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Abstract. We consider the Kolmorogov–Wiener filter for continuous fractal 
processes with a power-law structure function. The corresponding filter is used 
for data forecast; the noiseless case is considered. The aim of the paper is to ob-
tain the weight function for the corresponding filter based on the integral Wie-
ner–Hopf equation. The problem under consideration is important, for example, 
for traffic forecast in telecommunication systems and for the forecast of the 
chemical composition of cast iron. An exact analytical solution for the corre-
sponding equation meets difficulties, so an approximate solution is sought in 
the form of a truncated Chebyshev polynomial expansion. The Chebyshev pol-
ynomials of the second kind are used. The behavior of the polynomial solutions 
for different numbers of polynomials is investigated. The results are compared 
with the corresponding results of our previous paper where another polynomial 
set is used. It is found that the corresponding behavior is almost identical for 
different polynomial sets.  
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1 Introduction 

We consider the Kolmogorov–Wiener filter for data forecast for continuous fractal 
processes. Nowadays fractal processes take place in a huge variety of different sys-
tems, see, for example, [1–5] and various references in [5].  

The problem of the Kolmogorov–Wiener weight function search for continuous 
fractal processes with a power-law structure function is stated in [4]. In that paper it is 
mentioned that such a model could be suitable for teletraffic description in IEEE 
802.11b networks and for the routers between the internal networks and the Internet. 
In fact, the Wiener-Hopf integral equation is a Fredholm integral equation of the first 
kind. In [4] a simplified Volterra integral equation is used instead of the Fredholm one 



and the idea of the solution for the Volterra integral equation is described. Finally, an 
exact analytical solution for the corresponding equation was obtained in [6]. 

Maybe, in some simplified cases the Volterra integral equation can indeed be ap-
plied to the investigation of data forecast in real systems. But in the general case it is 
not applicable, and the Fredholm integral equation should be solved instead of the 
Volterra one. In contrast to the Volterra integral equation, an exact analytical solution 
for a Fredholm integral equation meets difficulties. Thus, an approximate solution for 
the corresponding equation is sought. The method of a truncated orthogonal polyno-
mial expansion is rather popular in the literature in order to obtain an approximate 
solution for the Fredholm integral equation of the first kind, see, for example, the 
corresponding investigation in the framework of statistical physics [7–10].  

In paper [11] such a method was applied to the problem under consideration. A set 
of polynomials which are orthogonal without weight is used in [11]. It is shown that 
although the method can give reliable results in a rather wide range of parameters, it 
has some drawbacks in the case of a power-law structure function. The most signifi-
cant drawback is the fact that the accuracy of the method does not necessarily in-
crease with the number of polynomials. For some numbers of polynomials the method 
gives reliable results, but for other numbers it may fail. Most likely the reason is that 
the corresponding correlation function, which is the kernel of the Wiener–Hopf inte-
gral equation, is not a positively defined function, so the convergence of the method is 
not guaranteed, see a similar discussion in the framework of statistical physics in [12].  

But, anyway, the question arises: may the results be better if we use another poly-
nomial set? Is the behavior of the polynomial solutions identical for different sets of 
polynomials? This interesting question should be investigated because it is rather hard 
to propose another analytical method for the solution for the corresponding Wiener–
Hopf equation. In this paper we use a set of the Chebyshev polynomials of the second 
kind. So, the aim of this work is to obtain the Kolmogorov–Wiener filter weight func-
tion on the basis of a truncated expansion in the Chebyshev polynomials of the second 
kind and to compare the results with the results of paper [11].   

2 Description of the truncated polynomial expansion method 

We consider stationary continuous fractal processes with a power-law structure func-
tion. The correlation function of such processes has the form [4] 
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where   is the process variance, H  is the Hurst exponent and   is a constant.  

Let the filter input signal be defined for  0,t T . As is known [13], in such a case 

the Kolmogorov–Wiener filter weight function  h t  is the solution of the following 

Wiener–Hopf integral equation 
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where k T�  is the time interval for which the forecast is made. Such an equation 
can hardly be solved exactly, so an approximate solution should be found.  

In paper [11] a truncated polynomial expansion method is used, and the following 
polynomials are taken: 
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Such polynomials are orthogonal without weigh on  0,t T : 
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where mn  is the Kronecker delta. 

In this paper we take another polynomial set. We use the Chebyshev polynomials 
of the second kind. Their explicit expressions are [14] 
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where  2n is the integer part of 2n . They are orthogonal on  1,1x   with the 

orthogonality condition [14]:  
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But we need a polynomial set that is orthogonal on  0,t T . On the basis of (6) after 

making the following change of the variables:  

 1z x  , 2y zT  (8) 



one can derive the following expression:  
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So the polynomials 
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. So, an approximate solution of the integral equation (2) is sought in 

the form 
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After substitution of (10) into (2), one can obtain 
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which after multiplying by 
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 and integrating over t  leads to 
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Denoting 
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one can rewrite (12) as 
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As can be seen, (14) is an infinite set of linear equations in the unknown coefficients 

sg . This set can hardly be treated, so it should be artificially truncated to a finite 

number of equations: 
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The Kolmogorov–Wiener filter weight function 
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where the coefficients sg  are the solutions of (15) is the weight function in the          

l -polynomial approximation.  
Here and in what follows the quantities nsG  are called the integral brackets. On the 

basis of (13) after making the following change of the variables: 
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one can obtain the following expression for the integral brackets: 
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It should be stressed that such a choice of polynomials is rather convenient. As can be 
seen from (6), the polynomials   nU x  obey the property 
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By changing x  to x  and y  to y  in (18), on the basis of (19) it can be seen that 
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if n  and s  are of different parity. This property takes place because the 

correlation function (1) is an even function. Also, the evenness of the correlation 
function leads to the fact that ns snG G . These two properties allow one to calculate 

nsG
 
by a straightforward calculation only for n s

 
and ,n s  being of the same parity. 

Such a fact significantly reduces the computing time. 
In the following section the numerical behavior of the l -polynomial approximation 

solutions is investigated. 

3 Behavior of polynomial solutions 

The behavior of the polynomial solutions is investigated for the parameters 

 100T  , 3k  , 1.2  , 0.8H  , 33 10   . (20) 

First of all, this set does not contradict the inequality    0R t R . Secondly, this set 

is investigated in [11]. For the set (20) the numerical values for the coefficients in 
(16) in the l –polynomial approximations are given in Table 1. 



Table 1. Numerical values for the coefficients of polynomials in (16) for parameters (20)  

l  Coefficients 0g , 1g , …, 1lg   rounded off to three significant digits 

1 34.86 10 . 

2 34.86 10 , 21.46 10  . 

3 21.50 10 , 21.46 10  , 11.03 10  . 

4 21.50 10 , 38.84 10  , 11.03 10  , 21.62 10  . 

5 31.96 10  , 38.84 10  , 22.53 10 , 21.62 10  , 24.28 10 . 

6 31.96 10  , 35.84 10  , 22.53 10 , 21.37 10  , 24.28 10 , 21.64 10  . 

7 31.41 10  , 35.84 10  , 21.22 10 , 21.37 10  , 22.71 10 , 21.64 10  , 

 23.05 10 . 

8 31.41 10  , 33.97 10  , 21.22 10 , 21.06 10  , 22.71 10 , 21.66 10  , 

 23.05 10 , 21.64 10  . 

9 31.61 10  , 33.97 10  , 37.26 10 , 21.06 10  , 21.92 10 , 21.66 10  , 

 22.84 10 , 21.64 10  , 22.69 10 . 

10 31.61 10  , 32.68 10  , 37.26 10 , 38.16 10  , 21.92 10 , 21.44 10  , 

 22.84 10 , 21.85 10  , 22.69 10 , 21.63 10  . 

11 31.90 10  , 32.68 10  , 34.40 10 , 38.16 10  , 21.42 10 , 21.44 10  , 

 22.40 10 , 21.85 10  , 22.95 10 , 21.63 10  , 22.51 10 . 

12 31.90 10  , 31.70 10  , 34.40 10 , 36.19 10  , 21.42 10 , 21.21 10  , 

 22.40 10 , 21.75 10  , 22.95 10 , 21.99 10  , 22.51 10 , 21.63 10  . 

13 32.19 10  , 31.70 10  , 32.41 10 , 36.19 10  , 21.06 10 , 21.21 10  , 

 21.98 10 , 21.75 10  , 22.74 10 , 21.99 10  , 23.03 10 , 21.63 10  , 
22.41 10 . 

14 32.19 10  , 49.32 10  , 32.41 10 , 34.59 10  , 21.06 10 , 39.94 10  , 

 21.98 10 , 21.56 10  , 22.74 10 , 21.99 10  , 23.03 10 , 22.10 10  , 
22.41 10 , 21.62 10  . 

15 32.46 10  , 49.32 10  , 49.03 10 , 34.59 10  , 37.78 10 , 39.94 10  , 

 21.62 10 , 21.56 10  , 22.44 10 , 21.99 10  , 23.01 10 , 22.10 10  , 
23.10 10 , 21.62 10  , 22.34 10 . 

16 32.46 10  , 43.04 10  , 49.03 10 , 33.27 10  , 37.78 10 , 38.05 10  , 

 21.62 10 , 21.36 10  , 22.44 10 , 21.86 10  , 23.01 10 , 22.19 10  , 
23.10 10 , 22.18 10  , 22.34 10 , 21.61 10  .  

17 32.70 10  , 43.04 10  , 43.05 10  , 33.27 10  , 35.54 10 , 38.05 10  , 

 21.32 10 , 21.36 10  , 22.13 10 , 21.86 10  , 22.82 10 , 22.19 10  , 
23.23 10 , 22.18 10  , 23.15 10 , 21.61 10  , 22.30 10 . 

18 32.70 10  , 42.22 10 , 43.05 10  , 32.15 10  , 35.54 10 , 36.41 10  , 
21.32 10 , 21.16 10  , 22.13 10 , 21.69 10  , 22.82 10 , 22.12 10  , 
23.23 10 , 22.35 10  , 23.15 10 , 22.24 10  , 22.30 10 , 21.61 10  . 



The investigation is made up to the 18-polynomial approximation; the Wolfram 
Mathematica 11.0 package is used. The obtained weight function in each approxima-
tion is substituted into the integral equation (2) and the left-hand and the right-hand 
sides of the equation are numerically compared.  

 

Fig. 1. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
one-polynomial approximation. 

 

Fig. 2. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
two-polynomial approximation. 



 

Fig. 3. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
three-polynomial approximation. 

 

Fig. 4. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
five-polynomial approximation. 

As can be seen from Fig.1 – Fig.3, the one-polynomial approximation is not accurate, 
but the two-polynomial approximation is rather accurate. The corresponding graph for 
the four-polynomial approximation in not given because it is almost identical to the 
graph for the three-polynomial one. The four- and three-polynomial approximations 



are worse than the two-polynomial one, but better than the one-polynomial one. The 
five-polynomial approximation is accurate (see Fig. 4). The accuracy slowly increases 
with the number of polynomials from the five- to the eight-polynomial approxima-
tions. 

 

Fig. 5. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
eight-polynomial approximation. 

 

Fig. 6. Comparison of the left-hand and right-hand sides of eq. (2) for parameters (20) for the 
eighteen-polynomial approximation. 



As can be seen from Fig. 5, the eight-polynomial approximation gives an almost ideal 
coincidence between the left-hand and the right-hand sides of the integral equation 
(2). But the approximations for the numbers of polynomials from nine to fifteen fail. 
For these approximations the curves for the left-hand and right-hand sides of eq. (2) 
are very far from each other. But the sixteen-, seventeen- and eighteen-polynomial 
approximations again give almost ideal results. The graphs for them are in fact identi-
cal and the graph for the eighteen-polynomial approximation is given in Fig. 6. 

Such behavior of polynomial solutions is rather strange, but is can be explained as 
follows. The kernel of the integral equation (2) is not a positively defined function, so 
the convergence of the polynomial procedure is not guaranteed. In other words, the 
accuracy of the method does not necessarily increase with the number of polynomials.  

It should be stressed that the behavior of the polynomial solutions described in [11] 
for the polynomial set (3) is, in fact, the same. The behavior of polynomial solutions 
is also investigated for the sets of parameters 10T  , 3k  , 1.2  , 0.8H  , 

110   and 1000T  , 3k  , 1.2  , 0.8H  , 58 10   . For the corresponding 
sets of parameters the behavior of the polynomial solutions for the polynomial sets (3) 
and (10) is almost identical. In [11] it is stressed that although the accuracy of the 
polynomial solutions may not increase with the number of polynomials and some 
approximations may fail, in a rather wide range of parameters (from 10T   to 

1000T  ) some of the approximations give reliable results.  

4 Conclusions 

The Kolmogorov–Wiener filter weight function is investigated for continuous fractal 
processes with a power-law structure function. The method of a truncated orthogonal 
polynomial expansion is used in order to obtain an approximate solution of the corre-
sponding Wiener–Hopf integral equation. In this paper the Chebyshev polynomials of 
the second kind which are orthogonal with weight on  0,t T  are used. The numeri-

cal calculations are made on the basis of the Wolfram Mathematica 11.0 package.  
It is found that the behavior of the polynomial approximations for the Chebyshev 

polynomials (10) and the behavior of the corresponding approximations for the poly-
nomials (3), which is investigated in [11], are in fact the same. So, it may be con-
cluded that the behavior of the polynomial solutions for the problem under considera-
tion almost does not depend on the chosen polynomial set.  

The proposed method of the approximate solution of the integral Wiener–Hopf 
equation for processes with a power-law structure functions has some drawbacks. The 
accuracy of the polynomial approximations may not increase with the number of pol-
ynomials, and some approximations may fail. This may happen because in such a case 
the kernel of the corresponding integral equation is not a positively defined function. 

Nevertheless, in a rather wide range of parameters some polynomial approxima-
tions may give reliable results. Each approximation should be checked numerically 
before its further application to the investigation of data forecast in different systems. 
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