AWS Big Data Blog

Tag: Amazon Redshift

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

Amazon AppFlow bridges the gap between Google applications and Amazon Redshift, empowering organizations to unlock deeper insights and drive data-informed decisions. In this post, we show you how to establish the data ingestion pipeline between Google Analytics 4, Google Sheets, and an Amazon Redshift Serverless workgroup.

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

In this post, we use dbt for data modeling on both Amazon Athena and Amazon Redshift. dbt on Athena supports real-time queries, while dbt on Amazon Redshift handles complex queries, unifying the development language and significantly reducing the technical learning curve. Using a single dbt modeling language not only simplifies the development process but also automatically generates consistent data lineage information. This approach offers robust adaptability, easily accommodating changes in data structures.

Federate to Amazon Redshift Query Editor v2 with Microsoft Entra ID

In this post, we explore the process of federating into AWS using Microsoft Entra ID and AWS Identity and Access Management (IAM), and how to restrict access to datasets based on permissions linked to AD groups. We guide you through the setup process, and demonstrate how to seamlessly connect to the Redshift Query Editor while making sure data access permissions are accurately enforced based on your Microsoft Entra ID groups.

How Getir unleashed data democratization using a data mesh architecture with Amazon Redshift

In this post, we explain how ultrafast delivery pioneer, Getir, unleashed the power of data democratization on a large scale through their data mesh architecture using Amazon Redshift. We start by introducing Getir and their vision—to seamlessly, securely, and efficiently share business data across different teams within the organization for BI, extract, transform, and load (ETL), and other use cases. We’ll then explore how Amazon Redshift data sharing powered the data mesh architecture that allowed Getir to achieve this transformative vision.

Evaluating sample Amazon Redshift data sharing architecture using Redshift Test Drive and advanced SQL analysis

In this post, we walk you through the process of testing workload isolation architecture using Amazon Redshift Data Sharing and Test Drive utility. We demonstrate how you can use SQL for advanced price performance analysis and compare different workloads on different target Redshift cluster configurations.

Automate Amazon Redshift Advisor recommendations with email alerts using an API

Amazon Redshift Advisor offers recommendations about optimizing your Redshift cluster performance and helps you save on operating costs. In this post, we show you how to use the ListRecommendations API to set up email notifications for Advisor recommendations on your Redshift cluster. These recommendations, such as identifying tables that should be vacuumed to sort the data or finding table columns that are candidates for compression, can help improve performance and save costs.

Automate data loading from your database into Amazon Redshift using AWS Database Migration Service (DMS), AWS Step Functions, and the Redshift Data API

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that makes it simple and cost-effective to analyze all your data using standard SQL and your existing ETL (extract, transform, and load), business intelligence (BI), and reporting tools. Tens of thousands of customers use Amazon Redshift to process exabytes of data per […]

Apply fine-grained access and transformation on the SUPER data type in Amazon Redshift

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that makes it simple and cost-effective to analyze all your data using standard SQL and your existing ETL (extract, transform, and load), business intelligence (BI), and reporting tools. Tens of thousands of customers use Amazon Redshift to process exabytes of data per […]

Successfully conduct a proof of concept in Amazon Redshift

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. In this post, we discuss how to successfully conduct a proof of concept in Amazon Redshift by going through the main stages of the process, available tools that accelerate implementation, and common use cases.

Multi-Warehouse ETL Architecture. Two workloads--a Purchase History ETL job ingesting 10M rows nightly and users running 25 read queries per hour--using a 32 RPU serverless workgroup to read from and write to the database Customer DB. It shows a separate workload--a Web Interactions ETL job ingesting 400M rows/hour--using a separate 128 RPU serverless workgroup to write to the database Customer DB.

Improve your ETL performance using multiple Redshift warehouses to write to your data sets

Now, at Amazon Redshift, we are announcing the general availability of multi-data warehouse writes through data sharing. This new capability allows you to achieve better performance for extract, transform, and load (ETL) workloads by using different warehouses of different types and sizes based on your workload needs.