
HG-RANK: A Hypergraph-based Keyphrase Extraction for
Short Documents in Dynamic Genre

Abdelghani Bellaachia
Department of Computer Science

The George Washington University
Washington, DC 20052, USA

bell@gwu.edu

Mohammed Al-Dhelaan
∗

Department of Computer Science
The George Washington University

Washington, DC 20052, USA
mdhelaan@gwu.edu

ABSTRACT
Conventional keyphrase extraction algorithms are applied
to a fixed corpus of lengthy documents where keyphrases
distinguish documents from each other. However, with the
emergence of social networks and microblogs, the nature of
such documents has changed. Documents are now of short
length and evolve topics which require specific algorithms to
capture all features. In this paper, we propose a hypergraph-
based ranking algorithm that models all the features in a
random walk approach. Our random walk approach uses
weights of both hyperedges and vertices to model short doc-
uments’ temporal and social features, as well as discrimina-
tive weights for word features respectively, while measuring
the centrality of words in the hypergraph. We empirically
test the effectiveness of our approach in two different data
sets of short documents and show that our approach has
an improvement of 14% to 25% in precision over the clos-
est baseline in a Twitter data set and 10% to 27% in the
Opinosis data set.

Categories and Subject Descriptors
I.2.7 [ARTIFICIAL INTELLIGENCE]: Natural Lan-
guage Processing—Text analysis

Keywords
Text hypergraphs; Keyphrase extraction; Random walks;
Short documents; Hypergraph random walks

1. INTRODUCTION
Short text messages are ubiquitous nowadays in social net-

works and across the web. Regardless of the length limi-
tation, the size restriction did not limit the popularity of

∗This author is sponsored by King Saud University, Saudi
Arabia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

social interaction through such messages. Twitter, for in-
stance, has more than 200 million active users each month1.
Such high popularity necessitates ranking systems capable
of measuring the importance of keywords and keyphrases
within such limited length to facilitate search, indexing, and
detecting trends. By finding salient terms, tasks such as
summarization and text visualization become feasible. How-
ever, the dynamic nature of social microblogs makes ranking
a non-trivial task.

Microblogs have a dynamically changing content that needs
specially designed algorithms for keyphrase extraction. De-
scriptive keyphrases are keyphrases that signify topics in a
document and help differentiate it from other documents in
the corpus. However, the social aspects and evolution of
topics in a social media genre make it rather difficult to find
keyphrases. Most keyphrase extraction algorithms do not
account for the temporal and social attributes when finding
keyphrases since they are designed for static documents cor-
pora. Therefore, a number of interesting research questions
arise in social microblogs where topics change frequently. If
the content is dynamically changing, then can we rely on
conventional keyphrases extraction approaches? How can
we account for the temporal and social attributes in social
media for keyphrase extraction?

In this article, we present a hypergraph-based algorithm,
called HG-Rank, that is capable of modeling temporal and
social aspects in addition to discriminative weights. A hy-
pergraph is a generalization of graphs were edges have a set
of vertices (called hyperedges) instead of two nodes. We de-
fine a lexical hypergraph where vertices are distinct words
and hyperedges are short documents that contain the words.
We model the temporal and social attributes of documents
as hyperedge weights to reflect the attributes over the docu-
ment’s keywords, and we model discriminative term weights
as vertex weights to give the model the ability of recognizing
topical terms. We design a weighted random walk over the
hypergraph to measure the centrality of keywords taken into
account all the aforementioned features.

To rank vertices in a hypergraph, we generalize a prob-
abilistic random walk suitable for a weighted hypergraph
structure. The surfer considers the weights of both ver-
tices and hyperedges for transitioning. The intuition is that
the surfer will prefer words that has the following proper-
ties. The words belong to a recent document, and they
exist in a document that has attracted social users, for in-

1https://twitter.com/twitter/status/281051652235087872

Copyright c© 2014 held by author(s)/owner(s); copying permitted
only for private and academic purposes.
Published as part of the #Microposts2014 Workshop proceedings,
available online as CEUR Vol-1141 (http://ceur-ws.org/Vol-1141)

#Microposts2014, April 7th, 2014, Seoul, Korea.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014

http://ceur-ws.org/Vol-1141
http://ceur-ws.org/Vol-1141

stance re-tweet in Twitter. Additionally, the surfer will pre-
fer topically discriminative words capable of finding accurate
keyphrases.

The contribution of this paper can be summarized as fol-
lows:

• We propose a new hypergraph approach to jointly model
temporal and social features within the hypergraph
structure. This model is capable of recognizing the
importance of time and social features that are impor-
tant in a dynamic genre.

• The hypergraph-based HG-Rank algorithm is the first
graph-based approach for keyphrase extraction that
considers the high-order relation between words in-
stead of a pair-wise relation as in conventional graph-
based keyphrase extraction.

• We evaluate our approach with two different data sets
Twitter and Opinosis. We show the effect of each di-
mension on the task of keyphrase extraction.

The rest of the paper is organized as follows. A discussion
of the related work is in Section 2. We define the hyper-
graph notation needed for explaining the proposed approach
in Section 3. The proposed approach will be thoroughly ex-
plained in Section 4. Section 5 will describe the data and
experimental results. The paper conclusion is in Section 6.

2. RELATED WORK
Our work is related to three different research areas, namely:

temporal and social aspects for keyphrase extraction, graph-
based keyphrase extraction, and hypergraphs. This work
bridges such areas for the task of keyphrase extraction in a
unified framework.

The emergence of social networks has motivated researchers
to examine the inclusion of temporal and social dimensions
into search [27][16][13], summarization[24][23], and keyphrase
extraction[28][11]. Yu et al. proposed to combine the tem-
poral dimension into a PageRank[6] approach for ranking
research publications considering their publication time[27].
Wan proposed a time-aware summarization algorithm over
a lexical graph[24]. A probabilistic approach for personal-
ized temporally-aware tweets summarization is proposed in
[22] For including social aspects, Zhao et al. proposed to
do keyphrase extraction while they used an interestingness
score for capturing social attribute[28]. A multi-document
summarizer that takes into account social features is pro-
posed in [17]. Moreover, a lexical graph expansion for ex-
tracting keyphrases through social hashtags is shown in [2].

A number of graph-based keyphrase extraction approaches
have been proposed. TextRank[20], LexRank[9], NE-Rank[3],
SingleRank[25], and TopicRank[5]. These algorithms lever-
age a random walk to calculate the centrality of either words
or sentences. For instance, NE-Rank considers node weights
being tf-idf of words and edge weight being freqancy of co-
occurrence of pairs of words. However, they all use simple
graphs not hypergraphs. In this paper, we consider a high-
order co-occurrence relation modeled in a hypergraph.

Hypergraph random walks have been proposed in [29][1].
We further extend the aforementioned approaches in this
work to include vertex weights. Wang et al. proposed to
use a semi-supervised ranking approach based on Zhou et
al.[29] for ranking sentences which they used for text sum-
marization[26]. Li et al.[14][15] proposed a semi-supervised

keyphrase ranking over hypergraphs based on Zhou et al.[29]
defintions. They proposed using semantic connection be-
tween phrases(vertices) to form hyperedges using external
knowledge sources as in Wikipedia. Our work is different in
the following matter: we use a completely unsupervised ap-
proach for ranking keywords instead of sentences or phrases
which may not be easy to find in social snippets, we pro-
pose a new weighted random walk that uses both hyper-
edges and vertices weights, and we include temporal and
social attributes in the ranking. Finally, unlike exciting ap-
proaches for semi-supervised hypergraph ranking our rank-
ing approach is query independent and thus unsupervised.

3. NOTATIONS AND DEFINITIONS
Let HG(V, E) be a hypergraph with the vertex set V and

the set of hyperedges E . A hyperedge e is a subset of V where
∪e∈Ee = V . Let HG(V, E , w) be a weighted hypergraph
where w : E → R+ is the hyperedge weight. A hyperedge e
is said to be incident with v when v ∈ e. A hypergraph has
an incidence matrix H ∈ R|V |×|E| as follows:

h(v, e) =

{
1 if v ∈ e
0 if v /∈ e (1)

The vertex and hyperedge degree are defined as follows:

d(v) =
∑

e∈E
w(e)h(v, e) (2)

δ(e) =
∑

v∈V
h(v, e) = |e| (3)

De and Dv are the diagonal matrices representing the de-
grees of hyperedges and vertices, respectively. We is the
diagonal matrix with the hyperedge weights.

4. PROPOSED APPROACH
The HG-Rank model captures keyphrases using a hyper-

graph structure where it is possible to inherently model so-
cial and temporal features. These features are embedded
as a hyperedge weight that represents a specific short doc-
ument. In essence, we model each short text document
di as a bag-of-words model with distinct keywords di =
{k1, k2, ..., ks}. A collection of documentsDi = {d1, d2, ..., dn}
is then represented as a lexical hypergraph in the following
manner. We represent each short document as a hyperedge,
and each keyword as a distinct vertex.

In this section, we will describe the HG-Rank algorithm
in more depth. First, the calculation and insertion of the
temporal and social attributes is going to be explained. Sec-
ond, the vertex weights will be explained. Third, we will
define the random walk ranking approach on the lexical hy-
pergraph to rank keywords. Finally, we will discuss our
approach on extracting keyphrases.

4.1 Modeling Temporal & Social Features
Temporal attributes in a dynamic genre as a microblog-

ging social network or news trends is an important dimen-
sion to understand evolving topics and keyphrases. We mea-
sure the temporal effect as a ranking function for short docu-
ments. The more recent the document, the higher the tem-
poral rank will be. Similar to [27][24], we measured the

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 43

temporal effect as the following:

Rtime(di) = Q(c−yi)/24 (4)

Where c and yi denote the current time and the document
di publication time, respectively. (c−yi) is the time interval
between current and publication time in hours. We divide
by 24 to show the difference of publication time and current
time in number of days. Q is a decay rate parameter with
values 0 < Q < 1. Moreover, the Q value is inversely pro-
portional to favoring recent documents. When Q is closer to
0, the ranking favors very recent documents over old ones.
On the other hand, when Q is closer to 1, the ranking is less
focused on new documents. In our experiments, we set Q to
0.5.

For the social effect, we measure the social dimension of
documents as a ranking function. The more popular or
shared the document, the higher the social rank will be. For
example in Twitter, tweets that are re-tweeted frequently
should be more important than a tweet without re-tweets.
This is similar to other social networks with the ”like” fea-
ture as in Facebook or product reviews. We calculate the
social ranking as follows:

Rsocial(di) =
si + 1∑
e se + 1

(5)

Where si is the counter of social feature (counts of re-tweet
or likes) for document di.

∑
e se is the sum of all social

features across all documents (total number of re-tweets for
example). Moreover, we added one smoothing to avoid can-
celing out documents with no social attributes.

Now we tie both temporal and social features together in
one ranking function as follows:

w(di) = λRsocial(di) + (1− λ)Rtime(di) (6)

λ is a smoothing parameter with 0 < λ < 1 to trade off
the effect of temporal aspects and social aspects. We exper-
imented with different values for λ which will be discussed
in the experiment section. The final documents rank w(di)
will be embedded in the hypergraph as a hyperedge weight
to reflect documents’ importance over keywords. The in-
tuition behind embedding temporal and social features in
the ranking scheme is that they are essential for capturing
keyphrases in a dynamic genre. In a dynamic genre, as in
Twitter, the content rapidly changes with time. Hence, the
keyphrases tend to change as well. Conventional keyphrase
extraction algorithms do not consider the time dimension
in finding keyphrases which make them insufficient for the
task. Moreover, the social aspect is important to capture
keyphrases of trendy topics that social network users find
interesting. An interesting topic in social media will more
likely be searched compared to other topics which makes
it important to find its keyphrases. We will discuss vertex
weights in the next section.

4.2 Modeling Discriminative Weights as Ver-
tex Weights

Graph-based approaches base the ranking on the rela-
tional structure of co-occurring words. Such ranking is great
on capturing the semantic relation between words. However,
there is no evidence that graph-based ranking approaches
are able to capture discriminative words. To enhance the

hypergraph-based ranking algorithm, we use a discrimina-
tive weighting scheme tf-idf as vertex weights before we start
the random walk. This injection of tf-idf weights will add
a discriminative perspective for calculating the rank though
a random walk approach. However, when applied to short
text documents, tf-idf fails to capture descriptive terms due
to sparsity of features (short length). To circumvent the
sparsity problem, we aggregate short documents to a vir-
tual larger ones and then calculate tf-idf scores. A larger
virtual document δ is the concatenation of smaller docu-
ments d which is δt = {d1 + d2 + ... + dn}. In Section 5.3,
different approaches for aggregation are described in more
depth. We measure the normalized tf-idf over the larger
documents being the set of D = {δ1, δ2, ..., δn}. The tf-idf is
measured as follows:

w(vi)tf-idf =
tf(vi)

Nw
· log N

df(vi)
(7)

Where tf(vi) as the term frequency on the document δ and
Nw is sum of all words occurrences in document δ for nor-
malization. N is the number of documents in the larger
document set D, and df(vi) is the number of larger docu-
ments in D that contain the term vi. We will discuss the
hypergraph ranking algorithm HG-Rank in detail in the
next section.

4.3 HG-RANK: Ranking in a Hypergraph
To rank vertices in a hypergraph, we generalize a random

walk process for hypergraphs. A random walk process is the
transitioning between vertices in a graph by starting at a
given vertex and moving to another neighboring vertex af-
ter each discrete time step t. We can imagine vertices as a set
of states {s1, s2, ..., sn} and the transitioning to be a finite
Markov chain M over these states. The transition proba-
bility calculated as P (u, v) = Prob(st+1 = v|st = u) which
means that the chainM will be at v at time t+1 given that
it was observed at u at time t. The Markov chain herein
is homogeneous which means that the transition probabil-
ity is independent of time t. Note that for any vertex u we
have

∑
v P (u, v) = 1. Since M is homogeneous with proba-

bilities computed over only a single transition, we can then
define a transition matrix P ∈ R|V |×|V | for all moves. The
transition matrix P captures the transition between vertices
which shows the behavior of a surfer randomly moving be-
tween vertices according to such probabilities. Next we will
show how we define the random walk in hypergraphs.

In simple graphs2, the random walk process is clear by
simply choosing an edge with a probability to a destination
vertex. However, it is not the case in hypergraphs where the
structure of the graph is substantially different demanding a
more general walk. For instance, in a hypergraph, a hyper-
edge could have more than two end-point vertices δ(e) ≥ 2.
To generalize the random walk process in hypergraphs, we
model the walk as the transition between two vertices that
are incident to each other in a hyperedge instead of a normal
edge. In essence, the random walk is seen to be a two-step
process, instead of one, which is the following: the random
surfer first chooses a hyperedge e incident with the current
vertex u. Then the surfer picks a destination vertex v within
the chosen hyperedge satisfying the following u, v ∈ e. The

2By simple graphs, we mean graphs (not hypergraphs) with
edges that are unique pair of vertices. Not to be confused
with simple vs. multigraph

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 44

random walk in hypergraph is said to be more general since
the random walk in a normal graph is a special case where
there is only a single destination vertex v associated with a
given normal edge incident with u where in a hypergraph we
can have more vertices to choose from. The hypergraph ran-
dom walk process can be defined as a Markov chain where
the vertex set is the state set of the chain similar to a normal
graph. At each time step t the surfer moves in the incident
hyperedge to another vertex.

In this paper, we try to seek a general definition of a ran-
dom walk in a weighted hypergraph where not only hyper-
edges have weights, but vertices as well. In such a case, the
random walk process is extended to leverage both hyper-
edges’ and vertices’ weights. We define the vertex’s weight
across all incident hyperedges to be a feature vector

~vw = {w(ve1), w(ve2), ..., w(vd(v))} (8)

Where we have a different vertex’s weight for every hyper-
edge e that contain vertex v. We describe the proposed ran-
dom walk process as the following. Starting from a vertex
u, the surfer chooses a hyperedge e incident with u propor-
tional to the hyperedge weight w(e). Then, the surfer, also
chooses a vertex v proportional to the vertex weight within
the hyperedge where we consider the weight in the current
hyperedge only. Let us define a weighted hypergraph inci-
dent matrix Hw ∈ R|V |×|E| where we have the following:

hw(v, e) =

{
w(ve) if v ∈ e
0 if v /∈ e (9)

Therefore, we redefine the hyperedge degree to be as fol-
lows:

δ(ew) =
∑

v∈V
hw(v, e) (10)

We can now calculate the transition matrix P as follows:

P (u, v) =
∑

e∈E
w(e)

h(u, e)∑
ê∈E(u) w(ê)

hw(v, e)∑
v̂∈e hw(v̂, e)

(11)

Or in matrix notation:

P = D−1
v HWeD

−1
ve H

T
w

Where hw(v, e) is the weight of the destination vertex v
in hyperedge e. Dv is the diagonal matrix of the weighted
degree of vertices as in formula 2. We is the diagonal matrix
of the hyperedge weights. Dve is the diagonal matrix for
weighted degree of hyperedges as in formula 10. Note that
the transition matrix P is stochastic where we have every
row sums to 1.

After calculating the transition matrix P , we now explain
the stationary distribution π of a random walk. The station-
ary distribution can be calculated by starting with initial col-
umn vector ~v0 ∈ R|V |×1 with equal probabilities 1/|V | sum-
ming to 1. We first multiply the transition matrix PT (where
PT is a column stochastic matrix for clarity) by the initial
column vector ~v0 yielding ~v1 = PT~v0. Then, we iterate until
the vector ~v stops changing. The reason of multiplying the
probability distribution vector ~v by the transition matrix
PT gives us the next step distribution ~x = PT~v can be ex-
plained as follows. Let xi be the probability of being at the
current vertex i. Then we have the following: xi =

∑
j pijvj

where vj being the probability of the surfer being at node j
previously, and pij is the probability of moving from j to i.

The probability distribution vector ~v stops changing after
n steps if the random walk is ergodic. A random walk is
ergodic when the following conditions are met: 1) the chain
is irreducible, for any two states si, sj ∈ M they must sat-
isfy P (si, sj) > 0. Also, 2) the chain is aperiodic, where the
greatest common divisor of every state {t : Pt(si, si) > 0}
is 1. To guarantee irreducibility and aperiodicity, we use
the PageRank algorithm [6]. The algorithm uses the idea of
teleporting which will restart the random walk process mak-
ing it useful for the previous conditions. The teleporting is
depicted with a small probability called the damping factor
α. It also makes sure to make the graph irreducible since
the random walker always has the probability of teleporting
to any other node.

~v(i+1) = αPT~v(i) + (1− α)~e/n (12)

The damping factor α is set to 0.85. n is the number of nodes
in the graph. ~e ∈ Rn×1 is a vector of all elements being
1. αPT~v means that the random walker will choose to go
with one of the incident hyperedges. (1−α)~e/n represents a
vector of an introductory probabilities with each entry being
(1− α)/n to teleport the random walk to a new node.

4.4 Extracting Keyphrases
We tag keywords with their Part of Speech (POS) tags.

Then, we extract keyphrases that are noun phrases since it
has been shown that most keyphrases annotated by human
happen to be noun phrases[12][18][25]. We look for patterns
as adj+nouns or all nouns and filter out the rest. Then, we
have a candidate list of keyphrases based on the syntactic
filtering that need to be ranked. A keyphrase ph is modeled
as a collection of keywords k as ph = {k1, k2, ..., kn}. To
rank a keyphrase, most approaches aggregate the ranks of
the keywords as follows:

R(ph) =
∑

ki∈ph
R(ki) (13)

However, such approach will be biased towards longer phrases.
To overcome such bias, we normalized based on the length
of the keyphrase as follows:

R(ph) =

∑
ki∈phR(ki)

n
(14)

Where n is the keyphrase length. Moreover, we removed
phrases that cross over syntactic boundaries as they can-
not be a comprehensible keyphrase. We also removed any
keyphrase that appears less than f times. We experimented
with different values of f and found out that f = 5 shows
the best keyphrases in our data. Next we will describe the
experimental design in depth and all comparisons.

5. EXPERIMENT
This section explains the experimental setup for the hy-

pergraph ranking framework HG-Rank. The effectiveness
of our approach is demonstrated by conducting several ex-
periments comparing our method to different baselines. First,
the data sets used in this experiment are explained thor-
oughly. Second, the necessary preprocessing steps are illus-
trated in detail. Third, the experimental setup is laid out.
Fourth, the experimental results and discussion of results
are discussed and examined.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 45

5.1 Data Sets
We used two different data sets that contain only short

text documents. The characteristics of the two data sets are
explained as the following:

• Twitter. We collected a corpus of tweets which con-
tains 80,231 tweet posts. We collected tweets in the
time frame from April 1, 2013 to April 30, 2013. We fil-
ter out all non-Latin characters tweets. Afterwards, we
deleted any non-English tweets by classifying a tweet
to be non-English if there is less than 5 English words.
Moreover, we discarded any tweet with less than 3
words as it does not show any topic relevance. More-
over, the corpus contains 19,613 hashtags in total.

• Opinosis. We used a public short reviews data set
called Opinosis3 collected by Ganesan et al.[10]. The
data set contains short reviews, a sentence long, about
products collected from TripAdvisor, Amazon, and Ed-
munds. The data set contains 51 topics about a num-
ber of different products. For each topic, there is ap-
proximately a 100 short review snippet. A golden sum-
mary for each topic is created to summarize the re-
views. There are 5 different golden summaries for each
topic created by human workers from Amazon Me-
chanical Turk (MTurk)4. We randomly used 3 different
topics to quantitatively test our algorithm with other
baselines which are Windows7 features, iPod video,
and Amazon’s kindle price.

5.2 Preprocessing
Preprocessing is an essential step in text mining tasks

in general. In extracting keyphrases, the preprocessing is
needed to measure the salient scores accurately. The amount
of preprocessing differs significantly depending on the genre
of the corpus. In a social microblogging environment as
in Twitter, the preprocessing step is of a vital importance.
The challenge with colloquial textual content is an enormous
obstacle in performing keyphrase extraction with Twitter
posts. For instance, tweets can have misspelled words, strange
capitalization, and wrong punctuations. For more detail we
refer the reader to Eisenstein’s survey on languages in social
media [8]. Therefore, we did in an extensive preprocessing
to tweets.

We first removed any URL links from tweets since we are
focusing on the textual content. Moreover, we also removed
emoticons and smileys since they do not have any topical
relevance. Also, Twitter’s special characters and usernames
were removed as in the preceding hashtag sign # and user-
names with @username. Tweets that start with the @user-
name are generally considered replies and have a conversa-
tional nature more than topical nature. Therefore, we have
removed any tweet that starts with @username to focus on
topical tweets only. Another challenge is the usage of Inter-
net phrasal abbreviation such as LOL (laugh out loud), ikr
(I know right). We leverage the Internet Slang5 dictionary in
an effort to transform the text to standard English. All the
aforementioned techniques can help improve the accuracy of
the POS tagger.

3http://kavita-ganesan.com/opinosis-opinion-dataset
4www.mturk.com
5http://www.noslang.com/dictionary/full/

Syntactical tagging, as in POS, for conversational content
found on tweets can be very difficult. Most standard tag-
gers fail to correctly tag colloquial text. For instance, the
misuse of capitalization can make the tagger incorrectly tag
nouns or verbs as a proper noun simply because the token
is out of the vocabulary OOV. To tackle such difficulties,
we have leveraged a state-of-the-art POS tagger6 designed
specifically for tweets [21]. The tagger designed at Carnegie
Melon University is capable of accurately tagging tokens in
a noisy genre as in Twitter. Moreover, the tagger is capable
of identifying tags regardless of the capitalization misuse or
the strange orthography of text, for example repeating let-
ters for emphasis as in soooo. After tagging the tweets,
we focused on selecting nouns and adjectives only since they
are the base for noun phrases. We finally removed stopwords
and stemmed the tokens.

The final step of preprocessing was to remove all stop-
words from tweets since they do not have any topical in-
fluence. Punctuations were removed as well. Moreover, all
capitalized tokens were converted to lower case. We lastly
stemmed the tokens to get an accurate feature measure of
words. We used the Porter stemmer7 to stem our corpus.

For the Opinosis data set, we removed stopwords, punc-
tuations, and stemmed the text. We also convert the tokens
to lower case.

5.3 Experimental Setup
In this section, we will describe the experimental setup

that was used for both data sets to compare our model with
other baselines. First, we will describe the setup used for
the Twitter data set. Then, we will explain the setup for
the Opinosis review data.

Since there is no apparent golden labels to test against
with tweets, we designed an empirical experiment to test
keyphrase extraction in tweets. The experiment can be de-
signed into different steps 1) Identify major topics in docu-
ments (tweets). 2) Test if any top ranked phrase represents
a major topic in documents. The intuition behind the ap-
proach is the fact that phrases are descriptive of a document
if they explain an important topic within that document.
Given that keyphrases describe the major topics in a doc-
ument, we will leverage a statistical topic model known as
latent Dirichlet allocation (LDA)[4] to first extract the main
topics in documents using a new twitter representation that
improves the topic model with short documents. Second, we
use search engines to search these topics to generate gold-
label phrases. Finally, we test and compare all the ranking
baselines by using the search results from the major topics
in Twitter and golden summaries in Opinosis separately.

LDA is a generative statistical model that helps find-
ing a set of unobserved groups using some observed sets.
When applied to text, the observed sets are words in doc-
uments where the unobserved groups (latent) are topics of
co-occurring words. By finding the mixture of topics using
statistical inference as in Gibbes sampling, we get two poste-
rior distribution P (w|k) the probability of words under each
topic, and P (k|d) the probability of topics under each doc-
ument. We first start by assigning each word to a K topic.
Then, for each word w in each document d, we resample the

6http://www.ark.cs.cmu.edu/TweetNLP/
7http://tartarus.org/martin/PorterStemmer/

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 46

●

●

●
●

● ●

1 2 3 4 5 6

Number of Topics

P
er

pl
ex

ity

0

100

200

300

400

● LDA Agg
Normal LDA

Figure 1: Comparison between LDA with Short
Documents Compared to Aggregated Documents (↓)

probability distribution as follows:

P (wi|d) =

|K|∑

s=1

P (wi|ks)P (ks|d) (15)

Where P (wi|ks) is the probability of the word wi being as-
signed topic ks from all documents. P (ks|d) is the proba-
bility of words in the document d that are assigned to topic
ks. However, when applied to short length documents as
in tweets, a new challenge arises since there is not enough
observed sets (words) in each document to infer latent top-
ics. Therefore, we remodel the documents structure to im-
prove LDA in our data and get meaningful topics. Given
a collection of tweets Ti = {τ1, τ2, ..., τn}, there is an abun-
dant number of hashtags Hi = {h1, h2, ..., hn} appearing in
tweets. Instead of treating each tweet as a document, we
aggregate tweets using hashtags to form a large virtual doc-
ument for each hashtag dh = {τ1h+τ2h+...+τnh} where each
dh is a concatenation of tweets. Therefore, the documents
set will be defined as Dh = {dh1, dh2, ..., dhn} containing all
words from a large group of tweets for each document. After
enhancing the document representation, we can apply LDA
to learn topics and their posterior ranking more efficiently.
In Figure 1, we show a significant improvement in perplexity
for the two LDA approaches with short documents and ag-
gregated documents. In Table 1, we show the top 10 ranked
word for |K| = 5. Similar approaches for improving LDA in
short text documents are found in [19].

To test the hypergraph ranking, we would need to have
a reference set that summarize topics within each dh docu-
ment. The idea is to use a search engine by using the top
words, from LDA, for each topic as a query. We used Google
to generate the result snippets by setting the search at the
same duration as the tweets which is April, 2013. Once the
search snippets (top 50 snippet) for each topic is collected,
we store them. Then we assign each document to its ma-
jor topics only. For instance, any topic that is higher than
P (k|d) = 0.5 is considered a major topic and is then cho-
sen. Those search results collected from the major topics
are considered references. We, then, search for keyphrases

Table 1: Top 10 Words of Five Topics
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
super health obama gun social
bowl care barack control media
jar law presid peopl market
utc congress agenda stricter dimens
box favor buchanan grip roi
fuse news cien sens twitter
look work con great amp
good alli cumpl america use
beyonc amp mandato anti current
black job congress common post

in those topical references. If a keyphrase is included in a
snippet of any major topic, we consider it a hit, otherwise
it is a miss.

For the Opinosis review data, we compared the extracted
keyphrases from short review documents with the golden
summaries provided with the data set. We consider a keyphrase
correct if it appears in any short golden summary. There is
approximately 5 golden summaries for each topic. Due to
the short length of documents, we only used bigrams for
evaluation.

A number of different baseline algorithms are implemented
and used to test the validity of the proposed approach:

• tf-idf each post is a document, and each topic collec-
tion is a reference corpus.

• TextRank[20] builds a graph of keywords with sliding
window w = 2. Edge weights are the frequency of co-
occurring relation.

• TimedTextRank[24] builds a graph of keywords sim-
ilar to TextRank. The ranking is, however, multiplied
by a time function over the destination node.

• NGTS(normal graph with Time and Social) A
normal lexical graph similar to TextRank. However,
the edge weights are the summation of temporal and
social function over all documents that contain the
pair of words u and v (instead of frequency of co-
occurrence)

• NE-Rank[3] A normal lexical graph similar to Tex-
tRank. However, the ranking takes into account node
and edge weights. Node weights are tf-idf and edge
weights are the frequency of co-occurrence. It also con-
siders node weights when the random walk teleports to
a random node.

5.4 Experimental Results & Discussion
To compare all the baselines used in this experiment, we

quantitatively measure their performance using a precision
evaluation metric. We compare them to the golden labels
defined in the previous section. Specifically, we consider the
keyphrase to be correct if it appears in the golden set. Pre-
cision helps identify the accuracy of the extracted results.
Since we are evaluating a ranking system, we measure preci-
sion at the top 10, 15, and 20 ranked keyphrases. Precision
is measured as follows:

Precision =
Kcorrect

Kextracted
(16)

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 47

Table 2: Keyphrase Extraction Experimental Re-
sults for Twitter using Precision

P@10 P@15 P@20
tf-idf 0.28 0.26 0.24

TextRank 0.52 0.39 0.28
TimedTextRank 0.54 0.424 0.32

NGTS 0.48 0.40 0.32
NE-Rank 0.56 0.426 0.32
HG-Rank 0.64 0.49 0.40

Table 3: Keyphrase Extraction Experimental Re-
sults for Opinosis using Precision

P@10 P@15 P@20
tf-idf 0.36 0.28 0.28

TextRank 0.53 0.42 0.35
NE-Rank 0.60 0.46 0.36
HG-Rank 0.66 0.57 0.46

WhereKcorrect is the number of correctly extracted keyphrase,
and Kextracted is the total number of extracted keyphrase.
In the following, we will discuss the experimental results
with balancing social and temporal attributes and how it
affect the ranking. Then, we will describe the improvements
HG-Rank has over other approaches.

However, precision only considers how many correctly ex-
tracted keyphrases within the result regardless of the or-
der within the top list of extracted keyphrases. Therefore,
we also measure the Binary Preference Measure Bpref [7].
Bpref will penalize the system if incorrect keyphrases ranked
higher than correct keyphrases. Bpref is measured as the
following:

Bpref =
1

R

∑

r∈R
1− |n ranked higher than r|

R
(17)

where R is the number of correct keywords within ex-
tracted keywords in a method, and where r is a correct key-
word and n is incorrect keyword.

To examine the effect of social and temporal attributes
when combined into the hypergraph ranking scheme, we ex-
perimented with different values for λ in formula 6. By
varying the value of λ, we can analyze the tradeoff between
the two attributes in precision. Figure 2 shows the differ-
ent λ values experimented with. The best value for λ is 0.5
which means equal contribution of temporal and social fea-
tures in our data. It is interesting to notice that when λ = 1,
meaning only social attributes were taken into the ranking,
the performance deteriorates considerably. It could mean
that popular content is not necessary of a topical value to
the corpus. However, more experiments are needed to widen
our understanding of what the best features are for topical
keyphrase extraction in a dynamic genre as Twitter. Next,
we move on to describe the full evaluation of both data sets.

To evaluate the ranking performance for all baselines, we
performed the evaluation measure for both data sets as the
following. For Twitter, we first build the lexical hypergraph
for each hashtag topic corpus dh = {τ1h + τ2h + ... + τnh}.
We chose the top 5 frequent topical hashtags and performed
keyphrase extraction separately. We measured the precision
and Bpref for each topic. In table 2, we show the average
precision from all topics. Table 4 shows the average Bpref for
the Twitter data. In the Opinosis review data set, we build

●

●

●

●

10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Social and Temporal Parameter

Number of Top Keywords

P
re

ci
si

on

●

●

λ = 0
λ = 0.5
λ = 0.8
λ = 1

Figure 2: Different Effect between Temporal & So-
cial Attributes

Table 4: Keyphrase Extraction Experimental Re-
sults for Twitter using Bpref

Bpref@10 Bpref@15 Bpref@20
tf-idf 0.66 0.42 0.40

TextRank 0.744 0.74 0.74
TimedTextRank 0.748 0.67 0.67

NGTS 0.742 0.71 0.71
NE-Rank 0.76 0.75 0.75
HG-Rank 0.82 0.82 0.82

the lexical hypergraph for each topic. Since there is no meta
data with the reviews as time or social features, we regard
the hyperedge weight to be 1 for all short documents to test
the hypergraph ranking only. We chose 3 topics mentioned
early to quantitatively measure the improvements. We show
the average precision of three topics in table 3, and average
Bpref in table 5.

In the Twitter data, the proposed hypergraph-based ap-
proach HG-Rank out performed all other baselines. Specif-
ically, HG-Rank improved the results in the top 10 results
over closest baseline, NE-Rank, by 14% and 7% improve-
ments using precision and Bpref, respectively. The improve-
ment shows the importance of modeling the high-order co-
occurring relationship using a lexical hypergraph compared
to modeling just a pair of words for graph edges. Moreover,
the temporally-aware ranking HG-Rank showed improve-
ment over other temporal-aware approaches as in Timed-
TextRank[24] and NGTS. Similar improvements are demon-
strated for the top 15 and top 20 keyphrases.

For the Opinosis data, HG-Rank showed improvement
over all baselines as well. Improvements in the top 10 over
the second best baseline, NE-Rank, were 10% in precision
and 14% in Bpref. Moreover, similar improvements were
found in the top 15 and top 20 keyphrases. Even though no
hyperedge weights were used for this data set as in temporal
and social attributes, the hypergraph model has shown to
increase both precision and Bpref scores which shows the
robustness of the proposed model in modeling high-order
co-occurrence relation between words.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 48

Table 5: Keyphrase Extraction Experimental Re-
sults for Opinosis using Bpref

Bpref@10 Bpref@15 Bpref@20
tf-idf 0.61 0.61 0.61

TextRank 0.88 0.78 0.78
NE-Rank 0.82 0.80 0.80
HG-Rank 0.94 0.82 0.82

6. CONCLUSION
In this paper, we have proposed a hypergraph-based rank-

ing algorithm suitable for short text documents in social
media genre. We modeled distinct keywords as vertices
and their short documents as hyperedges in a lexical hyper-
graph. Moreover, we jointly modeled temporal and social
features in the hypergraph to adapt keyphrase extraction
with the dynamic nature of social media. Additionally, we
supplemented the hypergraph with discriminative weights
in the vertices to enhance the random walk approach. Then
we proposed a new probabilistic random walk that consid-
ers both vertices and hyperedges weights over hypergraph.
We have leveraged a state-of-the-art POS tagger for Twit-
ter data to capture syntactic tags accurately from the noisy
text. We demonstrated the effectiveness of our hypergraph
approach over two data sets which showed promising results.

In the future work, we plan to extend the approach to a
streaming algorithm where the hypergraph can be updated
periodically.

7. REFERENCES
[1] C. Avin, Y. Lando, and Z. Lotker. Radio cover time in

hyper-graphs. In Proceedings of the 6th International
Workshop on Foundations of Mobile Computing,
DIALM-POMC ’10, pages 3–12, New York, NY, USA, 2010.
ACM.

[2] A. Bellaachia and M. Al-Dhelaan. Learning from twitter
hashtags: Leveraging proximate tags to enhance graph-based
keyphrase extraction. In Proceedings of the 2012 IEEE
GreenCom, pages 348–357, Washington, DC, USA, 2012. IEEE
Computer Society.

[3] A. Bellaachia and M. Al-Dhelaan. Ne-rank: A novel
graph-based keyphrase extraction in twitter. In Proceedings of
the The 2012 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence, WI-IAT ’12, pages 372–379,
Washington, DC, USA, 2012. IEEE Computer Society.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning Research,
3:993–1022, Mar. 2003.

[5] A. Bougouin, F. Boudin, and B. Daille. Topicrank:
Graph-based topic ranking for keyphrase extraction. In
Proceedings of the Sixth IJCNLP, pages 543–551, Nagoya,
Japan, October 2013. Asian Federation of Natural Language
Processing.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the Seventh International
Conference on World Wide Web 7, pages 107–117. Elsevier
Science Publishers B. V., 1998.

[7] C. Buckley and E. M. Voorhees. Retrieval evaluation with
incomplete information. In Proceedings of the 27th Annual
International ACM SIGIR, pages 25–32, New York, NY, USA,
2004. ACM.

[8] J. Eisenstein. What to do about bad language on the internet.
In Proceedings of the 2013 Conference of the NAACL, pages
359–369, Atlanta, Georgia, June 2013. Association for
Computational Linguistics.

[9] G. Erkan and D. R. Radev. Lexrank: graph-based lexical
centrality as salience in summarization. Journal of Artificial
Intelligence Research, 22(1):457–479, Dec. 2004.

[10] K. Ganesan, C. Zhai, and J. Han. Opinosis: a graph-based
approach to abstractive summarization of highly redundant
opinions. In Proceedings of the 23rd COLING, pages 340–348,
Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[11] Y. Gao, J. Liu, and P. Ma. The hot keyphrase extraction based
on tf*pdf. In The 2011 IEEE 10th TrustCom, pages
1524–1528, 2011.

[12] A. Hulth. Improved automatic keyword extraction given more
linguistic knowledge. In M. Collins and M. Steedman, editors,
Proceedings of the 2003 EMNLP, pages 216–223, 2003.

[13] L. Jabeur, L. Tamine, and M. Boughanem. Featured tweet
search: Modeling time and social influence for microblog
retrieval. In Proceedings of the 2012 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence,
volume 1, pages 166–173, 2012.

[14] D. Li and S. Li. Hypergraph-based inductive learning for
generating implicit key phrases. In Proceedings of the 20th
WWW, pages 77–78, New York, NY, USA, 2011. ACM.

[15] D. Li, S. Li, W. Li, W. Wang, and W. Qu. A semi-supervised
key phrase extraction approach: Learning from title phrases
through a document semantic network. In Proceedings of the
ACL, pages 296–300, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics.

[16] X. Li, B. Liu, and P. Yu. Time sensitive ranking with
application to publication search. In The Eighth IEEE ICDM,
pages 893–898, 2008.

[17] X. Liu, Y. Li, F. Wei, and M. Zhou. Graph-based multi-tweet
summarization using social signals. In Proceedings of
COLING, pages 1699–1714, Mumbai, India, December 2012.
The COLING 2012 Organizing Committee.

[18] Z. Liu, W. Huang, Y. Zheng, and M. Sun. Automatic keyphrase
extraction via topic decomposition. In Proceedings of the 2010
EMNLP, pages 366–376. Association for Computational
Linguistics, October 2010.

[19] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie. Improving lda
topic models for microblogs via tweet pooling and automatic
labeling. In Proceedings of the 36th international ACM
SIGIR, pages 889–892, New York, NY, USA, 2013. ACM.

[20] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts.
In D. Lin and D. Wu, editors, Proceedings of the 2004
EMNLP, pages 404–411, Barcelona, Spain, July. Association
for Computational Linguistics.

[21] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider,
and N. A. Smith. Improved part-of-speech tagging for online
conversational text with word clusters. In Proceedings of the
2013 Conference of the NAACL, pages 380–390, Atlanta,
Georgia, June 2013. Association for Computational Linguistics.

[22] Z. Ren, S. Liang, E. Meij, and M. de Rijke. Personalized
time-aware tweets summarization. In Proceedings of the 36th
International ACM SIGIR, pages 513–522, New York, NY,
USA, 2013. ACM.

[23] R. Sipos, A. Swaminathan, P. Shivaswamy, and T. Joachims.
Temporal corpus summarization using submodular word
coverage. In Proceedings of the 21st ACM CIKM, pages
754–763, New York, NY, USA, 2012. ACM.

[24] X. Wan. Timedtextrank: adding the temporal dimension to
multi-document summarization. In Proceedings of the 30th
annual international ACM SIGIR, pages 867–868, New York,
NY, USA, 2007. ACM.

[25] X. Wan and J. Xiao. Single document keyphrase extraction
using neighborhood knowledge. In Proceedings of the 23rd
National Conference on Artificial intelligence - Volume 2,
pages 855–860. AAAI Press, 2008.

[26] W. Wang, F. Wei, W. Li, and S. Li. Hypersum: hypergraph
based semi-supervised sentence ranking for query-oriented
summarization. In Proceedings of the 18th ACM CIKM, pages
1855–1858, New York, NY, USA, 2009. ACM.

[27] P. S. Yu, X. Li, and B. Liu. Adding the temporal dimension to
search ” a case study in publication search. In Proceedings of
the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, pages 543–549, Washington, DC, USA, 2005.
IEEE Computer Society.

[28] X. Zhao, J. Jiang, J. He, Y. Song, P. Achanauparp, E.-P. Lim,
and X. Li. Topical keyphrase extraction from twitter. In
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 379–388, Portland, Oregon, USA, June
2011. Association for Computational Linguistics.

[29] D. Zhou, J. Huang, and B. Scholkopf. Learning with
hypergraphs: Clustering, classification, and embedding. NIPS,
19:1601, 2007.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 49

	Preface
	HG-Rank: A Hypergraph-based Keyphrase Extraction for Short Documents in Dynamic Genre Abdelghani Bellaachia & Mohammed Al-Dhelaan

