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Abstract  
Category of semilattices coincides with algebras on a corresponding monad. This statement 

implies Cartesian-closeness of this category. It means applicability of well-known 

constructions of (direct) limits of finite functors (such as Cartesian products, equalizers, 

amalgams, etc.). These structures are useful for representation complex attributes to describe 

training and test examples for algebraic (lattice-theoretic) machine learning. The paper 

contains an exposition of these ideas to ‘old-fashioned’ machine learning specialists. 
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1. Introduction 

In Russia there exists a research group leading by Prof. V.K. Finn aimed to investigation of  

Knowledge Discovery schemes. Originally, these researchers used Boolean algebra and many-valued 
logic's means. Result of the research was the theory called ‘JSM method’ of automatic hypotheses 

generation [1]. Modern approach applies lattice-theoretic means from Formal Concept Analysis 

(FCA) [2,3] to extend the theory on more general situation of binary similarity operation defined 

between arbitrary objects. This extension also led to more efficient algorithms for Inductive 
Generalization procedure (Induction). 

However JSM method approach has several drawbacks: high computational (exponential memory) 

complexity in worst case (of Boolean algebra), and over-training phenomena [4]. The author develops 
probabilistic approach to avoid these obstacles [5]. This theory named ‘VKF method’ in honor of 

V.K. Finn. 

Fundamental Theorem of FCA implies that every training sample can be represented as list of 

‘bitsets’ – strings of bits of fixed length – together with bit-wise multiplication as the similarity 
operation. Hence the prominent problem of VKF method is to encode training and test examples by 

bitsets. The author applied modern proof of Fundamental Theorem of FCA to encode objects 

described by attributes with discrete values that form semilattice [6]. Then the author [7] used an 
analogue of J.R. Quinlan's approach in C4.5 decision tree algorithm [8] to objects with continuous 

features. Initially, the procedure splits the entire domain of a continuous attribute into several intervals 

in order to achieve a minimum mean entropy. Then it uses the generated thresholds to encode the 
attribute value that falls within one of these intervals. Currently, the author and his PhD student 

L.A. Yakimova are investigating the possibility of using of Sparse Autoencoder (a special kind of 

neural network) to encode images by sparse bitsets. 

Usage of several representations of attributes of objects generates a problem of comparing results 
of experiments with differently represented training objects with fixed number of features. Same 

problem occurs when descriptions of training and test examples expand by additional attributes. 

Finally, there exist a sequential VKF method, where partially (with respect to some subset of 
attributes) defined hypotheses can be extended by taking into account additional features. 
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Initially, idea of extending of training sample went from JSM method. However, it adds new 
training examples and assumes that all attributes that describe objects are observed simultaneously. 

This assumption is hardly adequate in practice, when a decision maker receives information 

sequentially, in blocks. Many alternative paradigms, that is, decision trees, recurrent neural networks, 

and probabilistic automata, take this sequential process in account. Sequential VKF method tries to 
remove this restriction of JSM method too. 

This paper presents a category theoretic representation for a sequential version of the VKF method, 

in which a semilattice of object descriptions is mapped to a Cartesian product of semilattices 
corresponding to the values of attributes that describe training examples and the similarities generated 

from them. 

A comparison of hypotheses with different features representations that coincide on some common 
set of features corresponds to a well-known construction of amalgam of two algebras with respect to 

homomorphisms into third one.  

Both above constructions are partial cases of direct limits in category of semilattices. Hence, it is 

clear that category-theoretic language is best choice for description of such constructions. Moreover, 
it turned out that the category of algebras over the corresponding monad admits a pair of conjugate 

functors, one of which generates free objects in this category. And most importantly, the conjugation 

isomorphism defines the polar operation (or ‘the global similarity’ in the terminology of the JSM 
method), which is the main tool of both VKF method and JSM method. 

To understand the paper readers need to know basic notions of Formal Concept Analysis [2]. No 

knowledge of category theory is assumed. The author recall the main ideas of this theory in 
accordance with the fundamental book [9] below. The paper contains only proofs of 2 fundamental 

results: coincidence of the category of semilattices with the category of algebras over monad with 

power-set functor and singleton natural transformation and explicit construction of polar (‘global 

similarity’ in JSM language) through conjugation of forgetting and (free-algebra) generating functors. 

2. Bitset Representations 

Recall, that ‘bitset’ is a string of bits of fixed length. We consider bit-wise multiplication of two 

bitsets as ‘local similarity’ between them. This representation is computer-oriented, because 

1. there exist data types in modern programming languages (for instance, boost::dynamic_bitset 
for C++);  

2. bit-wise multiplication is computational effective (on GPGPU it consumes 4 ticks, on CPU – 

only 1 tick); 
3. modern compilers admit various optimizations on bitsets (for example, vector-parallelism).  

VKF method admits more general situation: it needs semilattice – a set X (of ‘fragments’) together 

with binary operation (called ‘local similarity’ or ‘intersection’). This operation must be idempotent, 

commutative and associative 
However, Fundamental Theorem of FCA see [2] states that every finite semilattice can be 

reconstructed (up to isomorphism) as a lattice of ‘concepts’ of training sample, where sample is a list 

of bitsets, with help of bit-wise multiplication. VKF method [5] renames a concept into ‘candidate 
into hypothesis’ (or simply ‘candidate’) because V.K.Finn’s critique on the original name.  

Hence the prominent problem of VKF method is how to encode training examples features by 

bitsets. Then the system simply concatenates the bitset representations of single features into bitset 
encoded whole object. 

2.1. Continuous attributes  

At first, VKF method applies the approach by analogue with J.R. Quinlan's technique in C4.5 

decision tree algorithm [8]. 

Let 𝐸 = 𝑂 ∪ 𝐶 be a disjoint union of training examples O and counter-examples C. Interval  of 

values of continuous attribute 𝑉: 𝐸 → ℝ generates three subsets 

𝐸[𝑎, 𝑏) = {𝑒 ∈ 𝐸|𝑎 ≤ 𝑉(𝑒) < 𝑏}; 



𝑂[𝑎, 𝑏) = {𝑒 ∈ 𝑂|𝑎 ≤ 𝑉(𝑒) < 𝑏}; 
𝐶[𝑎, 𝑏) = {𝑒 ∈ 𝐶|𝑎 ≤ 𝑉(𝑒) < 𝑏}. 
Definition 1. Entropy of interval  of values of continuous attribute 𝑉: 𝐸 → ℝ is 

𝑒𝑛𝑡[𝑎, 𝑏) = −𝑙𝑜𝑔(
|𝑂[𝑎,𝑏)|

|𝐸[𝑎,𝑏)|
) ⋅

|𝑂[𝑎,𝑏)|

|𝐸[𝑎,𝑏)|
− 𝑙𝑜𝑔(

|𝐶[𝑎,𝑏)|

|𝐸[𝑎,𝑏)|
) ⋅

|𝐶[𝑎,𝑏)|

|𝐸[𝑎,𝑏)|
. (1) 

Mean information for partition  of interval  of values of continuous attribute 𝑉:𝐸 → ℝ is 

𝑖𝑛𝑓[𝑎, 𝑏) = 𝑒𝑛𝑡[𝑎, 𝑟) ⋅
|𝐸[𝑎,𝑟)|

|𝐸[𝑎,𝑏)|
+ 𝑒𝑛𝑡[𝑟, 𝑏) ⋅

|𝐸[𝑟,𝑏)|

|𝐸[𝑎,𝑏)|
 (2) 

Threshold is a value  with minimal mean information. 

For continuous attribute𝑉:𝐸 → ℝdenote 𝑎 = 𝑚𝑖𝑛𝑉 by 𝑣0 and let 𝑣𝑙+1 be an arbitrary number 

greater then 𝑏 = 𝑚𝑎𝑥𝑉. Thresholds {𝑣1 < ⋯ < 𝑣𝑙} are computed sequentially by splitting the largest 

entropy subinterval. 

Then VKF method uses 2l bits to encode the attribute value that falls between these thresholds. 

Definition 2. For each 1 ≤ 𝑖 ≤ 𝑙 indicator (Boolean) variables 𝛿𝑖
𝑉 , 𝜎𝑖

𝑉 correspond to 

𝛿𝑖
𝑉(𝑒) = 1 ⇔ 𝑉(𝑒) ≥ 𝑣𝑖 (3) 

𝜎𝑖
𝑉(𝑒) = 1 ⇔ 𝑉(𝑒) < 𝑣𝑖 (4) 

Then string 𝛿1
𝑉(𝑒)…𝛿𝑙

𝑉(𝑒)𝜎1
𝑉(𝑒)… 𝜎𝑙

𝑉(𝑒) is a bitset representation of continuous attribute V on 

element 𝑒 ∈ 𝐸. 

It can be easily proved that the bit-wise multiplication of such bitsets encodes that a value falls into 

the convex union of corresponding intervals. Empty (all zeroes) bitset corresponds to the trivial fact 

that a value falls between 𝑚𝑖𝑛𝑉 and 𝑚𝑎𝑥𝑉. 
For additional information on VKF experiment with training objects described by continuous 

features, see [7]. 

2.2. Discrete attributes  

For discrete attribute assume that its values form a finite semilattice. There is similar result for 
infinite case, however the additional property of completeness is needed. For computer applications 

finite case is sufficient, of course. 

Addition of the top element, if it absents, transforms the semilattice into a lattice. 

Definition 3. A subset 𝑆 ⊆ 𝐿 of a lattice L is called ∨-dense, if any element  has representation 

𝑥 =∨ 𝑋 for some subset 𝑋 ⊆ 𝑆. 

Element  called ∨-irreducible if  and for any 𝑦, 𝑧 ∈ 𝐿 𝑦 < 𝑥 and  imply 𝑦 ∨ 𝑧 < 𝑥. 

It is easy to check 

Lemma 1. Any superset of all -irreducible elements of a finite lattice forms ∨-dense subset. 

Definition 3. Let 𝑆 = {𝑠1, … , 𝑠𝑘} ⊆ 𝐿 be -dense subset of finite lattice L. Indicator (Boolean) 

variables 𝜎𝑖 correspond to 

𝜎𝑖
𝑉(𝑥) = 1 ⇔ 𝑥 ≥ 𝑠𝑖 (5) 

Then string 𝜎1(𝑥)…𝜎𝑘(𝑥) is a bitset representation of discrete attribute of element  

Proposition 2. Let  be a ∨-dense subset of finite lattice L. Then the lattice of all candidates for 

sample described by bitsets isomorphic to L. 

For the formal representation of the algorithm of encoding of discrete values attributes and proof 
of its correctness see [5, 6]. Some results of VKF experiments with discrete attributes training samples 

are described in [5]. 

3. Category of semilattices 

Local similarity is a binary operation on a set X that encompasses a set of objects, i.e. it is a 
mapping . Elements of the set X shall be called ‘fragments’. 

For the result of similarity between several objects to be independent on their ordering, the 

similarity operation must satisfy the semilattice axioms: the laws of associativity, commutativity, and 

idempotency. 



It is clear that in this case we can define a global similarity operation that for any subset 𝑆 ⊆ 𝑋 

generates the greatest lower bound ∧ 𝑆 ∈ 𝑋. In other words, there is a mapping ∧:𝑃𝑋 → 𝑋, where PX 

is the power-set (it equals the set of all subsets) for X. 

We recall that a category C consists of a family of ‘objects’ and a family of ‘arrows’, where each 

object c has an arrow 1𝑐: 𝑐 → 𝑐 and each pair of arrows 𝑓: 𝑎 → 𝑏, 𝑔: 𝑏 → 𝑐 ∈ 𝐶 generates an arrow 𝑔 ⋅
𝑓: 𝑎 → 𝑐 ∈ 𝐶, where 𝑓 ⋅ 1𝑎 = 𝑓, 1𝑏 ⋅ 𝑓 = 𝑓 and the composition is associative ℎ ⋅ (𝑔 ⋅ 𝑓) = (ℎ ⋅ 𝑔) ⋅
𝑓: 𝑎 → 𝑑, if it is defined in C, i.e., the following diagrams are commutative: 

 
A diagram is ‘commutative’ if all compositions of arrows with common source and target objects 

are equal to each other. 

We recall that a functor 𝑇: 𝐽 → 𝐶 from category J to a category C consists of a T objects function 

that assigns each object 𝑗 ∈ 𝐽 to an object 𝑇𝑗 ∈ 𝐶 and T arrow function that assigns each arrow 𝑢: 𝑗 →

𝑖 ∈ 𝐽 to an arrow 𝑇𝑢:𝑇𝑗 → 𝑇𝑖 ∈ 𝐶, where 𝑇(1𝑗) = 1𝑇𝑗 , 𝑇(𝑣 ⋅ 𝑢) = 𝑇𝑣 ⋅ 𝑇𝑢 (when the composition 

𝑣 ⋅ 𝑢 is defined in J). 

The category Set of sets and mappings between them allows endofunctor 𝑃: 𝑆𝑒𝑡 → 𝑆𝑒𝑡 that maps a 

set X to a power-set 𝑃𝑋 = {𝐴 ⊆ 𝑋} and a mapping 𝑓: 𝑋 → 𝑌 to 𝑃𝑓: 𝑃𝑋 → 𝑃𝑌, where 𝑃𝑓(𝐴) =
{𝑓(𝑥)|𝑥 ∈ 𝐴} ⊆ 𝑌, for any 𝐴 ⊆ 𝑋. 

We will encounter below a ‘forgetful] functor 𝐹: 𝐿𝑎𝑡 → 𝑆𝑒𝑡, which maps a semilattice ⟨𝑋,∧⟩ to its 

domain X and homomorphism of semilattices 𝑓: ⟨𝑋,∧⟩ → ⟨𝑌,∧⟩ to mapping 𝐹𝑓: 𝑋 → 𝑌. 

We recall that a ‘natural transformation’ 𝜏: 𝑅 → 𝑇 from functor 𝑅: 𝐽 → 𝐶 to functor 𝑇: 𝐽 → 𝐶 is a 

function that assigns each object 𝑗 ∈ 𝐽 to an arrow 𝜏: 𝑅𝑗 → 𝑇𝑗 ∈ 𝐶 in such a way that for each arrow 

𝑢: 𝑗 → 𝑖 ∈ 𝐽 the following diagram is commutative: 

 
There exists a natural transformation 𝜂 from an identity functor 𝐼𝑆𝑒𝑡  to a functor P with 

components 𝜂𝑋: 𝑋 → 𝑃𝑋 that map each 𝑥 ∈ 𝑋 to a single-element subset {𝑥} ∈ 𝑃𝑋. 

There also exists a natural transformation ∪:𝑃𝑃 → 𝑃 with components ∪𝑋: 𝑃𝑃𝑋 → 𝑃𝑋 that map 

each family 𝑆 ⊆ 𝑃𝑋 of subsets to their union∪ {𝐴|𝐴 ∈ 𝑆} ∈ 𝑃𝑋. 

Each endofunctor 𝑇: 𝐶 → 𝐶 defines the compositions 𝑇2 = 𝑇 ⋅ 𝑇: 𝐶 → 𝐶 and 𝑇3 = 𝑇2 ⋅ 𝑇: 𝐶 → 𝐶. 

Let 𝜇: 𝑇2 → 𝑇 be a natural transformation with components 𝜇𝑐: 𝑇
2𝑐 → 𝑇𝑐 for each 𝑐 ∈ 𝐶. Then 

𝑇𝜇:𝑇3 → 𝑇2 denotes a natural transformation with components (𝑇𝜇)𝑐 = 𝑇(𝜇𝑐): 𝑇
3𝑐 → 𝑇2𝑐; the 

transformation 𝜇𝑇:𝑇3 → 𝑇2 has components (𝜇𝑇)𝑐 = 𝜇𝑇𝑐: 𝑇
3𝑐 → 𝑇2𝑐. 

We recall that a monad ⟨𝑇, 𝜂, 𝜇⟩ in a category C consists of a functor 𝑇: 𝐶 → 𝐶 and two natural 

transformations 𝜂: 𝐼𝐶 → 𝑇 and 𝜇: 𝑇2 → 𝑇 that make the following diagrams commutative: 

 



It is easy to check that the triple ⟨𝑃, 𝜂,∪⟩ defines the monad in the category Set. The necessary 

identities ∪⋅ (∪ 𝑃) =∪⋅ (𝑃 ∪): 𝑃3 → 𝑃 and ∪⋅ (𝜂𝑃) = 𝑖𝑑 =∪⋅ (𝑃𝜂): 𝑃 → 𝑃 correspond to the equality  

∪
𝑖∈∪{𝐼𝑗|𝑗 ∈ 𝐽} 𝑆𝑖 =∪𝑗∈𝐽∪𝑖∈𝐼𝑗 𝑆𝑖 and the identities ∪ {𝐴|𝐴 ⊆ 𝑆} = 𝑆 =∪ {{𝑥}|𝑥 ∈ 𝑆}, respectively. 

For the monad ⟨𝑃, 𝜂,∪⟩ in the category Set, a category of algebras Lat consists a set of all pairs 
⟨𝑋,∧⟩, where the object (set) X is called ‘domain’ of the algebra and the morphism ∧: 𝑃𝑋 → 𝑋 is 

called ‘structural mapping’; the identities 

∧⋅∪𝑋=∧⋅ (𝑃 ∧): 𝑃2𝑋 → 𝑋 (6) 
and  

∧⋅ 𝜂𝑋 = 𝑖𝑑𝑋: 𝑋 → 𝑋 (7) 

must be true. 

Lemma 3. The class of algebras ⟨𝑋,∧⟩ over the monad ⟨𝑃, 𝜂,∪⟩ in the category Set coincides with 

complete semilattices. 

Proof. The structural mapping ∧: 𝑃𝑋 → 𝑋 defines the partial order 𝑥 ≤ 𝑦 ⇔∧ {𝑥, 𝑦} = 𝑥. 

Antisymmetry: from 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 follows 𝑥 =∧ {𝑥, 𝑦} =∧ {𝑦, 𝑥} = 𝑦. Reflexivity holds since 

identity (7): ∧ {𝑥} =∧ 𝜂(𝑥) = 𝑥 . Transitivity: from 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 follows ∧ {𝑥, 𝑧} =∧
{∧ {𝑥, 𝑦},∧ {𝑧}} = ∧ {𝑥, 𝑦, 𝑧} =∪ {{𝑥} ∪ {𝑦, 𝑧}} =∧ {∧ {𝑥},∧ {𝑦, 𝑧}} =∧ {𝑥, 𝑦} = 𝑥. 

Let us prove that ∧ 𝑆 is the greatest lower bound for 𝑆 ⊆ 𝑋. For each 𝑥 ∈ 𝑆 it is true that 𝑆 = 𝑆 ∪
{𝑥}. From identity (6): ∧⋅ (∪𝑋) =∧⋅ (𝑃 ∧) follows ∧ {∧ 𝑆, 𝑥} =∧ {∧ 𝑆,∧ {𝑥}} =∧ (𝑆 ∪ {𝑥}) =∧ 𝑆, 

which means ∧ 𝑆 ≤ 𝑥. Let ∧ {𝑦, 𝑥} = 𝑦 (i.e. 𝑦 ≤ 𝑥) be true for each 𝑥 ∈ 𝑆. Then ∧ {∧ 𝑆, 𝑦} =∧
(𝑆 ∪ {𝑦}) =∧ (∪ {{𝑥, 𝑦}|𝑥 ∈ 𝑆}) =∧ {𝑦} = 𝑦 , i.e. 𝑦 ≤∧ 𝑆. 

The reverse statement that a complete semilattice ⟨𝑋,∧⟩ is an algebra over the monad ⟨𝑃, 𝜂,∪⟩ is a 

simple exercise. ■ 

4. Cartesian products as limits of small functors 

Let us denote the category of algebras over the monad ⟨𝑃, 𝜂,∪⟩ in the category Set as Lat. This 
category is Cartesian-closed, i.e. it contains limits of small functors, whose definition is given below. 

The ‘diagonal’ functor 𝛥: 𝐶 → 𝐶𝐽 maps each object 𝑐 ∈ 𝐶 to a constant functor 𝛥𝑐: 𝐽 → 𝐶, which 

on any object 𝑗 ∈ 𝐽 takes the value c and on any arrow 𝑢: 𝑗 → 𝑖 ∈ 𝐽 takes the value 1𝑐: 𝑐 → 𝑐 ∈ 𝐶. If 

𝑓: 𝑎 → 𝑐 is some arrow from C, then 𝛥𝑓 is a natural transformation 𝛥𝑎 → 𝛥𝑐, which on any object 𝑗 ∈
𝐽 takes the value 𝑓: 𝑎 → 𝑐. 

 
Let us call the natural transformation 𝜏: 𝛥𝑐 → 𝐹 from a constant functor 𝛥𝑐 into some functor 

𝐹: 𝐽 → 𝐶 a ‘cone’ with base F and vertex 𝑐 ∈ 𝐶. 

Since the values of the functor 𝛥𝑐: 𝐽 → 𝐶 can be reduced to 𝑐 ∈ 𝐶, the natural transformation 

𝜏: 𝛥𝑐 → 𝐹 for each object 𝑗 ∈ 𝐽 consists of an arrow 𝜏𝑗: 𝑐 → 𝐹(𝑗) such that for any arrow 𝑢: 𝑗 → 𝑖 ∈ 𝐽 

the following diagram is commutative: 



 
The limit of the functor 𝐹: 𝐽 → 𝐶 is a universal arrow ⟨𝑟, 𝜈⟩ from Δ to F (it means the natural 

transformation 𝜈: 𝛥𝑟 → 𝐹). The object 𝑟 ∈ 𝐶 is usually denoted as 𝑙𝑖𝑚
←

𝐹. 

The natural transformation 𝜈:𝛥𝑟 → 𝐹 is universal among natural transformations 𝜏: 𝛥𝑐 → 𝐹, where 

𝑐 ∈ 𝐶. In other words, the transformation 𝜈: 𝛥𝑟 → 𝐹 is a cone with base F and vertex 𝑟 ∈ 𝐶 such that 

for any cone 𝜏 with base F and vertex c, there exists a unique arrow 𝑡: 𝑐 → 𝑟 such that 𝜏𝑗 = 𝜈𝑗 ⋅ 𝑡 for 

all 𝑗 ∈ 𝐽 

 
An example of a limit is a ‘Cartesian product’, in which case the category 𝐽 = ⟨{1,2}, ∅⟩ contains 

two objects and the empty set of arrows. 
Then universal property of Cartesian product has the following form 

 
In 𝐿𝑎𝑡 limit 𝑙𝑖𝑚

←
𝐹 consists all ‘threads’, i. e. all elements of Cartesian product 𝛼 ∈ ∏ 𝐿𝑗𝑗∈𝐽  with 

coordinates 𝛼𝑗 such that 𝐹𝑢(𝛼𝑗) = 𝛼𝑖 for all arrows 𝑢: 𝑗 → 𝑖 ∈ 𝐽. Operation ∧ between threads is a 

restriction of Cartesian product one, i. e. it is computed component-wise. 

The combination of lattices of attribute values can be described with a certain functor 𝐹: 𝐽 → 𝐿𝑎𝑡, 
where an object of J represents one of the attributes (generally speaking, arbitrarily complex), and an 

arrow 𝑢: 𝑗 → 𝑖 is a homomorphism of semilattices. 
For instance, ‘amalgam’ of two lattices with respect to third one corresponds to the limit of functor  

from the category 𝐽 = ⟨{1,2,3}, {𝑢: 1 → 3, 𝑣: 2 → 3}⟩. This construction occurs when there exist two 

representation languages (for example, with different set of features) that can be reduced to common 

language (to the common subset of attributes). Then amalgams is useful to find a pairs of hypotheses 
in different languages that corresponds to same one in common description. 

Another useful case is a limit of extending family of Cartesian products: 

 
The limit of functor coincides with ∏𝐿𝑗  together with component-wise similarity. If a lattice 𝐿𝑗  

represents a values of j-th attribute, the procedure corresponds to sequential variant of VKF method, 

when features appear one-by-one. It is possible even more general situation when expert obtains 

features in blocks. Then it needs to consider projection 𝜋𝑈
𝑉:∏ 𝐿𝑗𝑗∈𝑉 → ∏ 𝐿𝑗𝑗∈𝑈 , where 𝑉 = 𝑈 ∪ {𝐽𝑖}, 

when 𝐽𝑖 enumerates features in i-th block and U contains previously obtained attributes. 

  



5. Free semilattices and polar operation on them 

To define ‘global similarity’ (or, in the terminology of FCA [2], ‘polar’ operation), we need to 

establish the freeness of the algebra ⟨𝑃𝑆,∪⟩ on a set S of training examples through conjugation of 

forgetful 𝐹: 𝐿𝑎𝑡 → 𝑆𝑒𝑡 and generating 𝐺: 𝑆𝑒𝑡 → 𝐿𝑎𝑡 functors. 

We recall that a conjugation between categories C and B is a triple ⟨𝐹, 𝐺, 𝜑⟩, where 𝐹:𝐶 → 𝐵 and 

𝐺: 𝐵 → 𝐶 are functors, and the bijection φ assigns each arrow ℎ: 𝐺𝑐 → 𝑏 to an arrow 𝜑ℎ: 𝑐 → 𝐹𝑏 conjugate 

to h on the right, and for all arrows 𝑓: 𝑐’ → 𝑐 and 𝑔: 𝑏 → 𝑏’ the conditions of naturalness are met: 

𝜑(𝑔 ⋅ ℎ) = 𝐹𝑔 ⋅ 𝜑ℎ, 𝜑(ℎ ⋅ 𝐺𝑓) = 𝜑ℎ ⋅ 𝑓 (8) 

This is equivalent to naturalness of the transformation 𝜑−1, that is, for all 𝑓: 𝑐’ → 𝑐, 𝑔: 𝑏 → 𝑏’, and 

𝑘: 𝑐 → 𝐹𝑏 the following relations are true: 

𝜑−1(𝑘 ⋅ 𝑓) = 𝜑−1𝑘 ⋅ 𝐺𝑓, 𝜑−1(𝐹𝑔 ⋅ 𝑘) = 𝑔 ⋅ 𝜑−1𝑘 (9) 

For any object 𝑐 ∈ 𝐶, we consider 𝜂𝑐: 𝑐 → 𝐹𝐺𝑐 as an image of the arrow 1𝐺𝑐: 𝐺𝑐 → 𝐺𝑐 at mapping 

φ. These arrows are components of a natural transformation 𝜂 of an identity functor 𝐼𝐶  to a functor 

𝐹𝐺: 𝐶 → 𝐶. 

The bijection φ can be expressed in terms of arrows 𝜂𝑐: 𝑐 → 𝐹𝐺𝑐, namely, as  

𝜑ℎ = 𝐹ℎ ⋅ 𝜂𝑐 (10) 

for all ℎ: 𝐺𝑐 → 𝑏. 

Indeed, in view of the conditions of naturalness, 𝜑ℎ = 𝜑(ℎ ⋅ 1𝐺𝑐) = 𝐹ℎ ⋅ 𝜑1𝐺𝑐 = 𝐹ℎ ⋅ 𝜂𝑐. 

Similarly, there exists a natural transformation ε of a functor 𝐺𝐹: 𝐵 → 𝐵 into an indentity functor 

𝐼𝐵  as a set of arrows 𝜀𝑏: 𝐺𝐹𝑏 → 𝑏: images of arrows 1𝐹𝑏 at inverse bijection 𝜑−1. 

Conversely, the bijection 𝜑−1 can be expressed in terms of arrows 𝜀𝑏: 𝐺𝐹𝑏 → 𝑏 by the formula 

𝜑−1𝑘 = 𝜀𝑏 ⋅ 𝐺𝑘 (11) 

for all 𝑘: 𝑐 → 𝐹𝑏. 

Theorem 4. For the monad ⟨𝑃, 𝜂,∪⟩ in the category Set, a conjugation ⟨𝐹, 𝐺, 𝜑⟩ exists, where 

𝐹: 𝐿𝑎𝑡 → 𝑆𝑒𝑡 is a forgetful functor 𝐹⟨𝑋,∧⟩ = 𝑋, 𝐺: 𝑆𝑒𝑡 → 𝐿𝑎𝑡 is a generating functor 𝐺𝑆 = ⟨𝑃𝑆,∪⟩, 
𝜂: 𝐼𝑆𝑒𝑡 → 𝐹𝐺 is a natural transformation with 𝜂𝑋: 𝑋 → 𝑃𝑋defined as 𝜂𝑋(𝑥) = {𝑥}, and 𝜀: 𝐺𝐹 → 𝐼𝐿𝑎𝑡  is 

a natural transformation with 𝜀⟨𝐿,∧⟩ =∧: 𝑃𝐿 → 𝐿. 

Proof. The functor𝐹: 𝐿𝑎𝑡 → 𝑆𝑒𝑡 forgets the structural mapping 𝐹⟨𝑋,∧⟩ = 𝑋 of the semilattice. 

For each set S the pair ⟨𝑃𝑆,∪⟩ is a free complete semilattice over S by reason of the associative law 

and the presence of left and right units in the monad ⟨𝑃, 𝜂,∪⟩. Therefore, the correspondence 𝐺𝑆 =
⟨𝑃𝑆,∪⟩ does in fact define the functor 𝐺: 𝑆𝑒𝑡 → 𝐿𝑎𝑡, as stated. 

Then 𝐹𝐺𝑆 = 𝐹⟨𝑃𝑆,∪⟩ = 𝑃𝑆, so the unit 𝜂𝑋: 𝑋 → 𝑃𝑋 of the monad ⟨𝑃, 𝜂,∪⟩ is a natural 

transformation 𝜂: 𝐼𝑆𝑒𝑡 → 𝐹𝐺. 

On the other hand, 𝐺𝐹⟨𝑋,∧⟩ = 𝐺𝑋 = ⟨𝑃𝑋,∪⟩. The identity (6): ∧⋅ (∪𝑋) =∧⋅ (𝑃 ∧) means that the 

structural mapping 𝜀⟨𝐿,∧⟩ =∧: 𝑃𝐿 → 𝐿 is a homomorphism of semilattices. This results in the natural 

transformation 𝜀: 𝐺𝐹 → 𝐼𝐿𝑎𝑡 . 
The remaining identities for conjugation have the forms  and . The first one ∪𝑋⋅ (𝑃𝜂𝑋) =

𝑖𝑑𝑃𝑋: 𝑃𝑋 → 𝑃𝑋 coincides with the equation 𝑆 =∪ {{𝑥}|𝑥 ∈ 𝑆}; the second is exactly the condition (7). 

■ 

According to the proved theorem, the conjugation ⟨𝐹, 𝐺, 𝜑⟩ determines the isomorphism 

𝜑−1: 𝑆𝑒𝑡(𝑆, 𝐹⟨𝑋,∧⟩) → 𝐿𝑎𝑡(⟨𝑃𝑆,∪⟩, ⟨𝑋,∧⟩),  for which the function of descriptions of training 

examples 𝑓: 𝑆 → 𝑋 in a domain of a lattice ⟨𝑋,∧⟩ can be extended on all their subsets PS as shown in 

(11): 𝜑−1(𝑓) =∧⋅ 𝑃𝑓: ⟨𝑃𝑆,∪⟩ → ⟨𝑋,∧⟩.Hence, each subset 𝐴 ⊆ 𝑆, called a list of parents, maps to an 

element 𝜑−1(𝑓)𝐴 ∈ 𝑋, called the polar or global similarity of the list of parents. 

6. Conclusion 

Although the original construction fits under the concept of a Ganter–Kuznetsov pattern structure 

[10], the categorical formalization replaces the concept of a projection between such structures with a 
homomorphism of algebras over the corresponding monad, which ensures invariance of the polar 

construction with respect to transformations of object names and semilattices of values. 



Unfortunately, paper [10] contains a large number of incorrect statements (Proposition 1, Theorem 
2). The invalidity of Proposition 1 from [10] was discovered by M.V. Samokhin [11]. The simplest 

counter-example was constructed by A.V. Buzmakov [12]. To eliminate this problem, the authors of 

[13] imposed various additional conditions on the definition of pattern structure projections, which are  

unnatural. The invalidity of the key Theorem 2 of [10] was established by T.B. Kaiser and S.E. 
Schmidt [14]; it remains invalid for the augmented definitions of projections from [13]. 
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