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Abstract 
Recent advancements in biomedical embeddings derived from language models, such as BioELMo, have 
demonstrated superior performance in textual inference tasks within the medical domain. In this study, we 
aim to enhance medical Natural Language Inference (NLI) by integrating structured domain knowledge 
through a domain knowledge. We employed a state-of-the-art domain knowledge embedding algorithm, 
MultE, applied to the Unified Medical Language System (UMLS), and combined these embeddings with the 
BioELMo model. Additionally, we integrated domain-specific sentiment information using MetaMap to 
further enhance model performance. In our research, we employed the MedNLI dataset, consisting of 14,049 
expert-annotated premise-hypothesis pairs derived from clinical notes. Our methods involved the BioELMo 
embedding model integrated with domain knowledge embeddings and sentiment vectors, processed 
through a bidirectional LSTM and attention-based architecture. The results showed that our approach 
achieved an accuracy of 81.14%, precision of 80.08%, recall of 79.62%, F1-score of 79.85%, and AUC-ROC of 
85.06%, significantly outperforming baseline models. These findings indicate that integrating domain-
specific knowledge can tangibly enhance the effectiveness of NLI in the medical field. Overall, this work 
demonstrates the potential of combining advanced embeddings with structured domain knowledge, 
providing a robust framework for improving clinical decision support and automated medical record 
analysis. 
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1. Introduction 

Over the past decade, natural language inference (NLI) has emerged as a critical task within the 
broader fields of artificial intelligence (AI) and natural language understanding (NLU). NLI focuses 
on identifying the logical relationships between a given premise and a hypothesis, such as 
determining whether the hypothesis is a consequence, contradiction, or neutral with respect to the 
premise. Such a task is foundational for a lot of applications, including machine reading 
comprehension, dialogue systems, and information retrieval [1]. While noteworthy progress has 
been achieved in general domains like fiction [2] and travel [3], the medical domain remains a 
relatively unexplored frontier [4]. The inherent complexity and specialized nature of medical 
language, which often includes jargon, abbreviations, and nuanced context-dependent meanings, 
poses unique challenges in developing effective NLI models for this field. 

The introduction of MedNLI [5], a clinically annotated dataset specifically designed for NLI in the 
medical domain, represents a pivotal step toward bridging the gap between general NLI models and 
their application in healthcare. MedNLI enables the evaluation and refinement of embedding 
methods tailored to medical texts, which is essential for the development of downstream applications 
such as clinical decision support systems and automated medical record analysis. However, the 
complex nature of medical texts exacerbates the challenges in inference modeling, particularly when 
these texts are laden with domain-specific terminology and subtle contextual cues. In this context, 
the importance of explainable artificial intelligence (XAI) becomes paramount [6]. Transparent and 
interpretable AI models [7] are crucial for earning the trust of healthcare professionals [8] and 
ensuring the reliability of inferences made from medical data. 
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Despite the advancements brought by MedNLI, the medical NLI field continues to struggle with 
significant challenges. The primary problem addressed in this study is the integration of structured 
domain knowledge and sentiment analysis into NLI models to improve their performance on 
complex medical texts. This study aims to enhance the accuracy and reliability of medical NLI by 
combining advanced contextual embeddings with domain-specific knowledge, thus providing a 
robust solution for clinical decision-making and medical record analysis. 

2. Related works 

The development of advanced contextual word embedding techniques, such as ELMo [9] and BERT 
[10], has significantly transformed the landscape of natural language processing (NLP). These models 
excel at capturing the intricate nuances of language, thereby enabling state-of-the-art performance 
across a broad range of tasks. Within the specialized field of biomedical NLP, models like BioBERT 
[11] and BioELMo [12] have been specifically fine-tuned on vast biomedical corpora, such as PubMed 
abstracts, to enhance the understanding of medical texts. These specialized models have established 
new benchmarks in medical NLI, demonstrating the importance of domain-specific pre-training [13]. 

Despite these advancements, the integration of external domain knowledge into NLI models has 
emerged as a critical area of research to further elevate their performance. Various methods have 
been explored to incorporate such knowledge into NLP models. For example, ExBERT [14] by 
Gajbhiye et al. enhanced the BERT model by integrating external knowledge through knowledge-
enriched attention mechanisms, local inference collection, and knowledge-enhanced inference 
composition. Another valuable resource for integrating domain-specific knowledge is the Unified 
Medical Language System (UMLS) introduced by Amos et al. [15], a comprehensive biomedical 
ontology. Leveraging UMLS, Sengupta et al. [16] developed knowledge-directed attention-based 
techniques and methods that integrated medical concept definitions into pre-trained language 
models. These approaches, when combined with traditional word embeddings such as GloVe 
presented by Raymundo-Pereira et al. [17] and FastText introduced by Zeghdaoui et al. [18], 
demonstrated promising improvements in various NLP tasks. 

Incorporating domain-specific sentiment information into NLI models marks a significant 
advance in improving their performance, particularly in the medical domain. For instance, Sharma 
et al. [19] tackled the challenge of enhancing medical NLI by integrating embeddings from a UMLS-
based knowledge graph with domain-specific sentiment information within the BioELMo 
framework. Their study demonstrated notable improvements in the MedNLI dataset, underscoring 
the potential of blending domain knowledge with sentiment analysis. However, a critical issue 
highlighted in their work, and in similar studies, is the incomplete exploration of clinical domain 
knowledge features. The problem of effectively harnessing the full scope of clinical domain 
knowledge and sentiment information remains unresolved, leaving a gap in the development of more 
robust and interpretable NLI models for the medical field [20, 21]. This unaddressed challenge 
underscores the need for further research to fully realize the potential of these approaches. 

Hence, this study aims to address the critical gap in medical NLI by developing a more 
comprehensive approach that integrates domain knowledge embeddings and sentiment analysis 
derived from UMLS. Existing methods have not fully leveraged the intricate relationships and 
sentiment nuances inherent in medical texts, which are crucial for accurate inference. To overcome 
these limitations, this study proposes a novel approach that combines contextual word embeddings 
with domain-specific knowledge and integrates sentiment information associated with medical 
concepts. This work provides the following scientific contributions: 

• A novel approach for embedding domain-specific knowledge from UMLS into advanced 
medical NLU models like BioELMo that aims to enhance the foundational architecture of NLI 
models, enabling them to better capture the complexities of medical language. 

• An enhanced technique for incorporating sentiment information linked to medical concepts 
from UMLS that demonstrates substantial improvements in the performance and accuracy of 
medical NLI tasks. 

The structure of this paper is organized as follows. Section III details the datasets used, 
particularly the MedNLI dataset, and elaborates on the proposed approach, including the integration 



of BioELMo embeddings, domain knowledge from UMLS, and sentiment analysis via MetaMap. In 
Section IV, experimental outcomes are presented, comparing the performance of the proposed model 
with various baselines, followed by an analysis of key performance metrics. Finally, Section V 
summarizes the findings, emphasizes the enhancements in medical NLI performance, and discusses 
potential future research directions. 

3. Methods and materials 

3.1. The proposed approach 

In this study, we set up the classification task as a standard NLI problem. This means deciding if a 
given hypothesis can be inferred from a given premise, and then classifying it as either entailment 
(true), contradiction (false), or neutral (undetermined). We also refer to the methodology described 
by [19], using the BioELMo embedding model, which includes contextual information from ELMo 
embeddings trained on ten million PubMed abstracts, combined with the advanced Enhanced 
Sequential Inference Model (ESIM) [16] for the NLI task. Figure 1 demonstrates the general scheme 
of our approach. 

 

 
Figure 1: The diagram illustrates the proposed approach for classifying premise-hypothesis pairs 
derived from clinical notes, detailing the steps from data preparation, and embedding generation to 
deep learning output and final classification. 

 
Below, we present a step-by-step description of an enhanced approach that we propose in this 

work. 
Input Data: The MedNLI dataset consists of 14,049 expert-annotated premise-hypothesis pairs 

derived from clinical notes. 
Step 1. Data Preparation. 
1.1 Tokenization. Each sentence (premise and hypothesis) is tokenized using the Classical 

Language Toolkit (CLTK) [23]. 
1.2 MetaMap Processing. Sentences are processed with MetaMap to extract UMLS concepts and 

associated sentiment information. Each concept is aligned with constituent words. 
Step 2. Embedding Generation: 
2.1 BioELMo Embeddings. Contextual word embeddings are generated for each token using the 

BioELMo model pre-trained on ten million PubMed abstracts. 
2.2 Domain Knowledge Embeddings. The MultE model [24] is utilized to generate embeddings for 

each UMLS concept extracted by MetaMap. 
2.3 Sentiment Integration. A sentiment vector is created for each token, where each word has a 

1-D vector indicating positive (0) or negative (1) sentiment. 
Step 3. Embedding Concatenation. 
Next, we combine the BioELMo embeddings, MultE embeddings, and sentiment vectors for each 

token, similar to our previous work [25], to form a comprehensive embedding (Figure 2). 
Step 4. Model Architecture. 
4.1 Sentence Encoding. Bidirectional LSTM (BiLSTM) layers are used to encode the embeddings 

of premises and hypotheses separately. 



4.2 Attention Mechanism. A pairwise attention matrix is computed between the encoded premise 
and hypothesis. 

4.3 Second BiLSTM Layer. A second BiLSTM layer is applied to the attended representations of 
premise and hypothesis. Moreover, we perform max and average pooling on the BiLSTM outputs. 

4.4 Softmax Classification. The pooled outputs are fed into a Softmax layer for classification into 
entailment, contradiction, or neutral categories. 

Output Data: The model outputs the classification of each premise-hypothesis pair as entailment, 
contradiction, or neutral. 

 

 
Figure 2: The diagram of the proposed approach based on the BioELMo model to combine contextual 
word embeddings with domain-specific embeddings; w represents the CLTK-tokenized form of the 
premise (p) or hypothesis (h), ph signifies the MetaMap-tokenized form of the sentence (p or h), s 
represents the sentiment vector, and 𝑒𝑤 and 𝑒𝑚 indicate the aligned word embeddings and MultE 
embeddings, respectively, with the aligned sentiment vector denoted as 𝑠𝑤 . 

 
The architecture of the BiLSTM model features two sentence encoders, each processing the word 

embeddings of premise and hypothesis via bidirectional LSTM layers. An attention layer is created by 
calculating a pairwise attention matrix between the encoded premise and hypothesis, followed by a 
second bidirectional LSTM layer applied separately to premise and hypothesis. Max and average 
pooling operations are then performed on the LSTM layer outputs, which are subsequently fed into 
a SoftMax model for classification.  

This research uses the Metathesaurus with over 1 million biomedical textual concepts and over 5 
million concept labels, all linked by various relationships. Each concept is categorized under one or 
more Semantic Types, connected through the Semantic Network. The UMLS framework has 127 
semantic types and 54 relationships, such as "disease," "symptom," and "laboratory test," with 
relational types like "is-a," "part-of," and "affects." 

Furthermore, MetaMap is a useful tool for linking biomedical text to UMLS Metathesaurus 
concepts and semantic types. It breaks sentences into phrases based on medical concepts and 
provides details like each concept s unique ID, sentence position, related semantic types, preferred 
medical name, and the unique ID for the preferred concept (e.g., "chest pain" is linked to "angina"). 
It also assigns a Boolean value to indicate if the concept is mentioned negatively (1) or not (0). For 
example, in "The patient showed no signs of pain," "pain" would be marked negative. Although each 
phrase can map to multiple medical concepts, this study only considers the mapping with the highest 
MetaMap Indexing (MMI) score, ensuring each word in a sentence corresponds to at most one 
medical concept. 



To build the domain knowledge, we used MetaMap to process the entire MedNLI dataset, 
extracting relevant UMLS information into a smaller, more focused set. Medical concepts from both 
premises and hypotheses are matched to UMLS s standardized terms, aligning synonymous phrases 
to the same concept (e.g., "blood clots" matches "thrombus"). This results in 7,496 unique medical 
concepts within the MedNLI dataset, each represented as a node in the domain knowledge. 
Relationships are drawn from both the Metathesaurus and the Semantic Network, creating a 
condensed subgraph of the UMLS. The resulting edge lists in the domain knowledge include 117,467 
triples from the Metathesaurus and 23,824,105 triples from the Semantic Network. 

For embedding the Domain knowledge, we employed an enhanced version of the MultE model. 
We hypothesize that a context-aware and regularized MultE model can surpass other domain 
knowledge embedding models, like in the work [26]. MultE represents entities (nodes) and 
relationships (edges) as vectors, using non-linear transformations and matrix dot products to 
evaluate the compatibility between head ℎ (hypothesis) and tail 𝑡 (entities) connected by a 
relationship 𝑟. The improved formalization of MultE embeddings is presented as follows: 

σ𝑀𝑢𝑙𝑡𝐸
ℎ𝑟𝑡 = ReLU(𝑊𝑟𝑟 + 𝑏𝑟)

𝑇ReLU(𝑊ℎℎ + 𝑏ℎ) ∙ ReLU(𝑊𝑡𝑡 + 𝑏𝑡), (1) 

where 𝑊𝑟 , 𝑊ℎ, and 𝑊𝑡 are weight matrices and 𝑏𝑟, 𝑏ℎ, and 𝑏𝑡 are bias terms. 
Formulas (1) introduces non-linear transformations to capture more complex interactions. 
The enhanced MultE model, as defined above, is employed to integrate domain knowledge 

embeddings with BioELMo. As depicted in Figure 1, each sentence, whether a premise or hypothesis, 
is tokenized using the CLTK and then processed with MetaMap to extract UMLS concepts. These 
concepts are aligned by associating the UMLS concept for a phrase with all its constituent words. 

After aligning tokens using CLTK and MetaMap, we apply BioELMo and the enhanced MultE to 
generate for each word w the embedding vectors 𝑒𝐵𝑖𝑜𝐸𝐿𝑀𝑜

𝑤  and 𝑒𝑀𝑢𝑙𝑡𝐸
𝑤 . Instead of simple 

concatenation, we also employ a weighted sum approach to form the representation of each word, 
allowing the model to dynamically adjust the importance of each embedding type. The 
representation is thus formed as follows: 

𝑒𝑤 = 𝛼 ∙ 𝑒𝐵𝑖𝑜𝐸𝐿𝑀𝑜
𝑤 + 𝛽 ∙ 𝑒𝑀𝑢𝑙𝑡𝐸

𝑤 . (2) 

where 𝛼 and 𝛽 are learnable coefficients; this approach provides a flexible and optimized 
combination of embeddings. 

To enhance domain knowledge further, we integrate sentiment information for each concept 
separately. MetaMap provides a sentiment Boolean for each concept, which we use to create a 1-D 
vector 𝑠𝑤 that contains 0 for positive or nonmedical concepts and 1 for negative concepts. This 1-D 
vector is aligned with 𝑒𝑀𝑢𝑙𝑡𝐸

𝑤  in the same manner as previously described. Additionally, we integrate 
a sentiment weighting mechanism where the sentiment vector s impact is modulated based on its 
relevance to the word context using an attention mechanism. Consequently, the final embedding for 
each word is represented as follows: 

𝑒𝑤 =∑𝑎𝑖(𝑒𝐵𝑖𝑜𝐸𝐿𝑀𝑜,𝑖
𝑤 + 𝑒𝑀𝑢𝑙𝑡𝐸,𝑖

𝑤 + 𝑠𝑖
𝑤)

𝑛

𝑖=1

, 
(3) 

where 𝑎𝑖 are the attention weights calculated as: 

𝑎𝑖 =
exp(𝑒𝐵𝑖𝑜𝐸𝐿𝑀𝑜,𝑖

𝑤 + 𝑒𝑀𝑢𝑙𝑡𝐸,𝑖
𝑤 + 𝑠𝑖

𝑤)

∑ exp(𝑒𝐵𝑖𝑜𝐸𝐿𝑀𝑜,𝑗
𝑤 + 𝑒𝑀𝑢𝑙𝑡𝐸,𝑗

𝑤 + 𝑠𝑗
𝑤)𝑛

𝑗=1

, 
 

where n is the number of elements in the concatenated vector. 
In formula (3), we use the standard ESIM model [5], inputting the weighted embeddings for each 

word in both the premise and hypothesis to train the model for the medical NLI task. 
By integrating these advanced techniques (1) (3), we aim to significantly enhance the 

performance of medical NLI tasks of our model. 

3.2. Data collection and processing 

This study utilizes the MedNLI dataset [5], a valuable resource in the domain of NLI specifically 
tailored for clinical applications. MedNLI is derived from clinicians  notes within the MIMIC-III 
clinical dataset, which is renowned for being the most extensive publicly accessible collection of de-
identified patient records. The dataset comprises 14,049 premise-hypothesis pairs, meticulously 
categorized into three subsets: 11,232 pairs for training, 1,395 pairs for validation, and 1,422 pairs for 



testing. Each pair is annotated with one of three labels: entailment, contradiction, or neutral, 
indicating whether the hypothesis logically follows from the premise, contradicts it, or is unrelated, 
respectively. 

In terms of linguistic characteristics, the average length of premises is 20 words, while hypotheses 
average 5.8 words. The dataset is designed to encompass a wide range of clinical language variability, 
with the maximum length of premises reaching 202 words and hypotheses extending up to 20 words. 
This variability underscores the complexity and richness of the clinical narratives captured within 
the MedNLI dataset. 

The MedNLI dataset was preprocessed to ensure uniformity and consistency across all data 
points. This involved tokenizing the clinical notes using the CLTK and processing each sentence 
through MetaMap to extract relevant UMLS concepts and their associated sentiment information. 

3.3. Performance criteria 

Here, we provide the performance metrics for three-class classification tasks based on MedNLI 
dataset using standard metrics: accuracy, precision, recall, F1-score, and area under the curve (AUC-
ROC). 

First of all, we used the Accuracy metric, which is the ratio of correctly predicted cases to the 
total number of cases. 

Accuracy  =  
∑ TP𝑘
𝐾
𝑘=1

∑ (TP𝑘 + FP𝑘 + 𝐹𝑁𝑘)
𝐾
𝑘=1

, 
(4) 

where K is the number of classes, k stands for the index of each class, TP  true positives, FP  
false positives, FN  false negatives, and TN  true negatives for each class. 

Precision for a specific class k is the ratio of correctly predicted positive observations to the total 
predicted positives. 

Precision𝑘  =  
TP𝑘

TP𝑘 + FP𝑘
. 

(5) 

Recall for a specific class k is the ratio of correctly predicted positive observations to all 
observations in the actual class. 

Recall𝑘  =  
TP𝑘

TP𝑘 + FN𝑘
. 

(6) 

The F1-score is the harmonic mean of Precision and Recall. For a specific class k: 

F1 − score𝑘  =  2 ×
Precision𝑘 × Recall𝑘
Precision𝑘  + Recall𝑘

. 
(7) 

AUC-ROC is a performance measurement for classification problems at various threshold 
settings. For multi-class classification, the average AUC can be computed by averaging the AUC of 
each class against all other classes. 

AUC − ROC =
1

𝐾
∑AUC𝑘

𝐾

𝑘=1

, 
(8) 

where AUC𝑘 is the AUC for class k computed as: 

AUC𝑘 = ∫ TPR𝑘(FPR𝑘)𝑑(FPR𝑘)
1

0

, 
 

where TPR𝑘 (True Positive Rate) and FPR𝑘 (False Positive Rate) are functions of the threshold. 

4. Results and discussion 

For the MultE model, we configured the word embedding dimensions to 100, which ensures that each 
word is represented in a 100-dimensional space. This dimensionality was chosen to balance the 
representation s richness with computational efficiency. We employed Stochastic Gradient Descent 
(SGD) for optimization, selected due to its effectiveness in handling large-scale and sparse data. The 
initial learning rate was set to 10−3, a common starting point that allows for significant parameter 
updates in the early stages of training. The batch size was fixed at 64, ensuring that the model 
processes a reasonable amount of data per iteration. 



For the ESIM, we utilized BiLSTM networks. Each BiLSTM had a hidden state dimension of 500, 
which allows the model to capture complex dependencies and context from both forward and 
backward sequences in the input data. Dropout, a regularization technique to prevent overfitting, 
was applied with a rate of 0.4. This rate was chosen to effectively reduce the chance of overfitting 
by randomly setting 40% of the hidden units to zero during training. The initial learning rate for the 
ESIM model was also set to 10−3, which aids in making significant updates to the weights initially, 
speeding up convergence. 

The batch size for ESIM was set to 32. A smaller batch size allows for more updates per epoch, 
which can lead to better generalization, albeit at the cost of increased training time. We limited the 
training process to a maximum of 64 epochs, ensuring that the model does not overfit the training 
data. Additionally, an early stopping mechanism was implemented; training was halted if the 
development loss did not decrease for 5 consecutive epochs. This criterion prevents the model from 
overtraining, which could lead to poor performance on unseen data. 

Table 1 presents a comparative analysis of various models evaluated on a specific task, with 
metrics including Accuracy (4), Precision (5), Recall (6), F1-score (7), and AUC-ROC (8). 

Table 1 shows the performance of our proposed models compared to the baselines, demonstrating 
that integrating domain knowledge embeddings enhances model performance. In fact, the highest 
accuracy is achieved by the proposed approach (BioELMo + Sentiment) at 81.14%. This model 
outperforms all others, including ESIM-know (80.22%) and BioELMo + Sentiment (80.60%). Notably, 
models integrating sentiment or domain knowledge tend to perform better, indicating the 
effectiveness of these additional features. 
Table 1 
Performance comparison of various models on MedNLI dataset, evaluating metrics including 
accuracy, precision, recall, F1-score, and AUC-ROC. All values are presented in %. The highest values 
are in bold. 

Model Accuracy Precision Recall F1-score AUC-ROC 
fastText [18] 73.50 72.00 71.05 71.57 75.16 
GloVe [17] 76.42 75.12 74.60 74.82 78.20 
BioELMo [12] 79.73 78.55 78.15 78.23 82.17 
ESIM-know [16] 80.22 79.05 78.67 78.76 83.08 
fastText + Sentiment 78.59 77.58 77.80 77.17 80.70 
GloVe + Sentiment 79.10 78.08 77.43 77.74 81.35 
BioELMo + Sentiment [19] 80.60 79.48 79.30 79.19 84.03 
The proposed approach 81.14 80.08 79.62 79.85 85.06 

 
The proposed approach also leads in precision with 80.08%, closely followed by BioELMo + 

Sentiment (79.48%) and ESIM-know (79.05%). Higher precision values suggest that the proposed 
model is better at correctly identifying relevant instances, reducing false positives. BioELMo + 
Sentiment shows a slightly higher recall (79.30%) compared to the proposed approach (79.62%). This 
implies that the proposed model is more effective in identifying true positives, with fewer false 
negatives. Additionally, the F1-score, which balances precision and recall, is highest for the proposed 
approach (79.85%), reflecting its superior overall performance. ESIM-know (78.76%) and BioELMo + 
Sentiment (79.19%) also demonstrate strong performance, but the proposed model s integration of 
sentiment analysis enhances its balanced effectiveness. Moreover, the proposed approach achieves 
the highest AUC-ROC score of 85.06%, indicating excellent performance in distinguishing between 
classes. This score suggests that the model has a strong ability to rank positive instances higher than 
negative ones. 

It is also worth noticing that the fastText model shows the lowest performance across all metrics, 
which is expected given its relatively simpler architecture compared to more advanced embeddings 
and the use of domain knowledges or sentiment analysis. Integrating sentiment features consistently 
boosts performance, as seen in the fastText + Sentiment, GloVe + Sentiment, and the proposed 
approach. Similarly, leveraging domain-specific embeddings like BioELMo and integrating domain 
knowledges result in significant performance improvements. 

Figure 3 presents the ROC curves and AUC values for investigated deep learning on the MedNLI 
dataset through 5-fold cross-validation. 



The baseline performance, represented by the dashed red line, serves as a reference for random 
guessing with an AUC of 0.5. The models compared include fastText, GloVe, BioELMo, and ESIM-
know, both with and without sentiment analysis integration. Among the individual models, 
BioELMo (green line) shows a notable performance with an AUC of 82.17, while ESIM-know (yellow 
line) achieves a slightly higher AUC of 83.08. 

BioELMo + Sentiment model (gray line) achieves an AUC of 84.03, while the GloVe + Sentiment 
model (brown line) reaches an AUC of 81.35. The proposed approach outperforms all individual and 
sentiment-enhanced models with an AUC of 85.06, indicating its superior discriminative capability 
in the medical NLI task. 

 

 
Figure 3: The ROC curves and corresponding AUC values for various deep learning models on the 
MedNLI dataset, illustrating the performance of each model under 5-fold cross-validation. 

 
Overall, Figure 3 clearly demonstrates that integrating domain-specific enhancements and 

sentiment analysis can significantly boost model performance in medical NLI tasks, with the 
proposed approach leading the pack in terms of accuracy and reliability. 

The quality performance of our approach is demonstrated through several instances. For example, 
in the sentence pair premise: "Diagnosis of COPD" and hypothesis: "Patient has chronic obstructive 
pulmonary disease," the term COPD  

lassification as entailment.  
Our model also effectively captures negative sentiment, such as in the pair premise: "Patient 

presents with abdominal pain, no signs of infection for the past 6 months," and hypothesis: "Patient 
has no current infection," where BioELMo misclassifies it as contradiction while our model correctly 
identifies it as entailment. 

However, there are still incorrect cases. For instance, the pair premise: "He was walking steadily 
at that moment" and hypothesis: "The patient never had a steady walk" is incorrectly classified as 
entailment.  

The absence of negative sentiment detection for "walking steadily" by MetaMap contributes to 
this mistake. Another challenging example is the premise: "There were no changes in blood pressure, 
and the initial blood tests were normal," and hypothesis: "The patient has normal blood tests." Our 
model classifies it as entailment despite the gold label being neutral, indicating the need for better 
temporal context handling. 

Overall, the proposed approach demonstrates superior performance across all metrics. This 
suggests that combining advanced embeddings with sentiment analysis effectively enhances the 
model s capability in the given task. The results highlight the importance of integrating domain-
specific knowledge and additional contextual features to enhance model performance. 



5. Conclusion 

This study demonstrates that integrating domain knowledge embeddings from models like MultE, 
derived from UMLS, with BioELMo and sentiment analysis using MetaMap, significantly enhances 
the performance of medical NLI tasks. The proposed approach achieved an accuracy of 81.14%, 
precision of 80.08%, recall of 79.62%, F1-score of 79.85%, and AUC-ROC of 85.06%, outperforming 
baseline models such as BioELMo alone and ESIM with integrated knowledge. These improvements 
highlight the effectiveness of combining domain-specific knowledge and sentiment analysis to 
capture the complex nuances of medical texts. However, limitations persist, particularly in accurately 
detecting subtle negative sentiment and effectively handling temporal information within clinical 
data. The model occasionally misclassifies sentiments in nuanced contexts, indicating a need for 
more refined sentiment analysis techniques. 

Future research should focus on developing more sophisticated methods for temporal context 
processing and refining sentiment analysis to better capture subtle cues. Expanding this approach to 
other medical datasets and exploring its applicability to broader clinical decision support tasks will 
also be critical in advancing the field. 
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