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Abstract. The paper is devoted to the investigation of the weight function of 
the Kolmogorov–Wiener filter for forecasting of continuous fractional Gaussian 
noise with a Hurst exponent Н>0.5. We use a truncated polynomial expansion 
method for obtaining an approximate solution for the weight function under 
consideration. The method is based on the Chebyshev polynomials of the sec-
ond kind. Approximations formed of different numbers of polynomials up to 
nineteen are investigated. The kernel of the Wiener–Hopf integral equation is a 
positively defined function in the case of a continuous fractional Gaussian 
noise, so the method is convergent. In a simple model telecommunication traffic 
may be described as a continuous fractional Gaussian noise, so the results of the 
paper may be applied to the telecommunication traffic forecasting. 
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1 Introduction and related works 

The problem of telecommunication traffic forecast is an important problem for tel-
ecommunications. For example, in [1] it is stressed that this problem may be im-
portant for the detection of the defects which take place because of attacks. So this 
problem is important for information security. This problem may also be important 
for the development of intelligent systems, for example, intelligent traffic forecasting 
engines [2].  

The telecommunication traffic in systems with data burst transfer is considered to 
be a fractal process (see, for example, [3, 4]). We consider the traffic as a continuous 
random fractal process. Such a consideration is reasonable in the case of a large 
amount of data [5].  

There are plenty of telecommunication traffic models, for example: a fractional 
Gaussian noise model, a fractional Brownian motion model, wavelet models, etc. 



(see, for example, [3, 4]). There are a lot of different approaches to the forecasting of 
fractal telecommunication traffic: the ARIMA approach, the FARIMA approach, 
approaches based on artificial neural networks, wavelet-based approaches, etc. [1, 6].  

One of the simplest telecommunication traffic models is the model where the tele-
communication traffic is described [4, 7] as a fractional Gausian noise which is a 
stationary random process. The Kolmogorov–Wiener filter may be used for the fore-
casting of stationary processes [8]. This filter is a rather simple linear stationary filter. 
So, in our opinion, it is naturally enough to use the corresponding filter for the fore-
casting of telecommunication traffic in simple models where the traffic is considered 
to be a stationary random process.  

However, we know few works where the Kolmogorov–Wiener filter is used for 
telecommunication traffic forecasting, and we don’t know any works where the corre-
sponding filter is used for the forecasting of telecommunication traffic in the fraction-
al Gaussian noise model. 

The Kolmogorov–Wiener filter was proposed in [5] in order to make the traffic 
forecast in a model where the traffic is considered as a stationary random process with 
a power-law structure function. In [5] a simplified Volterra integral equation was 
proposed in order to obtain the filter weight function which is necessary for the calcu-
lation of the filter output. Our previous papers [8–10] were also devoted to the model 
proposed in [5].   

However, the filter weight function should be obtained on the basis of the 
Fredholm integral equation rather than the Volterra one [8]. The papers [8–10] were 
devoted to the obtaining of the corresponding weight function based on the Fredholm 
integral equation of the first kind. A review of the methods of solving the correspond-
ing integral equation is given in [11]. We investigated approximate solutions of the 
corresponding Fredholm integral equation with the help of a truncated polynomial 
expansion method (TPEM), which is a special case of the Galerkin method [11].  This 
method is rather simple and allows one to obtain analytical approximate solutions to 
the corresponding integral equation. The TPEM is rather popular in different fields of 
knowledge (for example, see its applications to statistical physics [12, 13]).  

In paper [8] we used polynomials orthogonal without weight, and in papers [9, 10] 
we used the Chebyshev polynomials (CPs) of the second and first kind, respectively. 
The behavior of solutions is similar for different sets of polynomials, and the method 
is not necessarily convergent for processes with a power-law structure function. In our 
opinion, the reason is the following. The correlation function of the process under 
consideration, which is the kernel of the integral equation, is not a positively defined 
function. The convergence of a TPEM is guaranteed if the kernel of the corresponding 
integral equation is a positively defined function (see [14]).  

In this paper we consider the TPEM in the model where the traffic is described as 
continuous fractional Gaussian noise with a Hurst exponent 0.5H > . The correlation 
function of the corresponding random process is a positively defined function [15], so 
the TPEM should be convergent for the model of continuous fractional Gaussian 
noise. The exact analytical solution of the corresponding integral equation can hardly 
be obtained, so we use the TPEM which is based on the CPs of the second kind. The 
goal of the work is to obtain the Kolmogorov–Wiener filter weight function for the 



forecasting of continuous fractional Gaussian noise with the help of the TPEM and to 
illustrate its convergence.  

The importance of the problem of the telecommunication traffic forecast is de-
scribed in what precedes. This paper is devoted only to the description of the theoreti-
cal fundamentals of the development of the Kolmogorov–Wiener filter for traffic 
forecasting in the model where the traffic is described as a fractional Gaussian noise. 
The practical use of the obtained results may the subject of another paper. 

2 The Wiener–Hopf integral equation and the truncated 
polynomial expansion method 

The Kolmogorov–Wiener filter weight function ( )h t  obeys the following Wiener–
Hopf integral equation [8], which is a special case of the Fredholm integral equation 
of the first kind: 

 ( ) ( ) ( )
0

T

d h R t R t zτ τ − τ = +∫  (1) 

where  is the correlation function of the stationary random process for which the 
forecast is made and  z T   is the time interval for which the forecast is made. The 
data for the input signal are given for [0, ]t T∈ , the non-noisy case is investigated. 
The correlation function of continuous fractional Gaussian noise in the case 0.5H >  
is as follows [15]:  

 ( ) ( ) 2 222 2 1 HR t H H t −= − σ  (2) 

where 2σ  is the process variance and Н  is the Hurst exponent. The substitution of 
(2) into (1) leads to the following integral equation 

 ( ) ( )2 2 2 2
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T
H Hd h t t z− −τ τ − τ = +∫ . (3) 

A search for an exact analytical solution of the integral equation (3) meets difficulties, 
so we use the TPEM for obtaining an approximate solution.  

In the framework of the TPEM the unknown function ( )h t  is sought as a truncated 
series in polynomials which are orthogonal on the time interval on which the integral 
on the left-hand side of (3) is taken. So a polynomial set which is orthogonal on the 
time interval [0, ]t T∈  is needed. The paper is based on the CPs of the second kind 
[16] 
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where [ 2]n  is the integer part of 2n . But the CPs of the second kind are orthogonal 
on [ 1,1]x∈ − , and a polynomial set which is orthogonal on the interval [0, ]T  rather 
than on the interval [ 1,1]−  is needed. In paper [9] it is shown that the following or-
thogonality condition takes place 
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The polynomials ( )nS y  are orthogonal on [0, ]y T∈  with the weight ( )w y  and the 
unknown weight function ( )h t

 
may be sought as a truncated series 
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where ng  are the unknown coefficients multiplying the polynomials. Expression (7) 
is the expression for the Kolmogorov–Wiener weight function ( )h τ  in the l - poly-
nomial approximation. The coefficients ng  are found as follows. First of all we sub-
stitute (7) into (3): 
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Then we multiply the left-hand side and the right-hand side of (8) by ( )kS t , 

0, 1k l= − , after which both the left-hand side and the right-hand side are integrated 
over t  on the time interval [0, ]t T∈ . As a result we obtain the following system of 
linear equations in the coefficients ng : 
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where the following denotation is used:  
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the quantities nkG  are called the integral brackets. In paper [9] it is shown that the 
integral brackets obey the following properties: 



  nk knG G= ; 0nkG =  if n , k
 
are of different parity. (11) 

The properties (11) are obtained in [9] for the correlation function of a fractal process 
with a power-law structure function rather than for the correlation function (2). But 
the only property of the correlation function which was used in [9] for the derivation 
of (11) is the fact that the correlation function ( )R t

 
is an even one. So expressions 

(11) are valid for the problem under consideration. The first property in (11) takes 
place in general case, the second one takes place due to the choice of CPs of the sec-
ond kind.  

The properties (11) significantly reduce the computation time. The calculation of 
the integral brackets takes most of the computation time. With the help of (11) one 
can conclude that the number of the integral brackets for which a straightforward 
calculation is needed is equal to 
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and in the general case a straightforward calculation is needed for the number of 
the integral brackets equal to 

 ( ) ( ) ( ) ( )2 1 2 ... 1 1 2f l l l l l l= + − + − + + = + . (13) 

The ratio of 2 ( )f l  to 1( )f l  for different values of l  is given in Table 1.  

Table 1. The ratio of 2 ( )f l  to 1( )f l   

l  2 1( ) ( )f l f l  l  2 1( ) ( )f l f l  l  2 1( ) ( )f l f l  l  2 1( ) ( )f l f l  

1 1.000 6 1.750 11 1.833 16 1.889 
2 1.500 7 1.750 12 1.857 17 1.889 
3 1.500 8 1.800 13 1.857 18 1.900 
4 1.667 9 1.800 14 1.875 19 1.900 
5 1.667 10 1.833 15 1.875   

 
Table 1 illustrates the fact that the choice of the CPs of the second kind decreases 

the number of brackets for which a straightforward calculation is needed approxi-
mately by 2 times for a quite large number of polynomials.  

It is possible to obtain analytical results for the integrals (10). They can be ob-
tained with account for (4), (6), the binomial theorem and the following change of 
variables for the integral brackets: 

 x t= + τ , y t= − τ . (14) 

A straightforward calculation leads to the following results: 
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Expressions (15) are rather cumbersome. The coefficients ng  multiplying the pol-
ynomials in (7) are found on the basis of the system of linear equations (9) in matrix 
form 
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3 Numerical solutions 

The numerical solutions are obtained for the parameters 

 100T = , 3z = , 0.8H = . (18) 

The following numerical values for the coefficients multiplying polynomials in the 
l -polynomial approximation are obtained, see Table 2. The calculations are made 
with the help of the Wolfram Mathematica package. Approximations up to the 19-
polynomial one are investigated. The integrals (10) are calculated with the help of the 
standard function NIntegrate built in the package. The calculation of the correspond-
ing integrals by expressions (15) is not faster than the calculation by the NIntegrate 
function; moreover, the calculation by expressions (15) becomes inadequate for the 
number of polynomials more than 10. 



Table 2. Values for the coefficients multiplying the polynomials  

l
 

Values of 3
0 10g ⋅ , 3

1 10g ⋅ , …, 3
1 10lg − ⋅   

1 7.17  
2 7.17 , 5.98−   
3 5.67 , 5.98− , 5.64  
4 5.67 , 4.88− , 5.64 , 4.53−    
5 5.29 , 4.88− , 4.68 , 4.53− , 4.00  
6 5.29 , 4.58− , 4.68 , 3.79− , 4.00 , 3.21−  
7 5.15 , 4.58− , 4.40 , 3.79− , 3.35 , 3.21− , 2.82  
8 5.15 , 4.45− , 4.40 , 3.56− , 3.35 , 2.70− , 2.82 , 2.29−  
9 5.08 , 4.45− , 4.28 , 3.56− , 3.16 , 2.70− , 2.37 , 2.29− , 2.04  
10 5.08 , 4.39− , 4.28 , 3.47− , 3.16 , 2.54− , 2.37 , 1.92− , 2.04 , 1.68−  
11 5.05 , 4.39− , 4.22 , 3.47− , 3.07 , 2.54− , 2.23 , 1.92− , 1.71 , 1.68− , 1.53  
12 5.05 , 4.36− , 4.22 , 3.42− , 3.07 , 2.46− , 2.23 , 1.80− , 1.71 , 1.40− , 1.53 , 

1.28−  
13 5.03 , 4.36− , 4.19 , 3.42− , 3.02 , 2.46− , 2.16 , 1.80− , 1.60 , 1.40− , 1.27 , 

1.28− , 1.18  
14 5.03 , 4.34− , 4.19 , 3.39− , 3.02 , 2.42− , 2.16 , 1.75− , 1.60 , 1.31− , 1.27 , 

1.06− , 1.18 , 1.01−  
15 5.02 , 4.34− , 4.17 , 3.39− , 2.99 , 2.42− , 2.12 , 1.75− , 1.54 , 1.31− , 1.18 , 

1.06− , 0.980 , 1.01− , 0.950  
16 5.02 , 4.33− , 4.17 , 3.37− , 2.99 , 2.40− , 2.12 , 1.71− , 1.54 , 1.27− , 1.18 , 

0.988− , 0.980 , 0.832− , 0.950 , 0.819− , 
17 5.01 , 4.33− , 4.15 , 3.37− , 2.97 , 2.40− , 2.09 , 1.71− , 1.51 , 1.27− , 1.14 , 

0.988− , 0.910 , 0.832− , 0.783 , 0.819− , 0.787    
18 5.01 , 4.32− , 4.15 , 3.35− , 2.97 , 2.38− , 2.09 , 1.69− , 1.51 , 1.24− , 1.14 , 

0.950− , 0.910 , 0.771− , 0.783 , 0.674− , 0.787 , 0.687−  
19 5.00 , 4.32− , 4.14 , 3.35− , 2.96 , 2.38− , 2.08 , 1.69− , 1.49 , 1.24− , 1.11 ,  

0.950− , 0.873 , 0.771− , 0.725 , 0.674− , 0.646 , 0.687− , 0.669  
 
The values in Table 2 are rounded off to 3 significant digits. The left-hand side and 

the right-hand side of (3) are calculated in the Wolfram Mathematica as 
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The coincidence of the corresponding left-hand and right-hand sides is illustrated 
by the calculation of the mean absolute percentage error (MAPE) 
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the corresponding results are presented in Table 3   

Table 3. The results for the MAPE for approximations of different numbers of polynomials 

l  МАРЕ, % l  МАРЕ, % l  МАРЕ, % l  МАРЕ, % 
1 28 6 5.3 11 1.7 16 0.81 
2 19 7 4.0 12 1.5 17 0.71 
3 13 8 3.2 13 1.2 18 0.64 
4 9.3 9 2.5 14 1.1 19 0.57 
5 6.7 10 2.1 15 0.91   

 
The results in Table 3 are rounded off to 2 significant digits. Table 3 illustrates that 

the approximations of small numbers of polynomials are not accurate, but the approx-
imations of rather large numbers of polynomials are accurate. Fig. 1 shows graphs of 
the functions (19) for the 19-polynomial approximation. 

 

Fig. 1. Graphs of ( )Left t and ( )Right t for the nineteen-polynomial approximation. 

Fig. 1 illustrates that the corresponding functions (19) almost coincide for the nine-
teen-polynomial approximation. Approximations of more than 19 polynomials are not 
investigated because the Wolfram Mathematica package has not enough recourses to 
build the corresponding graphs adequately. 

Table 3 illustrates that accuracy of the approximations increases if the polynomial 
number increases. So one can conclude that the method is convergent, but one should 
not use a small number of polynomials for obtaining a rather accurate approximate 
solution for the weight function under consideration. 

4 Results and conclusion  

We investigate the Kolmogorov–Wiener filter for the forecasting of continuous frac-
tional Gaussian noise. The subject of the investigation is the weight function of the 
corresponding filter. For simplicity, we restrict ourselves only to the case where the 



Hurst exponent 0.5H > . The weight function for the filter under consideration obeys 
the integral equation (3). A search for an exact analytical solution of (3) meets diffi-
culties, so we use the truncated polynomial expansion method (TPEM) in order to 
obtain an approximate solution for the unknown weight function. The paper is based 
on the Chebyshev polynomials (CPs) of the second kind orthogonal on the time inter-
val [0, ]t T∈ , on which the filter input signal is given. The kernel of the integral equa-
tion (3) is a positively defined function, so the TPEM is convergent for the problem 
under consideration (see the corresponding discussion in [14]). 

It is shown that the choice of the CPs of the second kind is convenient because the 
number of the integral brackets for which a straightforward calculation should be 
made is less than the corresponding number in the general case. It is shown that for 
the approximations of a rather large number of polynomials the number of brackets is 
approximately two times smaller than that in the general case. 

Numerical approximate solutions are obtained for the parameters (18).  The inves-
tigation is made up to the nineteen-polynomial approximation. The coefficients multi-
plying the polynomials and the mean absolute percentage error are calculated; the 
latter illustrates the accuracy of coincidence of the left-hand and the right-hand sides 
of the integral equation under consideration. The convergence of the method is illus-
trated, the accuracy of the approximations increases if the polynomial number in-
creases. However, it should be stressed that one should use a rather large number of 
polynomials in order to obtain a rather accurate solution; approximations of small 
number of polynomials are not accurate. The kernel of the Wiener–Hopf integral 
equation is a positively defined function, so the proposed method should be conver-
gent not only for the parameters (18), but also for other parameters. 

The problem of traffic forecasting is an urgent problem for telecommunication 
systems. This problem may be important both for the information security and for the 
development of the intelligent systems. The description of the problem importance for 
information security is given in [1]. For example, in [2] it is stressed that the problem 
may be important for the development of the intelligent traffic forecasting engines. 
This paper is devoted to the development of theoretical fundamentals of the construc-
tion of the Kolmogorov–Wiener filter for forecasting of continuous fractional Gaussi-
an noise. In a simple model [4, 7] telecommunication traffic for systems with data 
burst transfer can be described as fractional Gaussian noise. In [5] it is stressed that in 
the case of a large amount of data it is reasonable to investigate the traffic as a contin-
uous random process. So, the results of the paper may be applied to the telecommuni-
cation traffic forecasting for systems with data burst transfer. A practical application 
of the obtained results to traffic forecasting in telecommunication systems is our plan 
for future research. 
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