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Abstract. In this paper, we present a CBR approach for implement-
ing an agent playing the well-known Angry Birds game. We adopt a
preference-based procedure for constructing the case base, collecting ex-
perience from a random agent that continually explores the problem-
solution space and improves the quality of already found solutions. As
the retrieve phase involves finding a game scene similar to a given one, we
develop a measure to assess the dissimilarity between two game scenes,
which is based on solving appropriate linear assignment problems. A
comparison of our agent with state-of-the-art computer programs shows
promising results.

1 Introduction

Angry Birds is a popular video game, in which the player has to shoot birds
from a slingshot at pigs that are protected with objects from different types of
materials, including wood, stone, and ice. Some birds have specific capabilities
that allow them to explode, split into several birds, pick up speed, etc. The game
has different levels, each level coming with its specific representation of pigs and
objects hiding them. A level is solved when all the pigs are destroyed, and the
goal of a player is to solve all the levels, keeping the number of shot birds as low
as possible.

Since the first edition of the Angry Birds AI competition in 2012, different
approaches, ranging from qualitative representation and reasoning over simula-
tion of game scenes to classical supervised machine learning algorithms, have
been leveraged to build agents playing the game. In this paper, we develop an
Angry Birds agent on the basis of the case-based reasoning (CBR) paradigm.
To the best of our knowledge, this is the first CBR approach to Angry Birds.
One of the main components of our Angry Birds agent is a case base that stores
problem-solution pairs, i.e., game scenes and appropriate best shots. We use
a preference-based approach to build the case base, which compares different
solutions for a given problem and maintains the better one.

The rest of the paper is organized as follows. In the next section, we briefly
review some of the existing approaches for agents playing the Angry Birds game.
In Section 3, we present our approach, and in Section 4, we analyze its perfor-
mance experimentally. We conclude our work and outline possible directions for
future work in Section 5.
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2 Existing Approaches

Most of the work so far has been concerned with the representation of the dif-
ferent types of objects in Angry Birds. Lin et al. [7] classify the objects into
dynamic, which are mainly convex polygons, and static ones, which comprise
concave polygons, and use bounding convex polygons (BCPs) to represent the
former and edge detection and Hough transform to detect the latter. Zhang and
Renz [12, 13] also make use of the spatial representation of objects and, more-
over, reason about their stability. They build on an extension of the rectangle
algebra to assess the stability of blocks of objects, upon which they can decide
where to hit a block so as to affect it maximally.

In [11], the authors assign a numerical score to each reachable object, based
on its physical properties. The score is supposed to reflect the extent of damage
it suffers if being hit, and shoots at objects with low stability but high influence
on pigs or shelters of pigs. Ferreira et al. [3] also assign a utility value to the
objects based on spatial properties, but because of the lack of certainty in the
position of the objects, they incorporate concepts of probability and uncertainty
to determine the chance of a bird to hit a given target.

Simulation-based approaches include the work by Polceanu and Buche [9],
who build their decision making based on the theory of mental simulation. More
precisely, their agent observes the effects of performing multiple simulations of
different shots in a given game scene and selects the optimal solution based on
these results.

The remaining category of approaches encompasses agents that leverage
different machine learning algorithms. In order to learn how to judge shots,
Narayan-Chen et al. [8] train a weighted majority and a Naive Bayes algorithm
on a data set consisting of good and bad shots in different states of the game.
Tziortziotis and Buche [10] use a tree structure to represent the objects in a
game scene, and formulate the problem of selecting an object for shooting as a
regression problem. They associate with each pair of object material and bird
a Bayesian linear regression model, building a competitive ensemble of models,
whose parameters are estimated in an online fashion. The decision is then made
according to the best prediction of the ensemble model.

3 A Case-based Angry Birds Agent

We employ the CBR approach [1] to build an agent that plays the Angry Birds
game. The experience-oriented learning and reasoning paradigm of CBR first of
all requires the creation of a case base that stores problem-solution pairs. As the
problem space in the domain of Angry Birds is infinite, and no exact character-
ization of an optimal solution (the best shot) for a problem (a description of a
game scene) exists, a way of gathering expressive pairs of problems and approx-
imate solutions (game scenes together with reasonably good shots) is needed.
Further, a game scene in Angry Birds comprises objects with different shapes,
which should be represented and stored appropriately. Thus, a representation
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that reflects the spatial properties of the different objects involved in the game
is another concern. Lastly, once the case base is built and appropriately stored,
the problem of retrieving cases similar to a given query case needs to be ad-
dressed, which in turn necessitates assessing the similarity between two game
scenes. In the following, we elaborate on each of these issues.

3.1 Case Base Construction

The core of a CBR system is a case base that stores previously encountered
problems and associated solutions. In the context of Angry Birds, a single case
should enclose a problem description part, with a representation of a game scene,
covering the slingshot and all objects and pigs, and a solution part, containing
the best shot one can execute in the given scene. The notion of an optimal
solution in a given game scene, i.e., the shot that will lead to the highest change
in score, is actually not well-defined. Therefore, we need a procedure to find
solutions of at least close-to-optimal quality.

Inspired by the general framework of preference-based CBR [5], we construct
a case base by comparing the quality of solutions that have been tried so far.
The basic principle of the approach consists of randomly trying different solutions
for a problem and maintaining the best one. The advantages of this approach
are two-fold. First, because of its self-adaptive nature, it does not rely on any
external domain expert to provide solutions for the potentially infinite number
of problems. Second, as the problem and solution space are explored more and
more, the extent of the case base is enlarged and its quality is improved over
time.

In the context of Angry Birds, we concretise the approach as follows. We let
arbitrary agents play in different game scenes and record the game scene along
with the shot executed by the agent and the change in score. Once we encounter
a game scene which is similar to another one already contained in the case base,
and where the agent performs better, we replace the solution part of the old
case (i.e., the shot) with the new one. The steps of the process of case base
construction are outlined in Figure 1 as a flowchart diagram.

3.2 Case Representation

The Angry Birds game involves different types of objects: a sling, hills, pigs,
blocks of stone, wood or ice, TNTs and birds with different capabilities ex-
pressed in terms of colours, including red, yellow, blue, black, and white. The
Angry Birds Basic Game Playing Software [4] provides two possibilities of rep-
resenting theses objects: the Minimum Bounding Rectangle (MBR) and the real
shape representation. While the MBR segmentation of an object consists solely
of finding a rectangle with minimal area, which completely covers it, the real
shape segmentation represents the objects more precisely using circles, rectan-
gles and polygons, and distinguishes between hollow and solid objects. As such,
the latter is more precise but also more costly to compute. In this paper, we
confine ourselves to the MBR representation of objects.
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Fig. 1. The steps of the case base construction process.

For describing the rectangles, we adopt the interval-based representation,
where a rectangle in the 2-dimensional space R2 has the following form: R =
[l, u] = [l1, u1]× [l2, u2] , where l = (l1, l2) and u = (u1, u2) are the coordinates of
the lower left and upper right vertex of R, respectively. A complete game scene
is represented through the set of the MBRs of all objects, together with their
type when an object and colour when a bird.

Besides the game scene, collecting the cases also involves recording shots,
which constitute the solution part of a case. In the Angry Birds Basic Game
Playing Software, a shot is represented in the form of a 6-dimensional vector
s = (x, y, dx, dy, tshot, ttap), where (x, y) and (x+ dx, y + dy) are the coordinates
of the focus and release point, respectively, tshot specifies the releasing and ttap
the tapping time of the bird in milliseconds.

To illustrate how a case is constructed, we consider the situation shown in
Figure 2. The start game scene is shown in the picture on the left. The resulting
scene after performing the shot with the trajectory indicated by the red line is
shown in the picture on the right, where the change in score is seen as well.
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Fig. 2. The game scene before (left) and after (right) performing the shot indicated
by the red line in the figure on the right. The MBRs of all objects in both scenes are
marked. The change in score after performing the shot is shown on the top right of the
figure on the right.

The case extracted from this scenario will contain the original scene, the
performed shot and the achieved score, which we represent as follows:

Sling: l1 = 200, u1 = 305, l2 = 216, u2 = 363.
BirdType: RedBird.
Hills:

Hill 1 : l1 = 471, u1 = 237, l2 = 839, u2 = 384.
Pigs:

Pig 1 : l1 = 645, u1 = 290, l2 = 659, u2 = 300.
Pig 2 : l1 = 504, u1 = 314, l2 = 514, u2 = 321.
Pig 3 : l1 = 543, u1 = 313, l2 = 353, u2 = 323.
Pig 4 : l1 = 584, u1 = 313, l2 = 595, u2 = 323.
TNTs: -

Blocks:

Block 1: l1 = 651, u1 = 309, l2 = 654, u2 = 352.
Block 2: l1 = 509, u1 = 330, l2 = 513, u2 = 351.
Block 3: l1 = 548, u1 = 330, l2 = 552, u2 = 351.
Block 4: l1 = 588, u1 = 330, l2 = 591, u2 = 350.
Block 5: l1 = 643, u1 = 302, l2 = 663, u2 = 304.
Block 6: l1 = 500, u1 = 325, l2 = 520, u2 = 327.
Block 7: l1 = 540, u1 = 325, l2 = 560, u2 = 327.
Block 8: l1 = 579, u1 = 325, l2 = 599, u2 = 327.
Shot: x = 208, y = 315, dx = 35, dy = 868, tshot = 0, ttap = 0.
Score: 6100.

3.3 Case Retrieval

When the agent is playing, it gets a representation of the current game scene,
searches the case base for the case with the most similar game scene and adopts
its shot. Therefore, an appropriate measure to assess the similarity respectively
dissimilarity between two game scenes is a key prerequisite for a successful agent.
We compute the overall dissimilarity between two game scenes as the sum of the
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dissimilarities between their individual components:

diss(scene1, scene2) = diss(scene1.Sling, scene2.Sling)

+ diss(scene1.BirdType, scene2.BirdType)

+ diss(scene1.Hills, scene2.Hills

+ diss(scene1.P igs, scene2.P igs)

+ diss(scene1.TNTs, scene2.TNTs)

+ diss(scene1.BlocksS , scene2.BlocksS)

+ diss(scene1.BlocksW , scene2.BlocksW )

+ diss(scene1.BlocksI , scene2.BlocksI) ,

where BlocksS , BlocksW and BlocksI denote blocks of stone, wood and ice,
respectively.

The dissimilarity of two slings is just the dissimilarity between their MBRs.
For the bird type, we compute the dissimilarity as follows:

diss(scene1.BirdType, scene2.BirdType) =

{
0, if the types are equal,

constant, otherwise.

Measuring the dissimilarity between two game scenes in each of the remaining
components (hills, pigs, TNTs, and blocks) reduces to measuring the dissimi-
larity between the two sets of rectangles, with potentially different cardinality,
corresponding to the MBRs surrounding them. This requires building pairs from
the elements of the two sets, between which the dissimilarity is to be computed.
The overall dissimilarity between the two sets is then the sum of the dissimi-
larities between all pairs. We formulate the task of computing the dissimilarity
between two sets of rectangles as a (potentially unbalanced) linear assignment
problem, where the agents are the elements of one set, tasks are the elements
of the other set and the total cost of an assignment is the overall sum of the
dissimilarities between all built pairs.

In the following, we proceed with the description of the measure we use
for assessing the dissimilarity between two rectangles, prior to detailing our
approach to computing the dissimilarity between two game scenes in the above-
mentioned components through solving appropriate assignment problems.

Dissimilarity Between Two Rectangles. Different measures exists to assess
the dissimilarity between two rectangles in a p-dimensional space. We use the
vertex-type distance dv [2], which is defined for two 2-dimensional rectangles

R1 =
[
l(1), u(1)

]
=
[
l
(1)
1 , u

(1)
1

]
×
[
l
(1)
2 , u

(1)
2

]
and R2 =

[
l(2), u(2)

]
=
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l
(2)
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1

]
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, as follows:
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1
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u
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1 − u
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1

)2
+
(
l
(1)
2 − l

(2)
2

)2
+
(
u
(1)
2 − u

(2)
2

)2
.

73



Dissimilarity Between Two Sets of Rectangles. As stated above, we build
on solving an assignment problem to compute the dissimilarity between two sets
of rectangles, which represent the MBRs of objects of specific material in two
game scenes to be compared.

The linear assignment problem consists of mutually assigning objects of two
sets A = {a1, . . . , an} and B = {b1, . . . , bn} in a cost-optimal manner. Formally,
assignment costs are defined in terms of a matrix C = (cij), where cij denotes
the cost of assigning ai to bj (and vice versa), i.j ∈ [N ] = {1, . . . , N}. The goal,
then, is to find an assignment that minimizes the total cost∑

i∈[N ]

∑
j∈[N ]

cijxij

with

xij =

{
1, if ai and bj are mutually assigned,

0, otherwise.
,

subject to the following constraints:∑
j∈[N ]

xij = 1 for all i ∈ [N ],

∑
i∈[N ]

xij = 1 for all j ∈ [N ],

The Hungarian algorithm [6] is one of the best-known methods for solving the
assignment problem. It is mainly based on the observation that adding or sub-
tracting a constant from all the entries of a row or a column of the cost matrix
does not change the optimal solution of the underlying assignment problem.
Thus, the algorithm proceeds iteratively, subtracting and adding constants in
each step to specific rows and columns of the cost matrix, in such a way that
more and more zero-cost pairs are built, until an optimal solution can be found.
We refer to [6] for a detailed description of the Hungarian algorithm.

In the simplest form of the assignment problem, the number of objects in
A and B are equal. For the problem at hand, this assumption does not hold;
instead, we are dealing with an unbalanced assignment problem. To handle such
problems, one usually introduces dummy rows or columns in the cost matrix,
depending on which number exceeds the other. Normally, the introduced entries
are filled with zeros, but this does not fit our purpose, because the addition or
removal of objects will normally influence the best shot in a scene. We overcome
this issue by associating a penalty with objects that remain unassigned. The
penalty term for an unassigned rectangle is its distance to the zero-perimeter
rectangle located at the origin, i.e., R = [0, 0]× [0, 0] .

4 Experimental Results

We begin our experimental analysis with the construction of the case base, in
which we proceed as follows. We run a random agent that chooses the coordinates
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of the shot to be executed fully at random, and we restrict ourself to the first 21
levels of the “Poached Eggs” episode of Angry Birds. The agent plays each level
several times and the cases from each level are first collected in separate files. The
distribution of the number of cases we gathered over the different levels of the
game, shown in Table 1, was not uniform. That is, we dedicate more examples
to harder levels than to easier ones. At the end, we combine all cases in one file,
ending up with a case base of total size of 11, 703, which serves as the main case
base for our agent.

Table 1. The number of cases we collected in each of the 21 levels of the game.

Level # cases

1 50
2 50
3 50
4 130
5 50
6 100
7 50

Level # cases

8 50
9 100
10 647
11 50
12 50
13 182
14 100

Level # cases

15 50
16 50
17 50
18 400
19 200
20 100
21 100

After the case base was constructed, we first tested the performance of our
agent on the above-mentioned levels. To this end, we let the agent play 10 games
and report the minimal, maximal, and average score for each level, together with
the standard deviation, in Table 2.

To get an idea of how our agent performs in comparison to others, Figure 3
plots the average score of our agent from Table 2 together with the scores of
the naive agent, the top-3 agents of the 2013 and 2014 participants of the AI
competition, and the average scores of all 30 participants, on all 21 levels, based
on the 2014 benchmarks provided on the aibirds.org website. This comparison
shows that our agent clearly outperforms both the naive and the average agent
in both per-level and total scores, and is even competitive to the top-3 agents.

5 Conclusion and Future Work

We made use of CBR to build an Angry Birds playing agent. The results of an
experimental study, in which we compared our agent with others, including the
top-3 systems of previous AI competitions, are very promising, especially in light
of the rather simple implementation of our agent so far. In fact, we are convinced
that our agent’s performance can be further enhanced through the collection of
more cases and the refinement of the different steps of the CBR cycle.

More concretely, this work can be extended along the following directions.
First, the real shape instead of the MBR representation can be used to represent
the objects involved in the game. Second, a weighted version of the distance
measure between game scenes can be learnt. Third, cases from levels of the
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Table 2. The minimal, maximal, and average score, and the standard deviation of our
agent in 10 games on the first 21 levels of the “Poached Eggs” episode of Angry Birds.

Level Min. score Max. score Mean score Standard deviation

1 28950 30790 29735 704.955
2 60950 61520 61293 188.388
3 42510 42540 42529 11.005
4 10660 36810 22500 9174.102
5 59680 67760 65301 2302.744
6 18020 35620 32096 6115.800
7 31180 46200 42486 5777.303
8 54110 54120 54111 3.162
9 32130 50020 44525 5874.565
10 32650 59920 46980 9294.536
11 54130 57390 55634 910.668
12 53010 54880 54248 550.713
13 21530 48090 33036 8987.933
14 49250 73760 65553 6858.706
15 37760 48540 46486 3166.492
16 54410 64790 61646 3073.714
17 46290 49900 48492 1224.444
18 39710 60830 49888 7150.137
19 31710 38550 33127 1999.445
20 34030 59140 46527 10113.806
21 59720 96880 70332 11020.633

Level
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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Fig. 3. The cumulative scores of our agent, the top 3 agents of the 2013 and 2014
participants of the AI competition, the naive agent, and the average agent, on the first
21 levels of the “Poached Eggs” episode of Angry Birds.
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game other than the ones of the “Poached Eggs” episode can be extracted to
increase the size and coverage of the case base. Fourth, since our agent does not
realize any adaptation of the retrieved solutions so far, a sophisticated adaptation
strategy could be another means to improve performance.
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