This document is relevant for: Inf2
, Trn1
, Trn2
nki.language.atomic_rmw#
- nki.language.atomic_rmw(dst, value, op, *, mask=None, **kwargs)[source]#
Perform an atomic read-modify-write operation on HBM data
dst = op(dst, value)
- Parameters:
dst – HBM tensor with subscripts, only supports indirect dynamic indexing currently.
value – tile or scalar value that is the operand to
op
.op – atomic operation to perform, only supports
np.add
currently.mask – (optional) a compile-time constant predicate that controls whether/how this instruction is executed (see NKI API Masking for details)
- Returns:
import neuronxcc.nki.language as nl from neuronxcc.nki.typing import tensor ... value: tensor[N, M] = nl.load(value_tensor) # dynamic indices have to be in SBUF, with shape [N, 1] indices_tile: tensor[N, 1] = nl.load(indices_tensor) ix = nl.arange(M)[None, :] ######################################################################## # Atomic read-modify-write example: # - read: values of rmw_tensor is indexed by values from indices_tile # - modify: incremented by value # - write: saved back into rmw_tensor # resulting in rmw_tensor = rmw_tensor + value ######################################################################## nl.atomic_rmw(rmw_tensor[indices_tile, ix], value=value, op=np.add)
This document is relevant for: Inf2
, Trn1
, Trn2