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Abstract 
The modification of the online learning algorithm for multi-valued multithreshold neurons is proposed in 
the paper. Conditions are stated and proved that ensure the finite successful learning. The influence of the 
algorithm hyperparameters on the learning process is analyzed on the base of simulation results. The 
recommendations are formulated concerning the choice of values of these hyperparameters, which may 
significantly reduce the learning time. The experiment results prove that the proposed algorithm 

 and Parberry. Obtained results can be useful 
in the design of artificial neural network classifiers employing multithreshold activation functions in 
network nodes. 
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1. Introduction 

Neural networks (NN) became mainstream in modern artificial intelligence (AI) systems [1] and 
smart data proceeding [2, 3]. Both hardware [4] and software infrastructure of AI [1] widely employs 
concepts and solutions based on neural-like approaches [5, 6]. Different network architectures [7] as 
well as appropriate learning and synthesis techniques [8, 9] provide powerful capacities of artificial 
NNs in the solving numerous real-time problems. Modern NN-based AI systems depend on billions 
of parameters [2] and their behavior is influenced by many hyperparameters [9], which are used in 
the learning of the underlying machine learning (ML) model [10]. This implies the importance of the 
proper choice of these hyperparameters during the training process in order to adopt AI system to 
the solution of the given ML problem [11]. 

The tremendous power of latest AI systems is provided by the capability of underling NN [12]. 
Therefore, the main efforts in neural computation are devoted to the improvement of the network 
capacities [2]. It can be achieved in many ways [13]. The most popular one consists in the increasing 
of the network size by using deeper models with many neurons in every hidden layer [9], as well as 
the application of new hybrid network architectures, e.g., as in [2, 5, 6]. This approach can be 
extremely successful, but usually it requires considerable computation resources and may be very 
chip and inappropriate in many cases [2, 9]. 

The second approach consists in the use of a relatively small NN enhanced by the application of 
modified network nodes, which are more powerful than usual linear neural units with RELU- or 
sigmoid-like activation functions [14]. In simplest cases a single such unit is sufficient to solve a 
classification task on small- or medium-sized dataset [11, 15]. 

In order to overcome the limitation of classical neural units, many modified models were propo-
sed, e.g., in [2, 9, 16]. They all were intended to increase the recognition capacity of a single neuron. 
As mentioned in [16], they can be divided into at least two classes. 

The first class contains models using the modified modes of the aggregation of the input signals 
of the neural unit instead of the usual weighted sum of inputs. This approach includes different 
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kernel models, which make the shape of decision region of the neural unit more complicated and 
more appropriate to the distribution of data patterns [2, 9]. 

The second class consists of models that benefit of the use of a modified activation function [17]. 
This class is sometimes more useful than the first one, because its representatives adopt the kind of 
activation to the particular task without adding many new parameters to the ML model [16]. Note 
that this approach requires the development of special learning techniques adapted to the chosen 
modification of the activation function [9, 18]. 

The current research is devoted to the study of the one kind of neural models belonging to the 
second class the multi-valued multithreshold neural unit [19, 20]. The goal of the research is the 
design of the learning algorithm for such multithreshold units and the investigation what values of 
algorithm hyperparameters would be used in order to speed-up the training process and improve the 
capacity of resulting neuron. 

2. Related works 

Multithreshold approach was proposed in the early studies in threshold logic [17 19, 21]. The first 
models employed the multithreshold binary-valued activation in order to enhance the capacity of 
the classical threshold gate based on the famous McCulloch and Pitts model [22]. This enhancement 
was theoretically confirmed in [23, 24], where it was shown that a linear threshold unit strengthened 
by additional thresholds considerably overperforms single-threshold gate. The explanations and 
quantitative expressions of the increase of the unit capacity can be found in [17, 24]. Despite the 
strict confirmation and justification of the advantage of multithreshold models in pattern 
classification, the practical benefits of this approach were almost missing, because few synthesis (as 
well as learning) algorithms were proposed for such multithreshold systems. And this, in order, im-
plies the decline of the interest in the development and the use of multithreshold models and systems 
[7]. 

Hardness results for multithreshold units stated in [16, 20] explain that the learning task for a 
multithreshold unit is considerably harder in the sense of complexity theory than similar task for a 
single-threshold unit. This conclusion was also confirmed for general multithreshold neural units 
with an arbitrary number of thresholds in [25]. Paper [20] also contains the result concerning the 
connection between multithreshold neurons and single-threshold neural networks with a single 
hidden layer. 

Nevertheless, in [6, 26, 27] some recent advances were observed in the application of bithreshold 
and multithreshold neural units and networks, respectively. In the bithreshold case it was caused by 
new approaches in the synthesis of NN by employing bithreshold neurons in hidden layers of 
networks [16]. This approach can be combined with the reducing of drawbacks of bithreshold 
activations [23] by making network deeper using hybrid blocks, which consist of group of 
heterogeneous neurons preserving the information concerning the location of training patterns [16]. 
The similar approach was proposed in [23], where the smoothed modification of activation function 
was used as well as neuron center defined by the portion of training patterns, which activate this 
neuron.   

In the multithreshold case the progress is related to the use of multi-valued outputs instead of 
binary ones [28]. This leads to lesser complexity of the learning task compared to the case of the 
application of binary-valued neurons, because the complexity of the learning of multi-valued multi-
threshold neurons proved to be equal to the complexity of the learning of linear single-threshold 
units [29, 30]. 

3. Models and methods 

The multithreshold multi-valued model of the neuron will be considered in this section as well as 
issues related to its learning. 

3.1. Model of multi-valued multithreshold neural unit 

Consider a model of multithreshold neuron. It is a computation unit provided with weight vector 
( )1, , n

nw w= w R  and ordered threshold vector ( )1, , k

kt t= t R . Each weight wi is associated 

with corresponding input xi, 1, ,i n= . The use of multiple thresholds allows the neuron to operate 



in two modes: binary-valued and multi-valued, respectively [30]. Further only multi-valued neurons 
will be considered. The unit output is denoted by y and is defined in the following way: 
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where w x  denotes the inner products of the weight vector w and the input vector x. 
It is evident that the neural unit describing by equation (1) has 1k +  different values. Therefore, 

we can use it as a single output node of NN classifier in the case when the number of classes is 
greater by 1 than the number of thresholds. 

The pair (w, t) completely defines the multi-valued multithreshold neuron. Further, this pair will 
be used as the short -valued multithreshold neuron with weight vector w and 
threshold vector t . 

Let A be an arbitrary set of patterns in n-dimensional real space. Every multi-valued k-threshold 
neuron ( ),w t  induces the ordered partition ( )0 1, ,..., kA A A  of the set , where the set Ai contains all 

elements of the set A such that ( )1, 0, ,i it t i k+   =w x . Note that two additional pseudo-

thresholds 0t = −  and 1kt + = +  were used in the previous equation for convenience. 
This partition is called an ordered k-threshold partition of the set A by strongly k-separable sets 

0 1, ,..., kA A A  [30]. Notice that the order matters for such partitions. 

3.2. Learning of multi-valued k-threshold neural unit 

Two algorithms for single multi-valued multithreshold neuron were proposed in [30]. This 
subsection contains a brief description of the modification of the first one. 

Consider the search for a multi-valued k-threshold neuron ( ),w t  that performs the desired 

ordered partition ( )0 1, ,..., kA A A  of the finite set A. We can consider the elements of the set A as 

members of our training set. It is evident that without loss of generality one can replace all non-strict 
inequalities in (1) by strict one (this is true, because A is finite). Furthermore, it is also easy to show 
that the learning task is equivalent to the solution of the following system of linear inequalities: 

0 1 0

1 2 1

1 1

1

, if ,

, if  ,

, if  ,

, if .

k k k

k k k

t t A

t t A

t t A

t t A

− −

+

   


   


    

    

w x x

w x x

w x x

w x x

 (2) 

Note that similar as in the definition of ordered partition, two additional sentinel thresholds 

0t = −  and 1kt + = +  were used in (2) in order to simplify notations. There exists, in addition, ML-
like interpretation of the solution of (2). We can consider it as the task of supervised learning on the 
dataset consisting of training pairs ( ), yxx , where ,A y i =xx  if and only if .iAx  

3.2.1. Data preprocessing 

Consider the method of the transformation of the task (2) to the solution of the homogenous system 
of linear inequalities in n k+  variables 

1 1,... , ,...,m kw w t t , which was proposed in [30]. 

Let us search for solution vector in the form ( )1 1,..., , ,...,n kw w t t= − −v , which contains all sough 

weights as well as all negated thresholds. Consider the sequence of transformations : n n k

jf +→R R

: 
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It follows from (3) that every chained inequality 1j jt t +  w x  in (2) is equivalent to the following 
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Thus, it is possible to reduce (2) to the solution of homogenous system: 
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where vectors bi are obtained using (3) and (4), (i = m). Note that in the case of the use of 
pseudo-thresholds 0t = −  and 1kt + = +  (5) consists of exactly 2|A| inequalities, where |A| is a 
cardinality of the set A, but we can pseudo-thresholds. Thus, 
the actual value of m is 02 .kA A A− −  Let V(B) denotes the set of all solution of (5). 

The reduction process was described in detail in [30], where the corresponding function 
ReduceSet ( )0 1, , , kA A A  was defined, which returns the set  1, , mb b . 

3.2.2. Online algorithm with shift 

Consider the online-version of the learning algorithm for a multi-valued k-threshold neural unit. The 
idea of this algorithm is from [30] and it actually derives many steps of relaxation algorithm 
for systems of linear inequalities [9]. The pseudocode of this algorithm is shown below: 

ShiftedMultithreshold 1

0

0 , , , , , )( , , , kA A A r d v  

1 B NormalizedSet ( )0 1, , , kA A A  

2 
0v v  

3 ( ) ( ), , 0,0,1i j err   

4 while i r  and 0err  :  
5        err 0 
6        shuffle B 
7        for b  in B: 
8               s  b v  
9               if 0s  : 
10                      continue 
11               1j j +  
12               1err err +  
13               ( )( )j d s  + −v v b  

14       1i i +  
15 ( )1,..., nv vw  

16 ( )1,...,n n kv v+ + − −t  

17 return ,w t  

Above algorithm has the single parameters 
0 1( , ,..., )kA A A an ordered partition consisting of 

strongly k-separable sets. Algorithm has also five hyperparameters: r the upper bound on the 
number of learning epochs, a binary value defining the learning mode, 0 n k+v R an initial 



approximation,  the schedule function defining the value of the learning rate, and d non-
negative real value, which is a measure of the shift used during each correction. They all are used in 
crucial step 13, where the correction of the vector v is performed. The learning process continue 
until we find such vector n k+v R  that all inequalities in (5) are satisfied. If it is not true, then there 
exists a vector b such that 0 b v . This vector b is used in step 13 in order to improve  the current 
value of the vector v by nudging it in the direction of b. Note that inner product is used in this step 
to define the correction step as well as shift d and the current value of the learning rate. 

It should be mentioned that considered algorithm differs from the similar algorithm from [30] 
only in steps 1 and 13, respectively. In step 1 and additional preprocessing transformation is 
performed, which consists in the normalization of the elements of the set B in order to obtain the set 
of vectors with unit Euclidean norm. The proposed modification of learning algorithm uses also an 
additional hyperparameter d in step 13, which should be non-negative. This allows us to avoid the 
possible convergence to the point lying on the bounding surface of the set V(B). Notice also that the 
correction is performed only in the case 0s  . Hence, during every iteration performed in steps 7-
13 by all elements of the set B the value of d s− is always equal to d s+ , if correction step 13 

was reached. 
The issues related to the convergence of the above algorithm will be considered in the next 

subsection. 

3.3. Convergence conditions for learning algorithms 

Let us consider theoretical foundation of the above algorithm ensuring its convergence and even 
finiteness. 

Proposition. If finite sets 
0 1, ,..., kA A A  are strongly k-separable, 
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where j
b is a train vector used in jth correction, 1j−

v  is the value of sought vector v after previous 
correction and 

( ) ( ) ( ) ( )1 2 max 1 2 min0 2, 0 ,j j j j         +  , (7) 

where min  and max  are arbitrary positive constants, then there exists r  such that after at most r 

corrections ShiftedMultithreshold yields a multi-valued k-threshold neuron ( ),w t , which produces 

the partition ( )0 1, ,..., kA A A . 

Proof. Consider two possible cases for the value of hyperparameter : 
1. 0; =  
2. 1. =  

In the first case the learning process is similar to the classical perceptron learning with the 
learning rates ( )d j  used in jth correction or its extension in the case of multi-valued 
multithreshold functions proposed by Obradovi  and Parberry (see [11]). It is well known [11] that 
the equality 
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is the sufficient condition of the finiteness of the learning. Let us prove that (8) follows from the 
correction rule in step 13 and conditions (6), (7). 

Prove first that the sequence ( )r r
S

N
 is divergent, where ( )

1

r

r

j

S j
=

=  (note that the denominator 

of the fraction in (8) contains squared value of rS ). Suppose the contrary. Then 
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for some positive constant D, because dot product of unit vectors does not exceed 1. 

Therefore, ( ) ( )
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 This implies that ( )rS  is divergent. 

Thus, our assumption about the convergence of the sequence ( )rS  was wrong. Therefore, in the 
conditions of proposition this sequence always diverges. 

Consider the numerator in (8). We can split the corresponding sum into two parts: 
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 Let rS   be the first sum in the previous equation. It is evident that 
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Consider rS  the second sum in the corresponding equation. 
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where rn  is the number of terms in rS  . If for all r numbers rn  are bounded by maxn N , then 
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and (7) holds. 

Consider now the case 1. =  Let us prove that the sequence ( )
0, ,

j

j r=
v  satisfies Fejér condition 

1j j−−  −v v v v , (9) 



for all ( ).V Bv  It is evident that (8) is equivalent to 
2 2

1j j−−  −v v v v . Since  

( ) ( )
2 2 2

1 1 1 12j j j j j j j− − − −− = − + −  − + −v v v v v v v v v v , 

Fejér condition (9) is satisfied if 

( ) ( )
2

1 1 12 0j j j j j− − −− + −  − v v v v v v  

for all ( ).V Bv  

We can rewrite the step 13 of the learning algorithm in the following way: 

( )( )1 1j j j j jj d− −= + − v v b v b . (10) 

Therefore, it is possible to rewrite the last inequality as follows: 

( )( ) ( )( ) ( )
2 2

2 1 1 12 0.j j j j j j jj d j d − − −−  + −   − b v b b v b v v  

Remember that 1 0j j− b v  in every correction. Thus, 1 1j j j jd d− −−  = + b v b v  and the last 

quadratic inequality holds only if 
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We can rewrite this inequality in a following form: 
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Let us slightly relax Fejér condition from the whole set V(B) to its own subsets. By using the 
techniques describing in [5], it is easy to verify that for every 0d   and every 0    the cone V(B) 

contains such point ( ),d =v v  that, the unit closed ball    1 : 1n kB +=  − v x R x v  is the subset 

of V(B) and for all  1B d    +x v v x . Therefore, it follows from (11) that sequence ( )j
v  satisfies 

Fejér condition (9) for the ball  1B v  if 
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Let max / 2 = . If (6) and (7) are satisfied, then (12) holds. 
Suppose that the learning process is infinite, i.e., for all r ShiftedMultithreshold is unable to 

produce ( )j V Bv  for some j r . Then the sequence ( )
0, ,

j

j r=
v  satisfies is Fejér condition (9) for 

the ball  1B v  and, hence, is convergent by well-known fact from the theory of linear normed spaces 

[9]. 
Consider the increment vectors 1j j j− = −v v v . It follows from (6), (7), (10) and (12) that 
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It implies 

( )( ) ( )( ) ( )( ) ( )1 1
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It follows from the last equation that increment vectors do not go to zero as j goes to infinity. 

Therefore, the sequence ( )j
v  is not convergent. This apparent contradiction completes the proof in 

the case 1 = . 
Note that in the case 1 =  convergence conditions (without the proof) appeared for the first time 

in [30]. 

4. Experiment 

In the above theoretical study of the issues related to the algorithm convergence and finiteness the 
range of feasible values for the learning rate hyperparameter was found, but proved Proposition does 
not suggest what values are preferable in order to ensure the faster convergence. 

This question can be clarified by empirical study of the dependence of ShiftedMultithreshold on 
different strategies to the choice of the values of hyperparameters, which are used in this algorithm. 

During simulation k-threshold neurons were trained for different 2 10k  . This range of values 
was chosen in accordance with recommendation from the paper [30]. Randomly generated k-
threshold neuron was used to produce a partition ( )0 1, ,..., kA A A  of the set A containing M uniformly 

distributed point from n-dimensional hypercube [ 1,1]n− , where cartesian product is used for the 
power in the previous formula. Two series of experiments were performed. In the first series whole 
A was used as training set. In the second A was randomly split into training set and test set, where 
test set contained 20% of all points. The first series of experiment was more intensive. Only it was 
used to determine values of last four hyperparameters of algorithm, which then was used in the 
second series. For this reason, the most part of this section is devoted to the description of the 
experiments of the first type. 

Note that the value of r was not studied in the first series of experiments and constant upper 
bound 100,000 was used for the number of learning epochs in the first experiment. The reaching of 
this bound during learning considered as signal that algorithm failed to learn neuron to solve a given 
task. In the next experiments r was reduced to 1,000. 

The final value of the counter j, which corresponds to the total number of corrections performed 
during the learning process, was considered as the performance metric. Therefore, the further 

X performed better than Y ber of corrections in the 
case of X was lesser by 30% than the number of corrections in the case of Y  

The general tendence during the first series of experiments remained the same for every value of 
k from the above-mentioned range. For this reason, results will be presented only for a single value 
of k, namely, 3k = . This implies that 4-valued units will be considered. 

The dimension of the feature space n was chosen to be 50. Different sizes of the training set were 
tried. In the next section results for M from {256, 512, 1024, 2048, 4096} will be presented. Random 
sampling was used. Each experiment was repeated for 110 times (more precisely, 11 random 
partitioning were performed for every of 10 randomly chosen sets A) and 5 best and 5 worst results 
were rejected in order to avoid outliers. The remaining 100 results were averaged. The obtained 
means will be analyzed in the next section. 

The first experiment consists in the estimation of the influence of the value of binary hyperpara-
meter  to the performance of the learning algorithms with random initial approximation (more 
precisely, random uniformly distributed in ( 1, 1) numbers were used as coordinates of 0

v ). The 
constant learning rate 2 =  was used for both possible values of hyperparameter . This value is 
suggested by [9] as recommended in the case of relaxation-based algorithms. Note that application 
of any constant learning rate  means that for all j ( ) ( )1 2, 0j j  = = , because otherwise it follows 

from (6) that ( )j  depends on j. The case 0 =  corresponds to the fixed increment used in classical 

perceptron-like models. The opposite case 1 =  leads to relaxation-like learning in which the 
increment in the jth correction is adaptive and depends on the classification error on the current 
training pattern j

b  measured by 1j j−b v  in (10). It was observed that relaxation-like approach to 
the learning considerably overperformed the perceptron-like one in the online learning of 4-valued 
3-threshold neurons. The grid search in segment [1, 2] was also performed with the step 0.01 in the 
case 0 = , but it did not make significant impact to the difference of learning times for both above-
mentioned types of the increment (actually, the change of  influenced the performance for 



relaxation-like mode much stronger than for perceptron-like one). Therefore, the perceptron-like 
approach to online learning was rejected, the value 1 =  was fixed, and, consequently, only 
relaxation-like online learning studied in all next experiments. During the second simulation the 
choice of initial approximation was considered alongside with constant learning rate. The learning 
with randomly chosen 0

v  was compared with optimized initial approximation 
( )0

1 /m m= + +v b b , where m B= . Both the idea and justification of such approximation are 

from [30]. The idea of the use of 0
v  is suggested by the fact that its coordinates have signs and 

ordering similar to same characteristics of coordinates of feasible solution from the set V(B). For all 
considered M and  results for 0

v were on average at least twice as good as for a random 0
v . For 

this reason, only 0
v was used further. Next simulation was devoted to the search of the appropriate 

values for the first term ( )1 j  of the learning rate in (6). In order to reduce the impact of the second 

term in (6) ( )2 0j =  was used here. The quite simple constant schedule strategy was used, i.e.,  

was assigned to ( )1 j  (and, consequently, to ( )j ) in every correction step. None of tried outside 

the segment [1.23, 2.31] was successful and only [1.5,2.2]  performed well. For this reason, the grid 
search on [1.5, 2.2] with the step 0.001 was used to determine (M) empirically the best for the given M. 
Further simulation was devoted to the search of the appropriate values for the second term ( )2 j  

of the learning rate in (6). It was observed that only constant ( )  2 2 0.1,0.5j =   provided good 

performance. Another grid search was performed on two dimension to find ( )( ) ( )

1 2,M M 

empirically the best pair for the given M. In the next simulation the impact of the value of the shift 

hyperparameter d was studied. The learning rate was calculated by using (6) and pairs ( )( ) ( )

1 2,M M   

from the previous experiment. The last simulation was the second series of experiments. Previously 
found values of hyperparameters were tried to solve the classification task on the split dataset in 
order to estimate the generalization ability of multi-valued k-threshold neuron in the case of different 
2 10.k   

5. Results and discussion 

Consider results that were obtained in above-mentioned experiments. Table 1 contains comparative 
results of perceptron-like ( )0 =  and relaxation-like ( )1 =  learning mode, respectively, in the 
case of the learning of 3-threshold neuron with constant learning rate 2. 

It is evident from Table 1 that the learning mode has great impact on the performance.  

Table 1 
Performance comparison for different values of hyperparameter  

Dataset size 
Average number of corrections 

0 =  1 =  
258 1413.51 157.14 
512 3701.84 218.03 
1024 8989.07 274.27 
2048 15791.62 338.86 
4096 20159.93 415.48 

The single adaptive correction (10) allows to move vector v in the right half-space in accordance 
to the violated inequality 1j j−b v  instead of numerous fixed increments in the direction bj, which 
are necessary for perceptron. Thus, we obtained the empirical proof of the significant advantage of 
relaxation approach in the online learning of k-threshold neurons. Consider results concerning the 
impact of optimized initial approximation. They were presented in Table 2 also in the case of the 
learning of 3-threshold neuron with 2 = . It is evident from Table 1 and Table 2 that the optimized 
initial approximation can at least halve the number of corrections. Thus, it provides the important 
improvement of the learning process. 



Table 2 
Performance comparison for random and optimized initial approximation  

Dataset size 
Average number of corrections 

Random approximation Optimized approximation 
258 157.14 46.52 
512 218.03 90.99 
1024 274.27 133.37 
2048 338.86 167.3 
4096 415.48 216.71 

 
Consider performance results in the case of different constant values of learning rate. In Table 3 

the best value of the learning rate for every dataset size is shown, which was found using the grid 
search, as well as the average number of corrections for it. Consider learning in more general case 
when constant pairs ( 1, 2) were used. Corresponding results are presented in Table 4. 

Table 3 
Performance results for learning with constant learning rates 

Dataset size Best learning rate Average number of corrections 
258 1.949 44.01 
512 1.986 88.24 
1024 2.003 128.81 
2048 1.928 162.08 
4096 2.051 201.33 

Table 4 
Best learning rate coefficients ( 1, 2) for learning with adaptive learning rates 

Dataset size 1 2 Average number of corrections 
258 1.935 0.009 43.22 
512 1.989 0.12 85.01 
1024 2.001 0.009 122.99 
2048 1.997 0.124 153.17 
4096 2.038 0.103 191.05 

 
The final experiment of the first series consists in the study of role of hyperparameter d on the 

learning. It was observed that for all datasets the best performance was obtained using 0.d =  
Moreover, in the case 0.1d   the learning became considerably slower. Consider the second series 
of experiments. Unlike the first series performed only for 3k = , the second series was consisted in 
the learning of multi-valued k-threshold neuron for all 2 10k   using 1 = , optimized initial 
approximation calculated only on the proper training set, and values of 1 2( , )   from Table 4. The 
shift was not performed. Table 5 contains the average percentage of accuracy of a trained k-threshold 
neuron that was measured on the test set for every combination of the dataset size and the number 
of thresholds. 

Table 5 
Accuracy of neurons in the second series of experiments 

Data-
set 
size 

Number of thresholds k 

2 3 4 5 6 7 8 9 10 

258 97.07 98.21 95.02 94.85 90.34 88.19 84.31 76.55 71.82 

512 99.02 98.75 94.93 95.12 91.8 90.12 86.46 81.73 80.99 

1024 96.85 94.7 93.08 91.02 89.94 87.67 88.12 87.04 87.26 

2048 94.54 94.63 90.9 90.15 87.77 87.04 85.47 86.01 84.13 

4096 92.13 90.96 85.48 86.34 85.09 86.11 82.12 81.26 79.78 

 



After the analysis of the result of the first series of experiments, which are presented in Tables 1
4, as well as results of the second series from Table 5, one can conclude that: 

1. The learning mode defined by  is extremely significant to the performance of online learning 
and its proper value 1 decreases the number of corrections in 10 times. 

2. The initial approximation also matters. The use of the improved approximation requires 
additional calculations but this can reduce the number of corrections in 2 4 times compared 
to random initial approximation. 

3. Constant learning rate in the case 1.93 2.05   is good choice for the relaxation learning. 
4. The best values of the second terms in (6) were quite low compared to the first term. 
5. The variation of the values of 1 and 2 is not so important and could improve the perfor-

mance by 6 12%. 
6. The generalization ability of k-threshold neuron decreases with the growth of k. 
7. The shift hyperparameter d has mainly the theoretical importance as a guarantee of the finite 

learning. Its practical application is limited by small values, whereas larger d can significantly 
decrease the learning process.  

6. Conclusions 

The modification of the online learning algorithm for multi-valued multithreshold neurons has been 
considered. It uses the additional preprocessing step as well as new shift parameter d ensuring the 
convergence. Conditions has been proved for the first time that guarantee the finiteness of the 
learning process. The influence of the algorithm hyperparameters on the behavior of the learning 
algorithm has been also studied. The suggestions were stated concerning the preferred values of 
hyperparameters, which provided better performance during experiments on synthetic datasets. 
Simulation results proved the advantage of relaxation learning mode over perceptron-like one and 
testified that the proposed algorithm is able to greatly overperform procedure of 
Obradovi  and Parberry [11]. The use of optimized initial solution has also great positive impact on 
the performance. Despite the fact that quantitative characteristics of the improvement presented in 
the fifth section are not absolute and may vary depending on the dimension of feature space, the 
content and the size of a dataset as well as other factors, proposed recommendation could be useful 
for ML projects employing NNs designed using multi-valued multithreshold neurons. 
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