
Three-factor nonlinear regression model of estimating
the size of java-software

Oleksandr Oriekhov1,* , Tetyana Farionova1 and Liubava Chernova1

1 Makarov National University of Shipbuilding, Ukraine, Heroes avenue, 9, Mykolaiv, 54007, Ukraine

Abstract
This paper proposes a three-factor nonlinear regression model for Java-software size estimation. Java is
one of the most widely used programming languages in the world and is actively used in the development
of various software projects. The software size estimation plays a key planning role at the early stages of
software project planning for the successful implementation of software development projects. The
software size estimation is valuable information that is used to predict software development effort
estimation using parametric models such as COCOMO, COCOMO II, COSYSMO, etc. The aim of the study
is to build the three-factor nonlinear regression model for early KLOC size estimation of Java-software on
the basis of multivariate Johnson SB family normalizing transformations to increase the reliability and
accuracy of the software size estimation at the early stage of software project planning using UML class
diagram metrics. The object of the study is the process of size estimation for open-source Java-software.
The subject of the study is the nonlinear regression models to estimate the software size. To achieve this
goal we collected software code metrics information from 571 open-source Java software projects. The
obtained dataset is split up in training and testing samples accordingly Cross-Validation technique. The
regression model building is based on an iterative method that includes bijective multivariate normalizing
transformation, multivariable outliers detection, confidence and prediction interval building. The obtained
nonlinear regression model is compared to the existing models by the regression models quality criteria
such as the determination coefficient, mean magnitude of relative error (MMRE) and the percentage of
prediction of the relative error level 0.25 (PRED(0.25)). The comparison results confirm increasing the
accuracy of the software size estimation using the obtained regression model on both training and testing
samples. The prospects for further research may include increasing the samples of Java-software code
metrics, usage of different software code metrics, extending the set of independent factors and using
different normalizing transformations for early KLOC estimation.

Keywords
Software size estimation, nonlinear regression model, normalizing transformation, Java, Cross-
Validation1

1. Introduction

The software size estimation plays a key planning role at the early stages of software project
planning for the successful implementation of software development projects. The software size
can be represented as functional points or number of code lines (KLOC - kilo lines of code). Both
variants have their own advantages, drawbacks and restrictions. One of the crucial advantages of
KLOC usage is in taking into account such important parameter as environmental factors which
include programming languages or software category [1] and KLOC parameter is widely used in
software development effort estimation parametric models such as COCOMO, COCOMO II, SLIM
[2], COSYSMO [3], etc. Software development effort estimation is one of the significant indicators
of budget, resources and duration planning of any project for software development business.
Reliable estimates of software development effort provide valuable information for project

1ICST-2024: Information Control Systems & Technologies, September , 23 25, 2024, Odesa, Ukraine

 oleksandr.oriekhov@nuos.edu.ua (O. Oriekhov); tetyana.farionova@nuos.edu.ua (T. Farionova);
liubava.chernova@nuos.edu.ua (L. Chernova)
 0000-0002-0001-0140 (O. Oriekhov); 0000-0003-3384-4712 (T. Farionova); 0000-0001-7846-9034 (L. Chernova)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oleksandr.oriekhov@nuos.edu.ua
mailto:tetyana.farionova@nuos.edu.ua
mailto:liubava.chernova@nuos.edu.ua
https://orcid.org/0000-0002-0001-0140
https://orcid.org/0000-0003-3384-4712
https://orcid.org/0000-0001-7846-9034

planning, and it helps to take into account risks, to recognize planning gaps and to increase the
efficiency of the development process [4].

Java programming language is one of the most widely used in software development [5]. Java
software varies from utility and micro web-service applications to huge information or automotive
or operation system development. Java is object oriented programming (OOP) language and it
executes in a separated environment - Java Virtual Machine that makes it a universal instrument
for any purpose [6]. Java as an OOP language has compatibility with UML software projection
therefore they both have a shared set of software code metrics such as quantity of classes, total
quantity of methods and fields or depending on access modifiers, inheritance, association or
complexity metrics.

The CHAOS report 2015 [7] of The Standish group research confirms that large and grand
projects have much higher failure rates in comparison with small, moderate or medium projects.
Software development of most of the large projects is based on traditional project management
methodologies like software development life cycle and waterfall, obviously it makes most of the
parametric models more suitable for software development effort estimation than agile
methodologies. Otherwise, company or team specific calibration of the parametric models that can
work with uncertainty, such as COCOMO II and could provide reliable estimates for the projects
that follow Agile methodol
stages of development because of the complexity of integrating with highly distributed and
different data and flows.

Since Java is one of the most demanded programming languages, the size estimation is an
important task of the software project management life cycle and the share of failures or problems
in software development is still high, lead us to confirmation the calculating requirement of
reliable and accurate estimates of the size in code lines requires appropriate models for Java
software to provide valuable information for project planning at the early stages.

The aim of the study is to build the three-factor nonlinear regression model for early KLOC
estimation of Java-software on the basis of multivariate Johnson family normalizing
transformations to increase the reliability and accuracy of the Java-software size estimation at the
early stage of software project planning using UML class diagram metrics. The obtained math
model should achieve higher quality criteria values in comparison with the existing math models of
Java-software size estimation.

The object of the study is the process of size estimation for open-source Java-software.
The subject of the study is the nonlinear regression models to estimate the software size.

2. Review of the literature

Nowadays, Java-software size estimation is achieved with linear and nonlinear regression
equations and models for general Java-software or categories such as web-service, informational-
systems, etc on the metrics basis of the conceptual data model derived from a UML class diagram.
The papers [8,9] propose linear regression equations on the basis of 3 independent factors. The
Java KLOC estimation in [8] is based on total amount of classes (CLASS), coupling between objects
(CBO) and total quantity of fields per class (TFQ) and the [9] is based on CLASS, CBO and average
value of TFQ per class and proposes better variant of the equation in comparison with [8].
Typically, the software code metrics have non-Gaussian distribution. Therefore it has restrictions
in the ability to apply linear models for KLOC estimation. One of the theoretical requirements

 of linear
regression models.

The existing nonlinear one-factor and multifactor regression models [10, 11, 12, 13] propose
Java-software size estimation depending on different variants of software code metrics. A good
benefit of the models is a proposed prediction intervals for possibility to make expected, pessimistic
and optimistic KLOC estimates. The model [10] is based on dataset from researches [8] and [9], and
it can not guarantee robustness and accuracy of KLOC estimation due to Java language evolution

and changing in modern software development practices that makes significant impact on software
metrics previously and nowadays. The [10, 11, 12] regression models are based on restricted
samples of Java applications that also have an impact on reliability and robustness of the nonlinear
regression models. The latest research [13] proves the models [10, 11, 12] are restricted in
estimation of code lines on different samples of code metrics from Java-software therefore the
accurate result is not guaranteed. The [13] research offers one-factors and two-factor nonlinear
regression models which were built using Cross-Validation technique. The regression models
quality criteria such as the coefficient of determination R2, a mean magnitude of relative error
MMRE and percentage of prediction for magnitude of relative error (MRE) level 0.25 PRED(0.25)
reveal good quality level of the obtained two-factor model but the values of some quality criteria
thresholds are not exceeded. Thus, study [14] confirms that with increasing sample sizes, the
values of the quality criteria for the accuracy of predicting mathematical models for training and
testing samples approach each other, which indicates the benefits of using large samples to build
mathematical models in combination with Cross-Validation technique and adding more factors to
nonlinear regression models allows to achieve higher accuracy accordingly quality criteria [13].

The review and analysis of the literature has shown that the linear equations and nonlinear
regression models exist for estimating Java-software code size and confirms the necessity of
increasing the robustness, reliability and accuracy of Java-software size estimation on early stages
of project planning.

3. Problem statement

To achieve the aim of the research it is necessary to build the three-factor nonlinear regression
model on the basis of multivariate normalizing transformation using the original training and
testing non-Gaussian four-dimension samples of Java-software metrics to build and verify the
regression model. The training and testing sample includes the thousand lines of code (KLOC) Y,
the total number of classes X1, total quantity of unique methods invocations in the code (RFC -
response for class) X2 and average value of public and protected methods per class (VMQ - visual
methods quantity) X3 from code metrics information of Java open-source software. The code
metrics information of projects does not intersect between training and testing samples. Suppose
there are bijective multivariate normalizing transformation of non-Gaussian random vector 𝑃 =

{𝑌, 𝑋1, 𝑋2, . . . , 𝑋𝑘}𝑇into Gaussian random vector 𝑇 = {𝑍𝑌, 𝑍1, 𝑍2, . . . , 𝑍𝑘}𝑇is given by

𝑇 = 𝜓(𝑃), (1)

where k is number of factors (regressors or independent variables) and the inverse
transformation of (1) is given by

𝑃 = 𝜓−1(𝑇), (2)

where 𝜓 is a vector of bijective normalizing transformation functions, 𝜓 =

{𝜓𝑌, 𝜓1, 𝜓2, . . . , 𝜓𝑘}𝑇.
On the bases of the transformations (1) and the required nonlinear regression model has the

form 𝑌 = 𝐹(𝑌, 𝑋1, 𝑋2, 𝑋3, 𝜀), where 𝜀 is a Gaussian random variable that defines residuals, F is
three-factor nonlinear regression models and Y is the dependent variable KLOC.

4. Materials, research methods and three-factor nonlinear regression
model constructing

4.1. Three-factor nonlinear regression model constructing

The authors collected code metrics dataset of 571 open-source Java software hosted on the GitHub
platform (https://github.com) using the CK tool (https://github.com/mauricioaniche/ck). The

following metrics were acquired: the actual total of Java-software size measured in number of
thousand lines of code (KLOC), total quantity of classes (CLASS) X1, total number of unique method
calls in classes (RFC) X2 and average value of visible methods per class of the software (aVMQ) X3.
CLASS, RFC, aVMQ, metrics can be obtained at an early stage of software planning from the
conceptual model. The obtained dataset was randomly divided into training and testing samples
with sizes of 286 and 285 rows of Java-software project data, respectively. The distribution of
metrics relative to KLOC is shown in Figure 1 for training dataset and in Figure 2 for testing
dataset.

Figure 1: Training sample distribution relative to KLOC.

The variance inflation factors (VIFs) technique is used to check the predictors multicollinearity
level to avoid a high correlation between regression factors and sensitivity of the model to random
changes in the data.

For a multiple regression model with 𝑘 factors Xi , 𝑖 = 1,2, . . . , k, the VIFs are represented by the
diagonal elements of the inverse correlation 𝑘 × 𝑘 matrix. If the value of the VIF coefficient
exceeds 10 (the threshold value), a high level of multicollinearity exists between the independent
variables [15].

For factors X1, X2, and X3, the VIFs are equal to 6.0889, 6.0890 and 1.0 respectively, thus it
indicates the absence of multicollinearity between the factors of the regression model.

The nonlinear regression models building technique is based on statistical analysis methods [16,
17] and it is based on detecting and discarding outliers in nonlinear regression analysis of non-
Gaussian data and includes bijective normalizing transformations, Mahalanobis distance outliers
detection, regression residuals distribution verification and prediction interval detection.

According to the technique it is recommended to detect and discard only one outlier in an
iterative way once it is detected. In case if an outlier is detected, the technique starts from the first
step using the modified sample without the detected outlier from the previous iteration. Otherwise
the nonlinear regression model is successfully constructed. The first step of the technique is based
on normalizing transformation.

Figure 2: Testing sample distribution relative to KLOC.

In the first step for normalizing the multivariate non-Gaussian data of the training sample, we
use the Johnson univariate and multivariate transformation for the SB family. It suggests a rich set
of parameters for accurate calibration of the transformation. In our case the Johnson normalizing
translation of SB family is given by [18]:

𝑍 = 𝛾 + 𝜂̂ 𝑙𝑛 (
𝑋 − 𝜑̂

𝜑̂ + 𝜆̂ − 𝑋
), (3)

where parameters of Johnson SB family normalizing transformation, 𝜑 < Х <

𝜑 + 𝜆 , 𝜂 > 0, 𝜆 > 0; 𝑋 - non-Gaussian random variable which X equals to Y, X1, X2, X3,
respectively.

And the inverse transformation is given by

𝑋 = 𝜑̂ + 𝜆̂ [1 + 𝑒−(𝑍−𝛾̂)/𝜂̂]
−1

, (4)

where Z is a Gaussian random variable which Z equals to ZY, ZX1, ZX2, ZX3, respectively.
Parameters of Johnson univariate and multivariate transformations (3) are estimated by the

finding solution of the equation [19] for computer programming task given by

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐴2 + (ℇ − 3)2 + Z2̅̅ ̅ + (𝑆𝑍
2 − 1)2 }, (5)

where 𝜃 is a vector of estimators, 𝜃 = {𝛾, 𝜂, 𝜑, 𝜆}; 𝐴 is skewness of a random variable, ℇ is

kurtosis of a random variable; 𝑍̅ =
1

𝑁
∑ 𝑍𝑖

𝑁
𝑖=1 ; 𝑆𝑍

2 =
1

𝑁
∑ (𝑍𝑖 − 𝑍̅)2𝑁

𝑖=1 ; 𝑍𝑖 - i-th value of random

variable Z of the sample size N. For the multidimensional data, we use measurement of multivariate
skewness (β1, k) and kurtosis (β2, k) of the sample proposed in a Mardia [20] multivariate
normality test.

Estimators for the parameters of multivariate transformation (3) vector 𝜃 for metrics Y are: 𝛾𝑌 =

−4.061130, 𝜂̂𝑌 = −0.501291, 𝜑̂𝑌 = −0.608187, 𝜆̂𝑌 = 82315.076609; for X1: 𝛾𝑋1
=

−45.701128, 𝜂̂𝑋1
= 48.673051, 𝜑̂𝑋1

= −32.735283, 𝜆̂𝑋1
= 163.504695 ⋅ 1012; for X2: 𝛾𝑋2

=

−41.803051, 𝜂̂𝑋2
= 47.042155, 𝜑̂𝑋2

= −110.321073, 𝜆̂𝑋2
= 627.451423 ⋅ 10^14; for X3: 𝛾𝑋3

=

−36.520911, 𝜂̂𝑋3
= 37.582881, 𝜑̂𝑋3

= −0.841250, 𝜆̂𝑋3
= 952.137743 ⋅ 109 for the latest

iteration.
The second step includes outlier detection using squared Mahalanobis distance (MD) technique

in the sample of normalized data. The squared Mahalanobis distance are elements on the main
diagonal of the 𝑑2 matrix of size N x N. The MD formula is given by

𝑑2 = (𝑍𝑖 − Z̅)𝑇𝑆𝑁
−1(𝑍𝑖 − Z̅) (6)

and 𝑆𝑁 is given by

𝑆𝑁 =
1

𝑁
∑(𝑍𝑖 − Z̅)(𝑍𝑖 − Z̅)𝑇

𝑁

𝑖=1

, (7)

where Z is a normally distributed random variable 𝑍𝑖 = (𝑍1𝑖
, 𝑍2𝑖

, … , 𝑍𝑘𝑖
)

𝑇
 , SN is a biased sample

variance matrix and 𝑍 is a means vector of independent variable of the sample, Z̅ =

(Z1
̅̅ ̅, Z2

̅̅ ̅, . . . , Zk
̅̅ ̅)𝑇.

The elements of the main diagonal 𝑑𝑖
2, 𝑖 = 1,2, . . . 𝑁 matrix are detected as outliers if the values

exceed the threshold value of the Chi-Square 𝜒2 distribution quantile for the significant level -
For the training sample 17 data rows were detected as outliers because their 𝑑𝑖

2 values greater then
threshold value 18.55 of the Chi-Square 𝜒2 for the significant level 𝛼 = 0.005 and 20 degrees of
freedom.

The linear regression model is built in the third step on the basis of the normalized multi
dimensional sample is given by

𝑍𝑦 = 𝑍̂𝑦 + 𝜀 = 𝑏̂0 + 𝑏̂1𝑍1 + 𝑏̂2𝑍2 + 𝑏̂3𝑍3 + 𝜀, (8)

where is Gaussian random variable, ∼ 𝒩 2); 𝑏̂0, 𝑏̂1, 𝑏̂2, 𝑏̂3 - estimators for parameters of
the linear regression model (6).

The estimators are calculated by the least square method: 𝑏̂0 = −23.784722, 𝑏̂1 = −0.005724,
𝑏̂2 = −0.005062, 𝑏̂3 = −0.008718 .

In the fourth step the normality distribution of the linear regression residuals are tested with
Pearson Chi-Square criteria for significant level 𝛼 = 0.01.

The actual values of the Chi-Square for the residuals are 116.5 and 19.24 for the 1th and 8th
iterations respectively and the values are bigger than quantile 16.81 of the Chi-Square distribution
for 6 degrees of freedom.

The 2 data rows with the highest values of residuals are removed from the training sample
iteratively.

In the fifth step, the nonlinear regression models is built by applying inverse transformation to
(2) to the linear regression models (8):

𝑌 = 𝜓𝑌
−1(𝑍̂𝑦 + 𝜀) = 𝜓𝑌

−1(𝑏̂0 + 𝑏̂1𝜓𝑋1
(𝑋1) + 𝑏̂2𝜓𝑋2

(𝑋2) + 𝑏̂3𝜓𝑋3
(𝑋3) + 𝜀), (9)

where 𝜓−1 is inverse Johnson SB transformation (4).
In the sixth step we constructed prediction interval 𝑌̂𝑃𝐼 of the nonlinear regression model (8).

given by

𝑌̂𝑃𝐼 = 𝜓𝑌
−1 (𝑍̂𝑌 ± 𝑡𝛼/2,𝑣𝑆𝑍𝑌

{1 +
1

𝑁
+ (𝑍𝑋

+)𝑇𝑆𝑍
−1(𝑍𝑋

+)}
1/2

), (10)

where 𝑡𝛼/2,𝑣 is a quantile of T-Student distribution with 𝑣 = 𝑁 − 𝑘 − 1 degrees of freedom and

𝑆𝑍𝑌

2 =
1

𝑣
∑ (𝑍𝑌𝑖

− 𝑍̂𝑌𝑖
)

2𝑁
𝑖=1 ; 𝑍𝑋

+ is a vector of central moments of independent

variables of the sample which is given by {𝑍1𝑖
− 𝑍1, 𝑍2𝑖

− 𝑍2, . . . , 𝑍𝑘𝑖
− 𝑍𝑘 } ; 𝑆𝑍 is k x k matrix

𝑆𝑍 = [𝑆𝑍𝑞
𝑆𝑍𝑟

], (11)

where 𝑆𝑍𝑞
𝑆𝑍𝑟

= ∑ (𝑍𝑞𝑖
− 𝑍̅𝑞)(𝑍𝑟𝑖

− 𝑍̅𝑟)𝑁
𝑛−1 , q,r k.

For the training sample, 1 outlier is detected and discarded. For the obtained prediction interval, the
values of normalized sample means Z̅1, Z̅2 and Z̅3 are −1321.94070, −1447.061944 and
−1008.068369, respectively. The 𝑡𝛼/2,𝑣 = 2.594580 for significant level 𝛼 = 0.01 and 264

degrees of freedom; 𝑆𝑍𝑌
= 0.089394. The inverse matrix of (11) is

𝑆𝑍
−1 = [

2.39061 ⋅ 10−5 −2.28155 ⋅ 10−5 2.1578 ⋅ 10−5

−2.28155 ⋅ 10−5 2.29553 ⋅ 10−5 −2.28762 ⋅ 10−5

2.1578 ⋅ 10−5 −2.28762 ⋅ 10−5 5.60723 ⋅ 10−5

],

The three-factor nonlinear regression model (9) is built in 19 iterations with discarding of 18
outliers from the training sample.

The Gaussian distribution of the four-dimension training data set (𝑁 = 268) is verified by a
multivariate normality test proposed by Mardia [20] at the latest iteration. The test is based on
measurement of multivariate skewness (β1, k) and kurtosis(β2, k) of the sample.

Accordingly the test, distribution of four-dimension data X1 (CLASS), X2 (RFC), X3 (aVMQ) and Y
(KLOC) is Gaussian, because multivariate skewness estimate 𝑁𝛽1/6 = 39.85 is not exceeded Chi-
Square quantile value
estimate of multivariate kurtosis 𝛽2 = 23.73 does not exceed the value Gaussian distribution
quantile which is equal to 26.18 for mean 24 and standard deviation 0.85.

4.2. Quality criteria of the obtained nonlinear regression model

The obtained nonlinear regression model (7) is tested with regression models quality criteria [21]
such as the coefficient of determination 𝑅2, a mean magnitude of relative error MMRE and
percentage of prediction for magnitude of relative error (MRE) level 0.25 𝑃𝑅𝐸𝐷(0.25). The MMRE
criterion is defined as

𝑀𝑀𝑅𝐸 =
1

𝑁
∑ 𝑀𝑅𝐸𝑖

𝑁

𝑖=1

, (12)

where N - sample size and 𝑀𝑅𝐸𝑖 is the value of the magnitude of relative error for the i-th
datapoint of the sample.

𝑀𝑅𝐸𝑖 = |
(𝑌𝑖 − 𝑌𝑖̂)

𝑌𝑖
|. (13)

The calculation of prediction percentage (PRED) for the magnitude of relative error level 0.25 is
given by

𝑃𝑅𝐸𝐷(0.25) =
1

𝑁
∑ {

1 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤ 0.25
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖=1

. (14)

The acceptable conditions for the quality criteria is 𝑀𝑀𝑅𝐸 ≤ 0.25 and 𝑃𝑅𝐸𝐷(0.25) ≥ 0.75
for the measurement of the regression models accuracy of prediction results. The coefficient of
determination (𝑅2) value is acceptable if it is more or equals to 0.75 [21].

The obtained three-factor nonlinear regression model is tested with the quality criteria to assess
the predictive reliability and accuracy on the training and the testing samples and compared with

existing one-factor and two-factor nonlinear regression models from the paper [13]. The estimates
of 𝑅2, 𝑀𝑀𝑅𝐸 and 𝑃𝑅𝐸𝐷(0.25) are devoted in Table 1.

Table 1
Comparison of nonlinear regression models by quality criteria

Nonlinear regression model

Training sample Testing sample

R2 MMRE
PRED
(0.25)

R2 MMRE
PRED
(0.25)

One-factor on the basis of decimal
logarithm transformation [13]

0.7266 0.3522 0.4720 0.7170 0.3350 0.4632

One-factor on the basis of Box-Cox
transformation [13]

0.7291 0.3514 0.4790 0.7159 0.3354 0.4780

One-factor on the basis of Johnson
SB transformation [13]

0.6825 0.3593 0.4790 0.6616 0.3417 0.4702

Two-factor on basis of Box-Cox
transformation [13]

0.8002 0.2332 0.6853 0.8981 0.1964 0.7158

Three-factor on basis of
Johnson SB transformation (9)

0.9073 0.1645 0.7692 0.9016 0.1617 0.8175

To compare prediction quality and accuracy of the obtained regression model (9) we build

prediction intervals using the training sample for the one-factor nonlinear regression model on the
basis of Johnson SB transformation [13]. Similar to the obtained three-factor nonlinear regression
model (9), the one-factor nonlinear model is built using the same techniques [16, 17] that is based
on statistical analysis of multidimensional data and multivariate reciprocal transformations. The
estimators for the Johnson SB transformation parameters of the one-factor model are 𝛾𝑌 =

4311.992036, 𝛾𝑋 = 3555.710081, 𝜂̂𝑌 = 30479.194612, 𝜂̂𝑋 = 29712.602140, 𝜑̂𝑌 = −0.345327,

𝜑̂𝑋 = −3.150988, 𝜆̂𝑌 = 2.471319 ⋅ 1014, 𝜆̂𝑋 = 22965.385684 and the estimators of the linear
regression are 𝑏̂0 = −799519.0395, 𝑏̂1 = 0.999920. For the obtained prediction interval, the
values of normalized sample means 𝑍̅𝑋 = −104.702321 ⋅ 103. The 𝑡𝛼/2,𝑣 = 2.594161 for

significant level 𝛼 = 0.01 and 270 degrees of freedom; 𝑆𝑍𝑌
= 10577.32936. The inverse matrix of

(11) consists of one element 𝑆𝑍
−1 = 2.46245 ⋅ 10−12. We have randomly chosen 30 of 286 data

rows from the training sample to compare actual (𝑌) and estimated (𝑌̂) KLOC values by the
regression models and their lower bound (LB) and upper bound (UB) prediction intervals (Table 2).

Table 2
The prediction results and prediction intervals of nonlinear regressions

The one-factor nonlinear regression
model on the basis on Johnson SB

The three-factor nonlinear
regression model on the basis on

Johnson SB

𝑌 𝑌̂ LB UB 𝑌̂ LB UB

1 26.463 20.262 8.016 50.444 24.675 15.284 39.613

2 47.052 31.592 12.614 78.360 59.386 37.014 95.045

3 25.108 37.233 14.902 92.267 25.381 15.694 40.821

4 32.877 35.348 14.138 87.621 33.067 20.574 52.923

5 19.818 42.180 16.908 104.470 19.756 12.139 31.922

6 40.095 44.568 17.876 110.361 42.683 26.618 68.221

7 208.967 103.964 41.908 257.163 155.162 97.054 247.739

8 33.909 20.691 8.190 51.499 32.801 20.357 52.625

9 137.599 152.221 61.383 376.737 136.863 85.637 218.433

10 110.167 94.084 37.915 232.712 85.814 53.683 136.928

11 160.264 122.820 303.858 49.522 154.151 96.579 245.725

12 204.818 198.788 80.143 492.324 220.936 138.397 352.277

13 25.298 42.667 17.105 105.671 26.406 16.352 42.416

14 6.576 11.900 4.620 29.852 8.207 4.929 13.426

15 78.968 92.879 37.428 229.731 92.129 57.698 146.857

16 59.438 78.795 31.734 194.899 62.564 39.097 99.884

17 102.327 79.052 31.837 195.532 133.556 83.444 213.469

18 43.158 54.689 21.977 135.340 33.918 21.045 54.440

19 13.745 20.453 8.094 50.912 19.967 12.334 32.100

20 205.514 301.683 121.507 748.272 250.745 157.173 399.541

21 17.546 14.607 5.720 36.516 16.844 10.362 27.154

22 47.105 35.686 14.275 88.454 42.570 26.551 68.030

23 258.993 213.091 85.900 527.859 283.491 177.688 451.734

24 76.739 50.644 20.338 125.354 51.318 32.057 81.925

25 64.504 59.304 23.846 146.737 48.487 30.259 77.468

26 222.656 188.312 75.925 466.304 236.744 148.473 377.040

27 29.704 31.448 12.556 78.005 29.517 18.339 47.285

28 15.737 14.132 5.527 35.347 15.719 9.658 25.358

29 137.599 152.221 61.383 376.737 136.863 85.637 218.433

30 61.270 37.426 14.981 92.744 51.895 32.348 83.025

N

Prediction intervals of the one-factor and three-factor nonlinear regression models are

compared by given formula

𝐷𝐼𝐹𝐹 = (1 −
∑ [𝑈𝐵3𝑥 − 𝐿𝐵3𝑥]𝑁

𝑖 =1

∑ [𝑈𝐵1𝑥 − 𝐿𝐵1𝑥]𝑁
𝑖 =1

) ⋅ 100%, (15)

where 𝑈𝐵3𝑥 , 𝐿𝐵3𝑥 - i-th prediction intervals of the three-factor nonlinear regression model (9)
and 𝑈𝐵1𝑥 , 𝐿𝐵1𝑥 - i-th prediction intervals of the one-factor nonlinear regression model. The 𝐷𝐼𝐹𝐹
value indicates the three-factor nonlinear regression interval is 52.78% smaller than the one-factor
nonlinear regression interval on the basis of the training sample.

To make visualization of the comparison of the one-factor nonlinear model and the three-factor
nonlinear model accuracy we sorted all 571 data rows in ascending order by actual KLOC values of
the multidimensional dataset with KLOC estimates and prediction intervals of the target models
and first 400 records were chosen by x-axis and 150 KLOC max value was chosen by y-axis due to
scaling. The KLOC estimates and prediction intervals were smoothed by moving averages
technique on a basis of 5 values regarding the centric value of them. The obtained charts are
demonstrated on Figure 3.

The graphic representation displays that the estimates of the three-factor nonlinear model (9)
are closer to the actual KLOC values than the estimates of the one-factor nonlinear model.

The prediction interval width is smaller in comparison with the interval of the one-factor
nonlinear model on the basis of the same normalizing transformation.

The values of the quality criteria indicate good model accuracy, the high values of for the
testing sample confirms the model is not overfitted that confirms robustness and reliability. 𝑅2,
𝑀𝑀𝑅𝐸 and 𝑃𝑅𝐸𝐷(0.25) values of training and testing samples are close to each other thus
confirm the samples have a high level of representativity of the population of the open-source
Java-software [13].

Figure 3: Testing sample distribution relative to KLOC.

Table 2 and (15) prove the three-factor nonlinear regression model (9) has higher level of
prediction accuracy and smaller prediction intervals in comparison with the existing model [13]
with the same normalizing transformation (3).

5. Discussion

We obtained the three-factor nonlinear regression model for early estimation of KLOC in Java-
software using appropriate techniques for constructing non-linear regression models on the basis
of multivariate normalizing Johnson SB family transformation. The technique is chosen due to the
non-Gaussian distribution of four-dimensional data of the code metrics according to Mardia
criteria and the regression residuals according to the Chi-Square test.

Table 1 and models comparison in [13] confirms that the results of this research demonstrate
the effectiveness and accuracy of the proposed three-factor nonlinear regression model for early
KLOC estimation in comparison with existing linear and non-linear regression models by quality
criteria 𝑅2, 𝑀𝑀𝑅𝐸 and 𝑃𝑅𝐸𝐷(0.25). The criteria for the model are exceeded expectation 𝑅2 ≥

0.75, 𝑀𝑀𝑅𝐸 ≤ 0.25 and 𝑃𝑅𝐸𝐷(0.25) ≥ 0.75 for both training and testing samples. The values
are 𝑅2 = 0.9073, 𝑀𝑀𝑅𝐸 = 0.1645, 𝑃𝑅𝐸𝐷(0.25)0.7692 for training sample and 𝑅2 = 0.9016,

𝑀𝑀𝑅𝐸 = 0.1617, 𝑃𝑅𝐸𝐷(0.25) = 0.8175 for the testing sample. Cross-Validation technique
increases guarantees of robustness of the model. Moreover, the width of prediction interval (10) of
the model (9) is 52.78% smaller (Table 2 and Figure 3) than the interval of one-factor nonlinear
regression model which allows to increase accuracy of KLOC estimation taking in account positive
and negative cases.

The advantages of the proposed model (9) includes the possibility of early KLOC estimation of
Java-software using three code metrics such as total quantity of classes (CLASS), total number of
unique method calls in classes (RFC) and average value of visible methods per class (aVMQ) that
could be obtained on the early stages of the project planning from UML class diagrams. The
disadvantages of the proposed model (9) include the following restrictions for the predictors: the
interval for CLASS is from 25 to 11147, the interval for RFC is from 45 to 117847 and the interval
for aVMQ is from 1.5893 to 85.92. Despites on the usage of the big sample of code metrics, the
proposed model is built only on a basis of open-source Java-software projects from GitHub.

However, the model achieved high quality level according to quality criteria [21] and Table 2
confirms that the KLOC estimates by the three factor model (9) is closer to the actual KLOC values
than the one-factor model, there are more directions for further research. The model (9) could be
improved by adding more metrics to reveal characteristics of inheritance relation between classes
and quantity of visible fields of the classes. But the adding of more predictors could cause
multicollinearity problems that lead us to converting or avoiding usage of the predictors.

The obtained results confirm that the constructed three-factor nonlinear model (9) improves
confidence of KLOC estimation of the Java-software.

6. Conclusion

The obtained three-factor nonlinear regression model and prediction intervals solves important
problem of Java-software size estimation at the early stages of software development project
planning using UML class diagram metrics: total quantity of classes (CLASS), total quantity of
responses for class (RFC) and average value of public and protected methods per class (aVMQ).

The scientific novelty of the obtained results is that the three-factor nonlinear regression
model is improved in comparison with existing models and equation for KLOC estimation of Java-
software; Multivariate Johnson SB family normalizing transformation is firstly used for model
construction using CLASS, RFC and aVMQ multidimensional dataset; the three-factor nonlinear
regression model is firstly built using large sample size (𝑁 = 286) and the robustness and
reliability verified by using the testing sample with the similar size. The model, in comparison with
other nonlinear regression models, has higher value of coefficient of determination 𝑅2, a lower
value of the mean relative error 𝑀𝑀𝑅𝐸, higher value of the percentage of prediction of the relative
error level 𝑃𝑅𝐸𝐷(0.25) for both training and testing samples and the prediction interval is smaller
in comparison with one-factor nonlinear regression models. The obtainer quality criteria values
confirm the training and the testing samples are close to each other thus verifies the samples have
a high level of representativity of the population of the open-source Java-software

The practical significance of the obtained results allows us to recommend the built model
for use in practice. The proposed model is implemented as a software product that can be used by
project managers for Java software development effort estimation at early stages of project
planning to reduce risks and cost.

Prospects for further research may include extending a set of independent factors, the usage
of other multivariate normalizing transformations and extending wider data sets to build a
nonlinear regression model.

7. Acknowledgements

The authors would like to express their sincere gratitude to the Doctor of Technical Sciences,
Professor Sergiy B. Prykhodko, NUOS, Mykolaiv, Ukraine for his support in applying the

mathematical apparatus for the research and to PhD. Maurício Aniche, Assistant Professor in
Software Engineering at TU Delft, for providing valuable Java code static analysis tools CK.

References

[1] A. Trendowicz, R. Jeffery, Software Project Effort Estimation, Foundations and Best Practice
Guidelines for Success, in: Springer International Publishing, 2014. doi:
https://doi.org/10.1007/978-3-319-03629-8

[2] S. W. Munialo, A Review of Agile Software Effort Estimation Methods, International Journal of
Computer Applications Technology and Research. Association of Technology and Science 5
(2016) 612 618. doi:10.7753/IJCATR0509.1009

[3] R. Valerdi, B. W. Boehm, D. J. Reifer, COSYSMO: A constructive systems engineering cost
model coming of age, in: Proc. INCOSE Int. Symp., volume. 13 of No. 1, Wiley, Hoboken, NJ,
USA, 2003, pp. 70 82.

[4] S. McConnel, Software Estimation: Demystifying the Black Art, Microsoft Press, Redmond,
Washington, USA, 2006.

[5] TIOBE, TIOBE Index, 2024. URL: https://www.tiobe.com/tiobe-index/.
[6] Oracle, Java, 2024. URL: https://www.oracle.com/my/java/.
[7] The Standish Group, Chaos report 2015, 2015. URL:

https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf.
[8] H. B. K. Tan, Y. Zhao, H. Zhang, Estimating LOC for information systems from their

conceptual data models, in: Proceedings - International Conference on Software Engineering,
2006, pp. 321-330. doi:10.1145/1134285.1134331.

[9] H. B. K. Tan, Y. Zhao, H., H. Zhang, Conceptual Data Model-Based Software Size Estimation
for Information Systems, ACM Transactions of Software Engineering and Methodology 19
(2009). doi:10.1145/1571629.1571630.

[10] N. V. Prykhodko, S.B. Prykhodko, A nonlinear regression model for estimation of the size of
Java enterprise information systems software, Modeling and Information Technologies 85
(2018) 81-88.

[11] L. M. Makarova, N.V. Prykhodko, O. O. Kudin, Constructing the non-linear regression model
for size estimation of web-applications implemented in Java, Herald (Kherson National
Technical University), 69 (2019) 145-153.

[12] S. B. Prykhodko, N. V. Prykhodko, T. G. Smykodub, Four-factor non-linear regression model to
estimate the size of open source Java-based applications, Scientific Notes of Taurida National
V.I. Vernadsky University. Series: Technical Sciences, 70 (2020) 157-162. doi:10.32838/2663-
5941/2020.2-1/25

[13] O. S. Oriekhov, T. A. Farionova, Mathematical models for the size estimating of JAVA
applications, Visnyk of Kherson National Technical University 89 2 (2024) 196-203. doi:
10.35546/kntu2078-4481.2024.2.28.

[14] J. Jia, W. Qiu, Research on an Ensemble Classification Algorithm Based on Differential
Privacy, in: IEEE Access 99 (2020). DOI:10.1109/ACCESS.2020.2995058

[15] I. Olkin, A. R. Sampson, Multivariate Analysis: Overview, in N. J. Smelser, P. B. Baltes,
International encyclopedia of social & behavioral sciences (eds.) 1st edn., Elsevier, Pergamon,
2001, pp. 10240 10247.

[16] S. Prykhodko, N. Prykhodko, Mathematical Modeling of Non-Gaussian Dependent Random
Variables by Nonlinear Regression Models Based on the Multivariate Normalizing
Transformations, in: S. Shkarlet, A. Morozov, A. Palagin, Mathematical Modeling and
Simulation of Systems (MODS'2020). Advances in Intelligent Systems and Computing, volume
1265 of MODS, 2021, pp. 166-174. doi:10.1007/978-3-030-58124-4_16

[17] S. Prykhodko, N. Prykhodko, L. Makarova and A. Pukhalevych, Outlier Detection in Non-
Linear Regression Analysis Based on the Normalizing Transformations, in: 2020 IEEE 15th
International Conference on Advanced Trends in Radioelectronics, Telecommunications and

Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 407-410.
doi:10.1109/TCSET49122.2020.235464.

[18] P. M. Stanfield, J. R. Wilson, G. A. Mirka, N. F. Glasscock, J. P. Psihogios, J. R. Davis,
Multivariate input modeling with Johnson distributions, in: Proceedings of the 28th Winter
simulation conference WSC 96, Coronado, CA, USA, December 8-11, 1996, ed. S. Andradóttir,
K.J. Healy, D.H. Withers and B.L. Nelson, IEEE Computer Society Washington, DC, USA, pp.
1457-1464.

[19] S. B. Prykhodko, Simulation of gaussian random variables using Johnson SU transform,
Informatics and mathematical methods in simulation 1 5 (2015) 92-97.

[20] K. V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika 57
(1970) 519 530. doi:10.1093/biomet/57.3.519.

[21] D. Port, M. Korte, Comparative studies of the model evaluation criterions MMRE and PRED in
software cost estimation research, in: Proceedings of the 2nd ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM, New York, USA,
2008, pp. 51 60. doi:10.1145/1414004.1414015

