This document is relevant for: Inf2
, Trn1
, Trn2
nki.isa.tensor_partition_reduce#
- nki.isa.tensor_partition_reduce(op, data, *, mask=None, dtype=None, **kwargs)[source]#
Apply a reduction operation across partitions of an input
data
tile using GpSimd Engine.- Parameters:
op – the reduction operator (add, max, bitwise_or, bitwise_and)
data – the input tile to be reduced
mask – (optional) a compile-time constant predicate that controls whether/how this instruction is executed (see NKI API Masking for details)
dtype – (optional) data type to cast the output type to (see Supported Data Types for more information); if not specified, it will default to be the same as the data type of the input tile.
- Returns:
output tile with reduced result
Example:
import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl import numpy as np ... ################################################################## # Example 1: reduce add tile a of shape (128, 32, 4) # in the partition dimension and return # reduction result in tile b of shape (1, 32, 4) ################################################################## a = nl.load(a_tensor[0:128, 0:32, 0:4]) b = nisa.tensor_partition_reduce(np.add, a) nl.store(b_tensor[0:1, 0:32, 0:4], b) ################################################################## # Example 2: reduce add tile a of shape (b, p, f1, ...) # in the partition dimension p and return # reduction result in tile b of shape (b, 1, f1, ...) ################################################################## for i in nl.affine_range(a_tensor.shape[0]): a = nl.load(a_tensor[i]) b = nisa.tensor_partition_reduce(np.add, a) nl.store(b_tensor[i], b)
This document is relevant for: Inf2
, Trn1
, Trn2