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Abstract

Every year, billions of dollars are lost due to fraud in the
U.S. health care system. Health care claims are com-
plex as they involve multiple parties including service
providers, insurance subscribers, and insurance carri-
ers. Medicare is susceptible to fraud because of this
complexity. To build a comprehensive fraud detection
system, one must take into consideration all of the fi-
nancial practices involved among the associated parties.
This paper is focused on graph-based analysis of CMS
provided Medicare claims data to look for anomalies in
the relationships and transactions among patients, ser-
vice providers, claims, physicians, diagnosis, and pro-
cedures. In our experiments, we create graphs from in-
patient, outpatient, and carrier claims data of the benefi-
ciary. We then demonstrate the potential effectiveness of
applying graph-based anomaly detection to the problem
of discovering anomalies and potential fraud scenarios.

Introduction

According to the Centers of Medicare and Medicaid Ser-
vices (CMS), U.S. health care spending reached $3 trillion
or $9,523 per person in 2014. The total health care spend-
ing in 2014 accounted for 17.5% of the nation’s Gross Do-
mestic Product and is expected to rise to 20.1% by 2025
(CMS 2016b). Unfortunately, roughly one-third of health
care spending can be attributed to fraud, waste, and abuse
(Kelley 2009). Because of this significant financial loss,
there is a need to build better fraud detection mechanisms.

Health care claims are complex because they involve mul-
tiple parties including service providers (i.e., doctors, hospi-
tals, ambulance companies and laboratories), insurance sub-
scribers (i.e., patients and employers) and insurance carri-
ers who receive regular premiums from their subscribers and
pay health care costs on behalf of their subscribers, includ-
ing governmental health departments and private insurance
companies. To build a comprehensive fraud detection sys-
tem, one must take into consideration all of the financial
practices involved. There are basically two types of health-
care fraud operations (Sparrow 1996):

Hit and Run: Fly-by-night operators who steal millions in
a relatively short period, then vanish.
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Steal a little all the time: Perpetrators who work to en-
sure fraud goes unnoticed and bill fraudulently over a long
period of time. The provider may hide false claims within
large batches of valid claims and, when caught, will claim it
an error, repay the money, and continue the behavior.

There are various types of health-care fraud schemes,
briefly described as follows (FBI 2009) (Li et al. 2008):

Identity Theft: Stealing identification information from
providers or beneficiaries and using that information to sub-
mit fraudulent bills to Medicare.

Phantom Billing: Billing for services that are not actually
performed.

Unbundling: Billing each stage of a procedure as if it were
a separate treatment.

Upcoding: Billing costlier services than the performed.
Bill Padding: Providing medically excessive or unneces-

sary services to a patient.
Duplicate Billing: Submitting same claims multiple times
Kickbacks: A negotiated bribery in which a commission

is paid to the bribe-taker (provider or patient) as a quid pro
quo for services rendered (Albrecht et al. 2012).

Doctor shopping: Patient consults many physicians in
order to obtain multiple prescriptions of drugs in excess of
their own therapeutic need (He, Graco, and Yao 1998).

In this paper, we introduce an approach for discover-
ing health care fraud using graph-based data mining. If
we consider the entities involved in the process of medi-
cal claims as nodes, and the relationships and transactions
between the entities involved as edges, we can represent
the entire process as a graph. Using a known graph-based
anomaly detection approach, we will show how anomalies
that are potentially fraudulent can be discovered in data rep-
resenting health care transactions. To empirically validate
our proposed approach, we will apply the publicly avail-
able GBAD tool (Eberle and Holder 2007) on CMS pro-
vided Medicare data that has been made publicly available
through the (CMS 2016a) web-site. Medicare data provides
relationships among beneficiaries, their inpatient/outpatient
care, carrier and drug claims, physicians and institutions
they visit, procedures physicians perform on patients, and
diagnoses they uncover. The GBAD system has been suc-
cessfully applied to a wide variety of domains such as insider
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threat detection, mobile telecommunications anomalies, and
the discovery of illegal cargo shipments, but never to health
care fraud. For this work, we will specifically target the treat-
ment of diabetic patients in the state of Tennessee who were
enrolled in Medicare in 2009 as a starting point for demon-
strating the application of graph-based anomaly detection to
the problem of health care fraud.

The next section of this paper presents existing research
on detecting health care fraud. We will then follow that with
a description of the dataset we will use in our experiments.
After which, we will briefly discusses the GBAD approach,
followed by a discussion of how we generated the graphs
from the data. We will then conclude with our experiments,
results, conclusions, and future directions for this work.

Related Work

Most of the research in health care fraud is focused on statis-
tical analysis and the use of machine learning algorithms like
clustering, k-nearest neighbor, decision trees, neural net-
works, etc. But, compared to the extent of financial loss in
the health care sector, the research to date has been minimal.

(Ortega, Figueroa, and Ruz 2006) propose a supervised
fraud detection system for the Chilean health care system
which uses a committee of multilayer perceptron neural net-
works (MLP) for each one of the entities involved in the
fraud/abuse problem: medical claims, affiliates, medical pro-
fessionals and employers. Their application decreases the
time it takes to detect fraud by 76% (from an average of
8.6 months to 2 months) than without the system.

(Williams and Huang 1997) use decision trees for de-
tecting insurance subscribers’ fraud for the Health Insur-
ance Commission (HIC) of Australia. First, a clustering al-
gorithm is built to divide all insurance subscribers’ profiles
into groups. Second, a decision tree is made to build a set of
rules. Finally, each rule is evaluated by establishing a map-
ping from the rule to a measure of its significance. In the
end, extremes are marked for further investigation.

(Yang and Hwang 2006) apply process-mining techniques
to gather clinical-instance data to construct a model that
identifies service provider fraud for the NHI in Taiwan. This
approach eliminates the need to manually analyze and en-
code behavior patterns, as well as the guesswork in selecting
statistics measures. It identifies some fraudulent cases not
detected by a manually constructed detection model. How-
ever, building detection models that can be easily adjustable
according to site-specific cost policies is challenging.

(He, Graco, and Yao 1998) propose the use of a k-
Nearest Neighbor (kNN) algorithm with an optimized non-
Euclidean distance metric using a genetic algorithm. Their
study concluded differences in either the decision rule or the
number of nearest neighbors had little or no impact, while
optimizing the distance metric improved the classification
accuracy of the kNN algorithm. However, their approach is
focused only on detecting two types of fraud schemes: inap-
propriate practice of service providers and doctor-shoppers.

(Thornton et al. 2013) look at the data beyond the transac-
tion level and build upon (Sparrow 1996) fraud type classi-
fications and the Medicaid environment, to develop a Med-

icaid multidimensional schema and provide a set of multi-
dimensional data models and analysis techniques that help
to predict the likelihood of fraud. These data views address
the most prevalent known fraud types and prove useful in
discovering the unknown unknowns. The model is evaluated
by functionally testing against known fraud cases.

Most of the above approaches need expert knowledge to
design a set of rules, and the anomaly is detected by ob-
serving the deviation from such rules. The performance of
these approaches is limited by the availability of domain ex-
perts. Furthermore, these techniques are not targeting the re-
lational aspect of the involved entities - something appropri-
ate for a graph-based approach.

(Liu et al. 2015) propose a graph-analysis technique
called Xerox Program Integrity Validator (XPIV) to find
fraud in health care by using an ego-net approach to examine
narcotics relationships and temporal-spatial characteristics
of patients migrating between pharmacies and providers; as
well as the global structure of the health care relationship
network to look for communities sharing a common abnor-
mal practice. In preliminary work, they are able to iden-
tify millions of dollars lost in fraud for potential recovery.
Though they use a graph-based approach, their work is fo-
cused on detecting anomalies in narcotic relationships, while
our proposed approach targets broader anomaly detection.

Health Care Data
The dataset used for this research is the CMS Linkable
2008–2010 Medicare Data Entrepreneurs’ Synthetic Pub-
lic Use File (DE-SynPUF) dataset (CMS 2016a). The data
contains synthesized data taken from a five percent random
sample of Medicare beneficiaries and their claims from 2008
to 2010. The data are fully “synthetic,” meaning no benefi-
ciary in the DE-SynPUF is an actual Medicare beneficiary,
but they are all meant to represent actual beneficiaries. Out
of the 20 random sample files made available by the CMS,
we will use sub sample 1 for the following experiments. It
should be noted that there is nothing that limits us to this
particular sample or the use of multiple samples. It was an
arbitrary choice for validating our proposed approach, and
we will be expanding our dataset in the future with more
samples. The database schema, showing all the tables and
available attributes, is shown in Figure 1.

The database consists of five tables: one for the bene-
ficiary summary and one for each claim type, i.e., inpa-
tient, outpatient, carrier, and prescription drug event. Each
of the five tables has a primary key DESYNPUF_ID which
uniquely identifies the beneficiary. In addition to DESYN-
PUF_ID, claim tables have CLM_ID to differentiate be-
tween different claims for the same beneficiary. The ben-
eficiary summary table has beneficiary demographic infor-
mation (like sex, race, birth date, state, county, etc.), medi-
cal information (like preexisting medical condition), and fi-
nancial information (like coverage for each of the Medicare
coverage types). Each of the claim types are linked to the
beneficiary via DESYNPUF_ID. The inpatient, outpatient,
and carrier claim tables have information about the insti-
tution visited, physician involved, disease diagnosed, pro-
cedure performed, cost and insurance coverage. The pre-
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Figure 1: Database schema containing all the table and their attributes of DE-SynPUF subsample 1

scription drug event table has information about the amount
of drug prescribed and the cost associated with it. Table
1 shows the number of data instances in each table. More
detailed information about the data can be found at (CMS
2016a)

SN Data Type Number of rows
1 Beneficiaries 343,644
2 Carrier Claims 4,741,335
3 Inpatient Claims 66,773
4 Outpatient Claims 790,790
5 Prescription Drug Events 5,552,421

Table 1: Number of entries in each DE-SynPUF table.

Graph-Based Anomaly Detection

In order to lay the foundation for this effort, we hypothesize
that a real-world, meaningful definition of a graph-based
anomaly is an unexpected deviation to a normative pattern.
The importance of this definition (which we more formally
define below) lies in its relationship to any deceptive prac-
tices that are intended to illegally obtain or hide information
(Eberle and Holder 2007).

Definition IV.A. A labeled graph G = (V,E,F), where V is
the set of vertices (or nodes), E is the set of edges (or links)
between the vertices, and the function F assigns a label to

each of the elements in V and E.
Definition IV.B. A subgraph SA is anomalous in graph G

if (0 < d(SA,S) < TD) and (P(SA|S) < TP), where P(SA|S)
is the probability of an anomalous subgraph SA given the
normative pattern S in G. TD bounds the maximum distance
(d) an anomaly SA can be from the normative pattern S, and
TP bounds the maximum probability of SA.

Definition IV.C. The score of an anomalous subgraph SA
based on the normative subgraph S in graph G is d(SA,S) *
P(SA|S), where the smaller the score, the more anomalous
the subgraph.

The advantage of graph-based anomaly detection is that
the relationships between entities can be analyzed for struc-
tural oddities in what could be a rich set of information,
as opposed to just the entities’ attributes. However, graph-
based approaches have been prohibitive due to computa-
tional constraints, because graph-based approaches typically
perform subgraph isomorphisms, a known NP-complete
problem. Yet, in order to use graph-based anomaly detec-
tion techniques in a real-world environment, we need to take
advantage of the structural/relational aspects found in dy-
namic, streaming data sets.

In order to test our approach, we will use the publicly-
available GBAD test suite , as defined by (Eberle and Holder
2007). Using a greedy beam search and a minimum de-
scription length (MDL) heuristic, GBAD first discovers the
“best” subgraph, or normative pattern, in an input graph. The
MDL approach is used to determine the best subgraph(s) as
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the one that minimizes the following:

M(S,G) = DL(G|S) + DL(S),

where G is the entire graph, S is the subgraph, DL(G|S) is
the description length of G after compressing it using S,
and DL(S) is the description length of the subgraph. The
complexity of finding the normative subgraph is constrained
to be polynomial by employing a bounded search when
comparing two graphs. Previous results have shown that a
quadratic bound is sufficient to accurately compare graphs
in a variety of domains (Eberle and Holder 2007).

For more details regarding the GBAD algorithms, the
reader can refer to (Eberle and Holder 2007). In summary,
the key to the GBAD approach is that anomalies are dis-
covered based upon small deviations from the norm (e.g.,
insider threat, identity theft, etc.) – not outliers, which are
based upon significant statistical deviations from the norm.

Dataset Generation

The DE-SynPUF dataset consists of Medicare data for 3
years, from 2008 to 2010. Since our view is limited to these
three years, we want to make sure that the records we ex-
amine deal with patients at the same stage of their medical
process. Thus, we will choose 2009 beneficiaries and their
claims, as we can determine whether or not they were treated
in 2008 and whether or not they were treated subsequently
in 2010. In addition, while our future work will address the
issue of big data as it relates to overall fraud detection in
the health care industry, we will limit this initial work to
only a subset of beneficiaries as a proof-of-concept. In this
case, beneficiaries from Tennessee and their inpatient, out-
patient, carrier and prescription drug claims, when they have
an initial diagnosis of diabetes. The graph input file is built
from the dataset to reflects the relationship between bene-
ficiaries, their claims, physicians involved, service provider
institute, procedure performed, etc. Each beneficiary might
have multiple inpatient, outpatient, carrier or prescription
drug claims. The edge between a patient and a claim indi-
cates that the patient filed, or was related to, the correspond-
ing claim. It should also be noted that if a beneficiary has
more than one claim, prescription, physician, etc., then mul-
tiple claim, prescription, physician, etc., nodes are created
for each unique value, resulting in potentially multiple edges
between the patient and these entities.

Experimental Results and Analysis

Our experimental setup consists of parsing the required data
from the DE-SynPUF dataset, constructing a single graph
that contains the data for each beneficiary from all the claim
tables, and processing the resulting graph with a graph-based
anomaly detection tool. In order to create the graph input
file, we will create a parser (written in the python program-
ming language) that will read the CMS data and build the
graph.

Figure 2: Visual Example of Outpatient Claim Graph

Figure 3: Visual Example of Carrier Claim Graph

Graph Input File

The structure of inpatient and outpatient claims are similar,
and since the purpose of using a graph-based anomaly de-
tection approach is to discover unusual structure, we com-
bined the data from these two claim types into a single graph,
which we will refer to as the ip-op claim graph. However,
carrier claim data has a very different structure, so we will
create a separate graph input file for that data, which we will
refer to as the carrier claim graph. Figure 2 shows a visual
representation of a portion of ip-op claim graph, and Figure
3 shows a portion of carrier claim graph. It should be noted
that these are just visualizations, as the actual graph input
files are just ASCII text files.

We limited our anomaly detection to only patients in Ten-
nessee who have been diagnosed with diabetes. The choice
of population and disease was arbitrary and was done to en-
sure that we are examining people with similar demograph-
ics and characteristics. In future work, we will expand to
other populations and diseases.

Of the chosen population, we find that 62 beneficiaries
diagnosed with diabetes have filed inpatient and outpatient
claims, thus resulting in an ip-op claim graph with 62 ex-
amples, or subgraphs, for a total of 1,469 vertices and 2,139
edges. Similarly, there are 572 beneficiaries diagnosed with
diabetes that have filed carrier claims, resulting in 572 exam-
ples, each representing a diabetic beneficiary, for a total of
21,082 vertices and 32,214 edges. From Figure 3 and Fig-
ure 2, one can see that each beneficiary is represented by
a “patient” node, where a patient "files" a claim. Each of
the claims is represented by a “claim” node, with an edge
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linking to the one of the types of claims, i.e., “ip”, “op”,
and “carrier”. Each claim can have an admitting diagno-
sis represented by a “visit-for” edge, and a final diagno-
sis represented by a “diagnosed-with” edge linking to that
specific “Diagnosis”, which has a ICD-9 diagnosis code. In
each claim, the patient is “attended-by” a physician and “re-
ceive”s a procedure. In a carrier claim, there is a clear rela-
tionship between the physician, what diagnosis was made,
and what procedure was performed to treat that diagnosis.
Thus, in the carrier claim graph, shown in Figure 3, this re-
lationship is represented as "Physician" - "make-diagnosis"
- "Diagnosis", and it is "treated-with" - "Procedure". Each
procedure has an ICD-10 procedure code to uniquely iden-
tify the procedure.

Anomaly Detection

Running GBAD on the carrier claim graph, Figure 4(a),
on the left, shows the discovered normative pattern. Simi-
larly, for the ip-op claim graph, we get the normative pattern
shown in Figure 6. GBAD does not discover any interest-
ing anomalies in the ip-op claim graph, perhaps because the
data set is small (only 62 instances). However, GBAD does
discover anomalous substructures in the carrier claim graph
which we will now discuss in detail below.

Figure 4: Carrier Claim Graph a) Normative Structure b)
Anomalous Patient Visit c) Anomalous Procedure

It should also be noted that GBAD takes 459 seconds to
analyze the carrier claim graph, and, because of its size, only
15 seconds to process the ip-op claim graph.

Figure 5: Carrier Claim Graph a) Anomalous Claim Status
b) Anomalous Multiple Procedure c) Anomalous Procedure

Unexpected Edges and Vertices. Using a probabilistic
approach (one of several algorithms available in GBAD)
with the amount of change (TD) set to 2 and probability (TP)

Figure 6: IP-OP Claim Graph Normative Structure

set to 1, we discover various anomalies, as shown by the ex-
amples in Figure 4 and Figure 5. The anomalies in each of
the figures are depicted using a black vertex to represent the
anomalous existence of a vertex and a dashed line to repre-
sent the anomalous existence of an edge. Further inspection
of the data confirms that the middle substructure in Figure
4 (b), is anomalous because it contains an unusually high
number of visits. There are only two beneficiaries who have
more visits than 8 out of 572 beneficiaries. The anomaly on
the right in Figure 4 (c), is a case where multiple times the
same procedure was used to treat the same diagnosis, result-
ing in multiple/duplicate billing. The anomaly on the left
in Figure 5 (a), is a case where the claim status was repro-
cessed. Even though the filed claim was approved in this
situation, which occurs in 3 examples out of 572, the claim
is reprocessed. In the middle of Figure 5 (b), is another case
where the patient receives the same procedure on multiple
visits. Shown on the right of Figure 5 (c), is the case where
a patient is treated with an "Orthotic/Prosthetic" procedure -
something that only occurs once in all of the patients.

Figure 7: Carrier Claim Graph a) Normative Structure
b)Anomalous Deletion of Diagnosis

Missing Edges and Vertices. Using a maximum partial
substructure approach (another algorithm in GBAD) with
TD set to 0.4 and TP set to 1, the anomaly is reported, as
shown by the example on the carrier claim graph depicted
in Figure 7. Using the normative pattern shown on the left
in Figure 7 (a), we discover that a circled substructure is
missing from Figure 7 (b), as shown on the right. Since the
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anomaly is something that is missing from this patient, we
further examine the source data to discover what is miss-
ing from this patient, i.e., what is encircled in the figure can
be found in the substructure of other patients. In this ex-
ample, we discover that this particular patient has visited
the hospital multiple times. On the first and second visit,
the anomalous patient was diagnosed with the same disease.
However, on the anomalous patient’s first visit, he/she is
treated with one procedure and on the second visit, he/she
is treated with another procedure. It might be the scenario
where a physician is recommending multiple treatment so
as to garner more revenue, or it could just be that the first
treatment did not work, and they tried a different treatment
the second time. Whether either scenario is true or not (or
there is a different scenario), we cannot tell but we can say
there is anomalous behavior.

This initial work shows that by representing Medicare
data as a graph and using a graph-based anomaly detection
approach, we can potentially detect various anomalous re-
lationships. These anomalous instances can be of particular
interest to fraud analysts, as focusing their efforts on these
patients might lead to discovering health care fraud scenar-
ios. For example, Figure 4 (b) is the case where the patient
has an unusually high number of visits, which could be the
doctor shoppers scenario discussed earlier. Also, it might be
a case of identity theft where someone else uses their iden-
tity and files a claim on their behalf. Figure 4 (c) is the situ-
ation of recommending the same procedure multiple times,
which could be a case of duplicate billing or unbundling,
where each stage of a procedure is billed as if it were a sep-
arate procedure. Figure 5 (c) reports the case of an anoma-
lous procedure recommended, which might be the scenario
of upcoding, where the procedure was costlier than the usual
procedure recommended by other physicians. In the case of
Figure 7, a patient receives multiple procedures for treating
the same diagnosis, a potential scenario of phantom billing,
or perhaps even the scenario of a kickback where the physi-
cian and patient are involved in filing fake claims. Our initial
experiments have indeed found some interesting anomalies.
However, further work is needed to determine the basis of
these anomalies in the realm of health care fraud.

Conclusion
In this paper, using a known graph-based anomaly detec-
tion approach, we showed how anomalies that are potentially
fraudulent can be discovered in data representing health care
transactions. We represented the Medicare claims data as a
graph where the entities involved in the process of medi-
cal claims are nodes, and the relationships and transactions
between the entities involved are edges. For this work, we
specifically target the treatment of diabetic patients in the
state of Tennessee who were enrolled in Medicare in 2009
to demonstrate the proof of concept of graph-based anomaly
detection to the problem of discovering anomalies, particu-
larly ones related to health care fraud.

In future, we will first extend this approach to the entire
Medicare claim dataset. In order to discover other anomalies
and address the scalability of this approach, we will investi-
gate a graph-partitioning approach that will process multiple

graphs in parallel. Then, we will involve medical practition-
ers who have offered their domain expertise. We also plan
on including prescription drug claims, which will provide
us with even more information as to potential fraudulent ac-
tivities in the health care industry. Patients with certain dis-
ease may have certain phenotypic groups based on their co-
morbidity characteristics because they require totally differ-
ent management and treatment paths. Our plan also include
further investigating these phenotypic groups.
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