource to be associated with the cross-service access. Use
aws:SourceAccount if you want to allow any resource in that account to be associated with the cross-
service use.

The most effective way to protect against the confused deputy problem is to use the aws:SourceArn
global condition context key with the full ARN of the resource. If you don't know the full ARN of
the resource or if you are specifying multiple resources, use the aws:SourceArn global context
condition key with wildcard characters (*) for the unknown portions of the ARN. For example,
arn:aws:bedrock:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN, you
must use both global condition context keys to limit permissions.

The value of aws:SourceArn must be ResourceDescription.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount global
condition context keys in Bedrock to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:bedrock:us-east-1:111122223333:model-
customization-job/*"
 }
 }

164

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Bedrock User Guide
Configuration and vulnerability analysis in Amazon Bedrock

 }
]
}

Configuration and vulnerability analysis in Amazon
Bedrock

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For more
information, see the AWS shared responsibility model.

165

http://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Bedrock User Guide
Monitor with CloudWatch

Monitor
You can monitor Amazon Bedrock with Amazon CloudWatch and with Amazon EventBridge.

Topics
• Monitor Amazon Bedrock with Amazon CloudWatch (p. 166)
• Monitor Amazon Bedrock events in Amazon EventBridge (p. 168)
• Log Amazon Bedrock API calls using AWS CloudTrail (p. 171)

Monitor Amazon Bedrock with Amazon
CloudWatch

You can monitor Amazon Bedrock using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. You can graph the metrics using the CloudWatch console. You
can also set alarms that watch for certain thresholds, and send notifications or take actions when values
exceed those thresholds.

For more information, see What is Amazon CloudWatch in the Amazon CloudWatch User Guide.

Topics
• Runtime metrics (p. 166)
• Logging CloudWatch metrics (p. 167)
• Use CloudWatch metrics for Amazon Bedrock (p. 167)
• View Amazon Bedrock metrics (p. 167)

Runtime metrics
The following table describes runtime metrics provided by Amazon Bedrock.

Metric name Unit Description

Invocations SampleCount Number of requests
to the InvokeModel or
InvokeModelWithResponseStream
API operations.

InvocationLatency MilliSeconds Latency of the invocations.

InvocationClientErrors SampleCount Number of invocations that
result in client-side errors.

InvocationServerErrors SampleCount Number of invocations that
result in AWS server-side errors.

InvocationThrottles SampleCount Number of invocations that the
system throttled.

166

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

Amazon Bedrock User Guide
Logging CloudWatch metrics

Metric name Unit Description

InputTokenCount SampleCount Number of tokens of text input.

OutputTokenCount SampleCount Number of tokens of text
output.

OutputImageCount SampleCount Number of output images.

Logging CloudWatch metrics
For each delivery success or failure attempt, the following Amazon CloudWatch metrics are emitted
under the namespace AWS/Bedrock, and Across all model IDs dimension:

• ModelInvocationLogsCloudWatchDeliverySuccess

• ModelInvocationLogsCloudWatchDeliveryFailure

• ModelInvocationLogsS3DeliverySuccess

• ModelInvocationLogsS3DeliveryFailure

• ModelInvocationLargeDataS3DeliverySuccess

• ModelInvocationLargeDataS3DeliveryFailure

If logs fail to deliver due to permission misconfiguration or transient failures, the delivery is retried
periodically for up to 24 hours.

Use CloudWatch metrics for Amazon Bedrock
To retrieve metrics for your Amazon Bedrock operations, you specify the following information:

• The metric dimension. A dimension is a set of name-value pairs that you use to identify a metric.
Amazon Bedrock supports the following dimensions:

• ModelId – all metrics

• ModelId + ImageSize + BucketedStepSize – OutputImageCount

• The metric name, such as InvocationClientErrors.

You can get metrics for Amazon Bedrock with the AWS Management Console, the AWS CLI, or the
CloudWatch API. You can use the CloudWatch API through one of the AWS Software Development Kits
(SDKs) or the CloudWatch API tools.

You must have the appropriate CloudWatch permissions to monitor Amazon Bedrock with CloudWatch
For more information, see Authentication and Access Control for Amazon CloudWatch in the Amazon
CloudWatch User Guide.

View Amazon Bedrock metrics
View Amazon Bedrock metrics in the CloudWatch console.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

167

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Bedrock User Guide
Monitor events

2. Choose Metrics, choose All Metrics, and then search for ModelId.

Monitor Amazon Bedrock events in Amazon
EventBridge

You can use Amazon EventBridge to monitor status change events in Amazon Bedrock. With Amazon
EventBridge, you can configure Amazon SageMaker to respond automatically to a model customization
job status change in Amazon Bedrock. Events from Amazon Bedrock are delivered to Amazon
EventBridge in near real time. You can write simple rules to automate actions when an event matches a
rule. If you use Amazon EventBridge with Amazon Bedrock, you can:

• Publish notifications whenever there is a state change event in the model customization you have
triggered, whether you add new asynchronous workflows in the future. The event published should
give you enough information to react to events in downstream workflows.

• Deliver job status updates without invoking the GetModelCustomizationJob API, which can mean
handling API rate limit issues, API updates, and reduction in additional compute resources.

There is no cost to receive AWS events from Amazon EventBridge. For more information about, Amazon
EventBridge, see Amazon EventBridge

Note

• Amazon Bedrock emits events on a best-effort basis. Events are delivered to Amazon
EventBridge in near real time. With Amazon EventBridge, you can create rules that trigger
programmatic actions in response to an event. For example, you can configure a rule that
invokes an SNS topic to send an email notification or invokes a function to take some action.
For more information, see the Amazon EventBridge User Guide.

• AWS Bedrock creates a new event every time there is a state change in a model customization
job that you trigger and make best-effort delivery of such event.

Topics
• How it works (p. 168)

• EventBridge schema (p. 169)

• Rules and targets (p. 170)

• Create a rule to handle AWS Bedrock events (p. 170)

How it works
To receive events from Amazon Bedrock, you need to create rules and targets to match, receive, and
handle state change data through Amazon EventBridge. Amazon EventBridge is a serverless event
bus that ingests change state events from AWS services, SaaS partners, and customer applications. It
processes events based on rules or patterns that you create, and routes these events to one or more
“targets” that you choose, such as AWS Lambda, Amazon Simple Queue Service, and Amazon Simple
Notification Service.

Amazon Bedrock publishes your events via Amazon EventBridge whenever there is a change in the state
of a model customization job. In each case, a new event is created and sent to Amazon EventBridge,
which then sends the event to your default event-bus. The event shows which customization job’s state
has changed, and the current state of the job. When Amazon EventBridge receives an event that matches
a rule that you created, Amazon EventBridge routes it to the target that you specified. When you create

168

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

Amazon Bedrock User Guide
EventBridge schema

a rule, you can configure these targets as well as downstream workflows based on the contents of the
event.

EventBridge schema
The following event fields in the EventBridge event schema are specific to Amazon Bedrock.

• jobArn — The ARN of the model customization job.

• outputModelArn — The ARN of the output model. Published when the training job has completed.

• jobStatus — The current status of the job.

• FailureMessage — A failure message. Published when the training job has failed.

Event example

The folllowing is example event JSON for a failed model customization job.

{
 "version": "0",
 "id": "UUID",
 "detail-type": "Model Customization Job State Change",
 "source": "aws.bedrock",
 "account": "123412341234",
 "time": "2023-08-11T12:34:56Z",
 "region": "us-east-1",
 "resources": ["arn:aws:bedrock:us-east-1:123412341234:model-customization-job/
abcdefghwxyz"],
 "detail": {
 "version": "0.0",
 "jobName": "abcd-wxyz",
 "jobArn": "arn:aws:bedrock:us-east-1:123412341234:model-customization-job/
abcdefghwxyz",
 "outputModelName": "dummy-output-model-name",
 "outputModelArn": "arn:aws:bedrock:us-east-1:123412341234:dummy-output-model-name",
 "roleArn": "arn:aws:iam::123412341234:role/JobExecutionRole",
 "jobStatus": "Failed",
 "failureMessage": "Failure Message here.",
 "creationTime": "2023-08-11T10:11:12Z",
 "lastModifiedTime": "2023-08-11T12:34:56Z",
 "endTime": "2023-08-11T12:34:56Z",
 "baseModelArn": "arn:aws:bedrock:us-east-1:123412341234:base-model-name",
 "hyperParameters": {
 "batchSize" : "batchSizeNumberUsed",
 "epochCount": "epochCountNumberUsed",
 "learningRate": "learningRateUsed",
 "learningRateWarmupSteps": "learningRateWarmupStepsUsed"
 },
 "trainingDataConfig": {
 "s3Uri": "s3://bucket/key",
 },
 "validationDataConfig": {
 "s3Uri": "s3://bucket/key",
 },
 "outputDataConfig": {
 "s3Uri": "s3://bucket/key",
 }
 }
}

169

Amazon Bedrock User Guide
Rules and targets

Rules and targets
When an incoming event matches a rule that you created, the event is routed to the target that you
specified for that rule, and the target processes these events. Targets support JSON format and can
include AWS services such as Amazon EC2 instances, Lambda functions, Kinesis streams, Amazon ECS
tasks, Step Functions, Amazon SNS topics, and Amazon SQS. To receive and process events correctly,
you need to create rules and targets for matching, receiving, and correctly handling event data. You can
create these rules and targets either through the Amazon EventBridge console, or through the AWS CLI.

Example rule
This rule matches an event pattern emitted by: source [“aws.bedrock”]. The rule captures all events
sent by Amazon EventBridge that have source “aws.bedrock” to your default event bus.

{
 "source": ["aws.bedrock"]
}

Target
When creating a rule in Amazon EventBridge, you need to specify a target where EventBridge sends the
event that matches your rule pattern. These targets can be a SageMaker pipeline, a Lambda function,
an SNS topic, an SQS queue or any of the other targets that EventBridge currently supports. You can
refer to the Amazon EventBridge documentation to learn how to set targets for events. For a procedure
that shows how to use Amazon Simple Notification Service as a target, see Create a rule to handle AWS
Bedrock events (p. 170).

Create a rule to handle AWS Bedrock events
Complete the following procedures in order to receive email notifications about your AWS Bedrock
events.

Create an Amazon Simple Notification Service topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.
2. In the navigation pane, choose Topics.
3. Choose Create topic.
4. For Type, choose Standard.
5. For Name, enter a name for your topic.
6. Choose Create topic.
7. Choose Create subscription.
8. For Protocol, choose Email.
9. For Endpoint, enter the email address that receives the notifications.
10. Choose Create subscription.
11. You'll receive an email message with the following subject line: AWS Notification -

Subscription Confirmation. Follow the directions to confirm your subscription.

Use the following procedure to create a rule to handle your AWS Bedrock events.

To create a rule to handle AWS Bedrock events

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

170

https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/events/

Amazon Bedrock User Guide
CloudTrail logs

2. Choose Create rule.
3. For Name, enter a name for your rule.
4. For Rule type, choose Rule with an event pattern.
5. Choose Next.
6. For Event pattern, do the following:

a. For Event source, choose AWS services.
b. For AWS service, choose Amazon Bedrock.
c. For Event type, choose Model Customization Job State Change.
d. By default, we send notifications for every event. If you prefer, you can create an event pattern

that filters events for a specific job state.
e. Choose Next.

7. Specify a target as follows:

a. For Target types, choose AWS service.
b. For Select a target, choose SNS topic.
c. For Topic, choose the SNS topic that you created for notifications.
d. Choose Next.

8. (Optional) Add tags to your rule.
9. Choose Next.
10. Choose Create rule.

Log Amazon Bedrock API calls using AWS
CloudTrail

Amazon Bedrock is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Amazon Bedrock. CloudTrail captures all API calls for Amazon Bedrock as
events. The calls captured include calls from the Amazon Bedrock console and code calls to the Amazon
Bedrock API operations. If you create a trail, you can enable continuous delivery of CloudTrail events to
an Amazon S3 bucket, including events for Amazon Bedrock. If you don't configure a trail, you can still
view the most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to Amazon Bedrock, the IP address from
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon Bedrock information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Amazon
Bedrock, that activity is recorded in a CloudTrail event along with other AWS service events in Event
history. You can view, search, and download recent events in your AWS account. For more information,
see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Amazon Bedrock, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

• Overview for creating a trail

171

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

Amazon Bedrock User Guide
Understanding Amazon Bedrock log file entries

• CloudTrail supported services and integrations
• Configuring Amazon SNS notifications for CloudTrail
• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from multiple

accounts

All Amazon Bedrock actions are logged by CloudTrail and are documented in the Amazon
Bedrock API Reference. For example, calls to the InvokeModel, ListFoundationModels and
StopModelCustomizationJob actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding Amazon Bedrock log file entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the InvokeModel action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAICFHPEXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/userxyz",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "userxyz"
 },
 "eventTime": "2023-10-11T21:58:59Z",
 "eventSource": "bedrock.amazonaws.com",
 "eventName": "InvokeModel",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Boto3/1.28.62 md/Botocore#1.31.62 ua/2.0 os/macos#22.6.0 md/arch#arm64
 lang/python#3.9.6 md/pyimpl#CPython cfg/retry-mode#legacy Botocore/1.31.62",
 "requestParameters": {
 "modelId": "stability.stable-diffusion-xl-v0"
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 ",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {

172

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/
https://docs.aws.amazon.com/bedrock/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Bedrock User Guide
Understanding Amazon Bedrock log file entries

 "tlsVersion": "TLSv1.2",
 "cipherSuite": "cipher suite",
 "clientProvidedHostHeader": "bedrock-runtime.us-west-2.amazonaws.com"
 }
}

173

Amazon Bedrock User Guide

Amazon Bedrock abuse detection
AWS is committed to the responsible use of AI. To help prevent potential misuse, Amazon Bedrock
implements automated abuse detection mechanisms to identify and mitigate potential violations of
AWS’s Acceptable Use Policy (AUP) and Responsible AI Policy or a third-party model provider’s AUP.

Our abuse detection mechanisms are fully automated, so there is no human review of, or access to, user
inputs or model outputs.

Automated abuse detection includes several components:

• Categorize content — We use classifiers to detect harmful content (such as content that incites
violence) in user inputs and model outputs. A classifier is an algorithm that processes model inputs
and outputs, and assigns type of harm and level of confidence. We may run these classifiers on both
Amazon Titan and third-party model usage. The classification process is automated and does not
involve human review of user inputs or model outputs.

• Identify patterns — We use classifier metrics to identify potential violations and recurring behavior.
We may compile and share aggregated and anonymized classifier metrics with third-party model
providers. Amazon Bedrock does not store user input or model output and does not share these with
third-party model providers.

• Contact customers — We may request information about customers’ use of Bedrock and compliance
with our policies. In the event that a customer continues to use the service in a manner that may
violate AWS’s policies or a third-party model provider’s AUP, AWS may suspend access to Bedrock,
taking into account severity, recurrence of the activity, customer cooperation, and whether customers
have mechanisms in place to prevent misuse of the service.

Contact AWS Support if you have additional questions. For more information, see the Amazon Bedrock
FAQs.

174

https://aws.amazon.com/aup/
https://aws.amazon.com/machine-learning/responsible-ai/policy/
https://aws.amazon.com/bedrock/faqs/?refid=6f95042b-28fe-493f-8858-601fe99cea89
https://aws.amazon.com/bedrock/faqs/?refid=6f95042b-28fe-493f-8858-601fe99cea89

Amazon Bedrock User Guide
Considerations

Use interface VPC endpoints (AWS
PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon Bedrock. You
can access Amazon Bedrock as if it were in your VPC, without the use of an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP addresses
to access Amazon Bedrock.

You establish this private connection by creating an interface endpoint, powered by AWS PrivateLink. We
create an endpoint network interface in each subnet that you enable for the interface endpoint. These
are requester-managed network interfaces that serve as the entry point for traffic destined for Amazon
Bedrock.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink Guide.

Considerations for Amazon Bedrock VPC endpoints
Before you set up an interface endpoint for Amazon Bedrock, review Considerations in the AWS
PrivateLink Guide.

Amazon Bedrock supports making calls to Runtime API actions through the VPC endpoint.

Amazon Bedrock endpoints are not available in all Availability Zones in a Region. When you create the
endpoint, use the following command to list the Availability Zones.

aws ec2 describe-vpc-endpoint-services \
 --service-names com.amazonaws.region.bedrock-runtime --region region

Important
The service name com.amazonaws.region.bedrock is deprecated.

Create an interface endpoint for Amazon Bedrock
You can create an interface endpoint for Amazon Bedrock using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Create an interface endpoint in the
AWS PrivateLink Guide.

Create an interface endpoint for Amazon Bedrock using the following service name:

com.amazonaws.region.bedrock-runtime

If you enable private DNS for the interface endpoint, you can make API requests to Amazon Bedrock
using its default Regional DNS name. For example, bedrock-runtime.us-east-1.amazonaws.com.

Important
The private DNS bedrock.region.amazonaws.com is deprecated.

175

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_Operations_Amazon_Bedrock_Runtime.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon Bedrock User Guide
Create an endpoint policy

Create an endpoint policy for your interface
endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default endpoint
policy allows full access to Amazon Bedrock through the interface endpoint. To control the access
allowed to Amazon Bedrock from your VPC, attach a custom endpoint policy to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).
• The actions that can be performed.
• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for Amazon Bedrock actions

The following is an example of a custom endpoint policy. When you attach this policy to your interface
endpoint, it grants access to the listed Amazon Bedrock actions for all principals on all resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel",
 "bedrock:InvokeModelWithResponseStream"
],
 "Resource":"*"
 }
]
}

176

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Bedrock User Guide
Runtime quotas

Quotas for Amazon Bedrock
Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and other
quotas cannot be increased.

Some service quotas can be adjusted or increased. Refer to the Adjustable column in the following
tables to see whether a quota can be adjusted. To request a quota increase, use the limit increase form.

Your AWS account has the following quotas related to Amazon Bedrock.

Runtime quotas
The following quotas are enforced when you use a model for inference.

Model Requests processed per
minute

Tokens processed per
minute

Adjustable

Amazon Titan Express 400 300,000 No

Amazon Titan Text
Embeddings

2,000 300,000 No

Anthropic Claude
Instant

400 300,000 No

Anthropic Claude V2 100 200,000 No

AI21 Labs Jurassic-2
Mid

400 300,000 No

AI21 Labs Jurassic-2
Ultra

100 300,000 No

Cohere Command 400 300,000 No

Cohere Command Light 400 300,000 No

Cohere Embed English 400 300,000 No

Cohere Embed
Multilingual

400 300,000 No

Meta Llama2 Chat 13B 800 300,000 No

Stability.ai Diffusion XL
1.0

60 N/A No

Model customization quotas
The following quotas apply to model customization.

177

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon Bedrock User Guide
Model quotas

Model quotas
The following quotas are enforced for Titan Express.

Description Maximum value Adjustable

Sum of input and output tokens
when batch size is 1

4096 No

Sum of input and output tokens
when batch size is between 2
and 4

2048 No

Character quota Token quota x 6 No

Fine-tuning quotas
The following quotas are enforced for fine-tuning.

Description Default Adjustable

Number of training records in a
dataset

10,000 Yes

Number of validation records in
a dataset

1,000 Yes

Training dataset file size 1 GB Yes

Validation dataset file size 100 MB Yes

Training quotas
The following quotas are enforced for model training.

Description Default Adjustable

Number of submitted model
customization jobs at one time
per account

2 Yes

Number of customized models 100 Yes

Number of tags attached to a
resource

See AWS Resource Groups and
Tagging endpoints and quotas

Yes

Provisioned Throughput quotas
The following quotas are enforced for Provisioned Throughput.

178

https://docs.aws.amazon.com/general/latest/gr/arg.html
https://docs.aws.amazon.com/general/latest/gr/arg.html

Amazon Bedrock User Guide
Provisioned Throughput quotas

Description Default Adjustable

Number of model units for a
Provisioned Throughput for a
foundation model

0 Yes

Number of model units for a
Provisioned Throughput for a
custom model

2 Yes

179

Amazon Bedrock User Guide

Document history for the Amazon
Bedrock User Guide

• Latest documentation update: November 13, 2023

The following table describes important changes in each release of Amazon Bedrock. For notification
about updates to this documentation, you can subscribe to an RSS feed.

Change Description Date

New model releases (p. 180) Updated documentation to
cover new Meta and Cohere
models. For more information,
see Amazon Bedrock.

November 13, 2023

Documentation
localization (p. 180)

Amazon Bedrock documentation
is now available in Japanese and
German.

October 20, 2023

Region expansion Amazon Bedrock is now
available in Europe (Frankfurt)
(eu-central-1). For information
on endpoints, see Amazon
Bedrock endpoints and quotas.

October 19, 2023

Region expansion Amazon Bedrock is now
available in Asia Pacific
(Tokyo) (ap-northeast-1). For
information on endpoints, see
Amazon Bedrock endpoints and
quotas.

October 3, 2023

Gated general release Gated general release of the
Amazon Bedrock service. For
more information, see Amazon
Bedrock.

September 28, 2023

180

https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/de_de/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-service.html#bedrock-regions
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html#bedrock-regions
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/general/latest/gr/bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html

Amazon Bedrock User Guide

AWS Glossary
For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

181

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Bedrock
	Table of Contents
	What is Amazon Bedrock?
	Access the Amazon Bedrock models
	Features of Amazon Bedrock
	Supported models in Amazon Bedrock
	Supported Regions
	Amazon Bedrock pricing

	Set up Amazon Bedrock
	Add model access
	Console access
	Sign up for an AWS account
	Create an administrative user
	Set up the AWS CLI
	Grant programmatic access

	Model access
	Manage model access
	Edit model access
	Add model access
	Remove model access

	Settings
	Model invocation logging
	Set up an Amazon S3 destination
	Set up CloudWatch Logs destination
	Using the console
	Using APIs with invocation logging

	Use the Amazon Bedrock console
	Base models
	View and group models
	Filter and search models
	View model provider details
	Request access to base models

	Text playground
	Submit a prompt to a text model
	Interact with the prompt and generated text
	Re-run a query
	Use advanced prompts
	Adjust the model parameters
	Select a different model

	Chat playground
	Submit a prompt to a chat model
	Update the chat instructions
	Use advanced prompts
	Adjust the inference configuration
	Select a different model

	Image playground
	Submit a prompt to a model
	Adjust the model parameters

	Examples library

	Use the Amazon Bedrock API
	Setting up the Amazon Bedrock API
	Amazon Bedrock endpoints
	Setting up the AWS CLI
	Setting up an AWS SDK
	Using SageMaker notebooks
	Prerequisites
	Configure the SageMaker role
	Test the Runtime setup
	Test the Amazon Bedrock setup

	Amazon Bedrock API operations
	List the base models
	Get details about a base model
	Run inference
	Running inference on a model
	Base model inference examples
	A2I Jurassic-2
	Cohere Command
	Meta Llama 2
	Stability AI Diffusion XL

	Base model IDs

	Tag resources

	Inference parameters for foundation models
	Inference parameter definitions
	Randomness and diversity
	Length
	Repetitions

	Amazon Titan models
	Randomness and Diversity
	Length
	Model invocation request body field
	Model invocation response body field

	Anthropic Claude models
	Randomness and diversity
	Length
	Model invocation request body field
	Model invocation response body field

	AI21 Labs Jurassic-2 models
	Randomness and Diversity
	Length
	Repetitions
	Model invocation request body field
	Model invocation response body field

	Cohere models
	Cohere Command models
	Randomness and diversity
	Length
	Model invocation request body field
	Model invocation response body field

	Cohere Embed models
	Model invocation request body field
	Model invocation response body field

	Meta Llama 2 Chat 13B model
	Randomness and diversity
	Length
	Model invocation request body field
	Model invocation response body field

	Stability.ai Diffusion models
	Model invocation request body field
	Model invocation response body field

	Prompt engineering guidelines
	Introduction
	What is a prompt?
	Components of a prompt
	Few-shot prompting vs. zero-shot prompting
	Prompt template
	Important notes on using Amazon Bedrock LLMs by API calls

	What is prompt engineering?
	General guidelines for Amazon Bedrock LLM users
	Design your prompt
	Use hyperparameters
	Detailed guidelines
	Optimize prompts for text models on Amazon Bedrock—when the basics aren't good enough

	Prompt templates and examples for Amazon Bedrock text models
	Text classification
	Question-answer, without context
	Question-answer, with context
	Summarization
	Text generation
	Code generation
	Mathematics
	Reasoning/logical thinking

	Embeddings
	Custom models
	Fine-tuning
	Prepare the datasets
	Using the console
	Submit a job
	Monitor the job
	Stop a job
	Analyze the job results
	Use a fine-tuned model for inference

	Using the API
	Set up an IAM role for model customization
	Submit a job
	Monitor a job
	Stop a job
	Analyze a job
	Retrieve information about your customized models

	Guidelines for model customization
	Size of the input training dataset
	Model size
	Epochs
	Batch size
	Learning rate
	Learning warmup steps

	Troubleshooting
	Permissions issues
	Data issues
	Internal error

	Provisioned Throughput
	Provisioned Throughput model IDs
	Procedures
	Creating
	Updating
	Deleting
	Running inference

	Permissions
	Provisioned Throughput console procedures
	View Provisioned Throughput summary
	Purchase Provisioned Throughput
	View details of a Provisioned Throughput
	Edit a Provisioned Throughput
	Delete a Provisioned Throughput

	Using the Provisioned Throughput API
	Create Provisioned Throughput
	Run inference using Provisioned Throughput
	Update Provisioned Throughput
	Get Provisioned Throughput
	Delete Provisioned Throughput
	List Provisioned Throughput resources

	Agents for Amazon Bedrock
	Building a knowledge base
	Create a service role and configure IAM permissions
	Permissions to access Amazon Bedrock models
	Permissions to access your data sources in Amazon S3
	(Optional) Permissions to decrypt your AWS KMS key for your data sources in Amazon S3
	(Optional) Permissions to access your vector database in Amazon OpenSearch Service
	(Optional) Permissions to access your vector database in Pinecone or Redis Enterprise Cloud
	(Optional) Permissions for AWS to manage a AWS KMS key for transient data storage during data ingestion

	Set up your data for ingestion
	Create a vector index in Amazon OpenSearch Service
	Security configurations

	Create a vector index in Pinecone
	Configure the Secrets Manager

	Create a vector index in Redis Enterprise Cloud
	Configure the Secrets Manager

	Create a knowledge base
	Manage a knowledge base
	Add a knowledge base to an agent

	Building an agent
	Create a service role and configure IAM permissions
	Permissions to access Amazon Bedrock base models
	Permissions to access your action group API schemas in Amazon S3
	Permissions to access your action group Lambda functions
	(Optional) Permissions to access your knowledge bases

	Create an agent
	Deprecated Lambda function payload format

	Edit your agent
	Manage the action groups of an agent
	Manage the knowledge bases of an agent

	Test your agent
	Trace enablement

	Deploying an agent: versioning and aliases
	Using the API
	Invoke your agent

	How Bedrock Agent works with IAM
	Identity-based policies for Bedrock Agent
	Identity-based policy examples for Bedrock Agent

	Resource-based policies within Bedrock Agent
	Policy actions for Bedrock Agent
	Policy resources for Bedrock Agent
	Policy condition keys for Bedrock Agent
	ACLs in Bedrock Agent
	ABAC with Bedrock Agent
	Using temporary credentials with Bedrock Agent
	Cross-service principal permissions for Bedrock Agent
	Service roles for Bedrock Agent
	Service-linked roles for Bedrock Agent
	Identity-based policy examples for Bedrock Agent
	Policy best practices
	Using the Bedrock Agent console
	Allow users to view their own permissions
	Allow users to perform actions on agent and alias resources

	Tag resources
	Use the console
	Use APIs
	Tag restrictions

	Security in Amazon Bedrock
	Data protection in Amazon Bedrock
	Data encryption
	Encryption in transit
	Encryption at rest
	Key management
	Encryption of model customization jobs
	Model customization inputs
	Model customization outputs
	Create a customer managed key
	Use a customer managed key to run customization jobs
	Use a customer managed key during inference

	Protect jobs using a VPC
	Configure a VPC for Amazon Bedrock
	Create an Amazon S3 VPC Endpoint
	Use a custom endpoint policy to restrict access to Amazon S3
	VPC permissions for customization job role
	Configure route tables

	Configure your model customization job to use VPC
	Use the API
	Use the console

	Identity and access management for Amazon Bedrock
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Bedrock works with IAM
	Identity-based policies for Amazon Bedrock
	Identity-based policy examples for Amazon Bedrock

	Resource-based policies within Amazon Bedrock
	Policy actions for Amazon Bedrock
	Policy resources for Amazon Bedrock
	Policy condition keys for Amazon Bedrock
	ACLs in Amazon Bedrock
	ABAC with Amazon Bedrock
	Using temporary credentials with Amazon Bedrock
	Cross-service principal permissions for Amazon Bedrock
	Service roles for Amazon Bedrock
	Service-linked roles for Amazon Bedrock

	Identity-based policy examples for Amazon Bedrock
	Policy best practices
	Use the Amazon Bedrock console
	Allow users to view their own permissions
	Allow access to third-party model subscriptions
	Deny access for inference on specific models
	Grant custom jobs access to your training data
	Permissions for using KMS keys with model customization

	Service role
	Troubleshooting Amazon Bedrock identity and access
	I am not authorized to perform an action in Amazon Bedrock
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon Bedrock resources

	Compliance validation for Amazon Bedrock
	Incident response in Amazon Bedrock
	Resilience in Amazon Bedrock
	Infrastructure security in Amazon Bedrock
	Cross-service confused deputy prevention
	Configuration and vulnerability analysis in Amazon Bedrock

	Monitor
	Monitor Amazon Bedrock with Amazon CloudWatch
	Runtime metrics
	Logging CloudWatch metrics
	Use CloudWatch metrics for Amazon Bedrock
	View Amazon Bedrock metrics

	Monitor Amazon Bedrock events in Amazon EventBridge
	How it works
	EventBridge schema
	Event example

	Rules and targets
	Example rule
	Target

	Create a rule to handle AWS Bedrock events

	Log Amazon Bedrock API calls using AWS CloudTrail
	Amazon Bedrock information in CloudTrail
	Understanding Amazon Bedrock log file entries

	Amazon Bedrock abuse detection
	Use interface VPC endpoints (AWS PrivateLink)
	Considerations for Amazon Bedrock VPC endpoints
	Create an interface endpoint for Amazon Bedrock
	Create an endpoint policy for your interface endpoint

	Quotas for Amazon Bedrock
	Runtime quotas
	Model customization quotas
	Model quotas
	Fine-tuning quotas
	Training quotas

	Provisioned Throughput quotas

	Document history for the Amazon Bedrock User Guide
	AWS Glossary

