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HCI10/Ib30BAHME INPUBJINXXEHUA CPEAHETO 110J14 AJ1 AHAJIN3A
KPYITHOMACIHITABHBIX CUCTEM MACCOBOTI'O OBC/IY KUBAHHA C MAJIBIM
NNAPAMETPOM*

AHHOTAIMA

B danHoli cmambe paccmampusaemcsi cucmema MAaccogozo 06CAYHCUBAHUS, KOMOpAsi Cocmoum U3
b6eckoHeYH020 Yucaa udeHmuyHsix cepaepos FCFS c 6ygepom, komopwlil cnocobeH XpaHums oyepeds
6ecKOHe4HOoUl 0/UHbl, U C NYACCOHOBCKUM 8X00AWUM NOMOKOM 3ds80K 8 CUCMeMy MAacco8020
obcayxcusarus ¢ uHmeHcusHocmoro NA. Kaxcdblii 3anpoc, nocmynarowull 8 cucmemy mMaccogozo
00CAYHCUBAHUSL, CAYUALIHBIM 06PA30M 8blO6UPAEm U Onpawiugdaem 08a NpouU3e0.1bHbIX cepsepa Imoll
cucmeMbl, a 3ameM MeHOBEHHO OMnNpas/isiemcsi Ha 00uH U3 Hux, ede 60/1ee KOpomkas oyepeos.
Aunamuka usmeHnenus doau cepsepos 8 cucmeme U, (t), umeroujux dauHy ouepedell He meHee K,

MOXMCHO 0NUCAMb C NOMOWbH 6eCKOHE4HOU cucmembl Jug@depeHyuarbHbIX ypasHeHull. Jas amoii
b6eckoHeuHoll cucmembl dudpepeHyuabHbIX ypadeHeHUll nocmasieHa 3adava Kowu muxoHosckozo
muna ¢ Ha4aabHbIMU YCA0BUSAMU U MAJAbIM NAPAMEmpoM, KOmopbll npucymcmeyem neped
NpouseodHbIMU, HAYUMAs C ypasHeHus, onucbigaroujezo @dyukyuro U, (t) . Haauuue masnozo

napamempa 8 6eCKoOHeuHoll cucmeme dud@depeHyuarbHbIX YPABHEHUll h0380/51em ONnucCbieamb
ObICMPOUBMEHSIOUWUECS NPOYECCbl 8 KPYNHOMACWMAGHBIX CUCMEMAX MACCO8020 06CAYHCUBAHUS,
Ymo daem 803MOMCHOCMb AHAAUZUPOBAMb NEPEXOTHbIE NPOYECChI 8 CUCMEMAx makozo mund. /Jas
paccmampugaemoli CUH2YAPHO 803MyWeHHOol 3adayu Kowu muxoH08Cck020 muna ¢ Ha4a/bHbIMU
YCAOBUSAMU U MAIbIM NAPAMEMPOM JOKA3AHA meopema cyujecmeo8aHusl.
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MEAN-FIELD APPROXIMATION FOR LARGE-SCALE QUEUEING SYSTEMS WITH A SMALL
PARAMETER

Abstract

In this paper it is considered the queueing system, consisting of an infinite number of identical servers
with FCFS buffer, which can store a queue of infinite length, with Poisson input flow of requests in a
queueing system with intensity N A . Every request entering the queuing system, randomly selects and
uses any of two servers of the system, and then is instantly sent to one of them, where a shorter queue.
A share dynamics u, (t) of servers in the system having the queue length is not less than k can be

described by infinite system of differential equations. It is possible to formulate Tikhonov type Cauchy
problem with initial conditions and small parameter for this infinite system of differential equations.
A small parameter in the infinite system of differential equations allows describing rapidly changing
processes in large-scale queueing systems. The existence theorem is proved for the considered
singularly perturbed Tikhon type Cauchy problem with initial conditions and small parameter.

* Tpyanl Il MexayHapogHol Hay4yHOH KoH(epeHnun «KoHBepreHTHble KOTHUTUBHO-
uHopManuoHHbIe TexHosorum» (Convergent’2017), MockBa, 24-26 Hosa6ps, 2017

Proceedings of the II International scientific conference "Convergent cognitive information
technologies" (Convergent’2017), Moscow, Russia, November 24-26, 2017



Keywords

Analytical methods in queueing theory; systems of differential equations of infinite order; small
parameter; countable Markov chains; large-scale queueing systems; Dobrushin mean-field
approximation.

Introduction

The recent research of queueing systems with complex routing discipline in [16], [25], [26], [27] transport
networks [1], [7], [8] and the asymptotic behavior of Jackson networks [21] faced with the problem of proving the
global convergence of the solutions of certain infinite queueing systems of ordinary differential equations to a
time-independent solution. Scattered results of these studies, however, allow a common approach to their
justification. This approach will be expounded here. In work [17] the countable systems of differential equations
with bounded Jacobi operators are studied and the sufficient conditions of global stability and global asymptotic
stability are obtained. In [15] it was considered finite closed Jackson networks with N first come, first serve nodes
and M customers. Inthelimit M — o, N -, M /N — A4 >0, it was got conditions when mean queue lengths
are uniformly bounded and when there exists a node where the mean queue length tends to oo under the above
limit (condensation phenomena, traffic jams), in terms of the limit distribution of the relative utilizations of the
nodes. It was deriven asymptotics of the partition function and of correlation functions. In papers [5], [11], [20]
the authors built various models of large-scale queueing systems and considered their dynamics.

Cauchy problems for the systems of ordinary differential equations of infinite order was investigated
AN.Tihonov [22], K.P.Persidsky [18], 0.A.Zhautykov [28-29], Ju.Korobeinik [10], A.M.Samoilenko, Yu.V.Teplinskii
[19] other researchers. For example, Markus Kreer, Aye Kzlers and Anthony W. Thomas [13] investigated
fractional Poisson processes, a rapidly growing area of non-Markovian stochastic processes, that are useful in
statistics to describe data from counting processes when waiting times are not exponentially distributed. They
showed that the fractional Kolmogorov-Feller equations for the probabilities at time t could be represented by an
infinite linear system of ordinary differential equations of first order in a transformed time variable. These new
equations resemble a linear version of the discrete coagulation fragmentation equations, well-known from the
non-equilibrium theory of gelation, cluster-dynamics and phase transitions in physics and chemistry.

It was studied the singular perturbed systems of ordinary differential equations by A.N. Tihonov [23],
A.B.Vasil'eva [24], S.A. Lomov [14] other researchers.

In paper [2] we investigated the singular perturbed systems of ordinary differential equations of infinite order
of Tikhonov-type &Xx=F(x(t,g,),y(t g,).t) , y=f(x(t,9,),y(t g,),t) with the initial conditions X(t,)=g, ,

y(to)zgy, where x,9,€ X, X cl, and y,g,€Y, YeR", te[to,tl] (t, <t) t,t, eT, TeR, g, and g, are

given vectors, ¢ >0 is a small real parameter.

In this paper we apply Dobrushin mean-field approaches from [26] for the singular perturbed systems of
ordinary differential equations of infinite order of Tikhonov type. We considered a system that consists of infinite
number of servers with a Poisson input flow of requests of intensity NA. Each request arriving to the system
randomly selects two servers and is instantly sent to the one with the shorter queue. In this case a share u, (t) of

the servers that have the queues lengths with not less than k can be described using an infinite system of
differential equations. It is possible to investigate Tikhonov type Cauchy problem for this system with small
parameter ¢ and initial conditions. Itis studying the singular perturbed Tikhonov systems of ordinary differential

equations of infinite order u= f(u(t,g,),U(t g,).t), eU =F(u(t,g,),U(t,g,),t) with the initial conditions
u@©,9,)=9,,U(0,g,)=g,,where u, f eX, X eR" are n-dimensional functions; U,F €Y, Y |, are infinite-
dimensional functions and t e [O,TO] (0<Ty <), teT, TeR; g, € X and g, €Y are given vectors, £ >0 isa
small real parameter. The evolution analysis of u, (t) (k=1,2,..)) beapplied to application inlarge-scale queueing
systems.

Large-scale queueing systems model

The basic model considered there is a queueing system S, with N identical infinite-buffer FCFS (First-Come,

First-Served) single-servers, with a Poisson arrival flow of rate NA and with i.i.d. exponential service times of
mean 1/ u, where 0< A < . Upon its arrival each task chooses m servers at random (i.e., independently of the

pre-history of the queueing system (QS) and with probability 1/(N™) ) and then selects, among the chosen ones,

the server with the lowest queue-size, i.e., the lowest number of tasks in the buffer (including the task in service).
If there happen to be more than one server with lowest queue-size, the task selects one of them randomly.
One is interested in the 'typical’ behavior of a server in S, as N — o . Formally, it means that vVt >0 and



k=0,1,..., we consider the fraction q,(t) =M, (t)/N where M, (t) is the random number of servers with the
queue-size k at time t. Clearly, 0<q, (t) <1, quk (t)=1;and Q(t) = (g, (t)),t =0, forms a Markov process (MP).
Technically, it is more convenient to pass to the tail probabilities I, (t) = ijka (t) ; the state space of the
corresponding MP U (t) =(f (t)),t=0 , is the set U, of non-increasing non-negative sequences
u=(u,k=0.1,.) with u, =1, Zmuk <o and with the u, 's multiple of 1/ N, which implies that u, =0 for all
k large enough. It is convenient to prolong the sequences u €U, to the negative k 's by the value 1.

The generator of {U N (t)} is an operator A acting on functions f :U, — C' and given by

AW =Ny, —w[f g <u>ﬂ+ W

k>0

HNY((U,)? —(uk)z){f (u +eﬁk— f(u)ﬂ.

k>0
Here, e, stands for the sequence with the k -th entry 1 and all others 0, the addition of the sequences is

componentwise. Process {UN (t)} is positive-recurrent and thus possess a unique invariant distribution, 7, ;
given any initial distribution @ , the distribution of U (t) approaches 7, as t — . The main result of [25] is

that, as N — oo, the expected value E,,N I (t) converges to the value {ak } , where

P mk—1)/(m-1)
a, = (—j k >0. (2)
H
Pictorially speaking, it means that, as N — o, an 'average' server in the QS will have k or more tasks in the

buffer with probability a, .
It is interesting to compare S with another queueing system L, where the arriving task chooses the server

completely randomly (i.e., independently of the pre-history and with probability 1/ N ). Clearly, L is equivalent
to an isolated M /M /o queue with the arrival and service rates 4 and  , respectively, which justifies omitting

subscript N in this notation. More precisely, the average serverin L will have k or more tasks in the buffer with
the geometrical probability
k
a = [ij k>1, (3)

U
independently of N, which is much larger than a, .

In fact, as was shown in [25], the whole process {UN (t)} is asymptotically deterministic as N — oo . More
precisely, let U denote the set of the non-increasing non-negative sequences u = (u,,k € Z) with u, =1 for k<0

and z U, <o .Then, if the distribution @ of initial state U (0) approaches a Dirac delta-measure
k<o K N

concentrated at a point g = {gk} €U, the distribution of {UN (t)} is concentrated in the limit at the trajectory
u(t) = u,(t),t =0, giving the solution to the following system of differential equations
e 1) = 20U (0 U, (©) + (U, ) — U 0)7) k 21,
Uy (t) =0, (4)
u ©=g9,20k=1,2,..,t>0.

Point a = (a,) (see (2)) is a (unique) fixed point for system (4) in U .

These results illustrate the essence of the mean-field approximation for QS S . Equations (4) describe a 'self-
compatible’ evolution of vector u(t), or, equivalently, of the probability distribution q(t) ={q (t)} defined by
g, ®) =u,({)-u,, (@), t=0, k=0,1,... Asbefore, u(t) is simply the sequence of the tail probabilities for q(t).

We will compare system (4) with the linear system

Vi ®©) = #(Yiea®© = Y ) + A(Yea O - ¥ (1) k 21, (5)
describing the evolution of the probability distribution g°(t) = (q(t)), a°(t) =y, ()=, ,,(t) in a standard
M /M /1/ o queue with the arrival and service rates A and g, respectively. The u -terms in (4) and (5) are the



same; they correspond with the departure of the tasks and 'push’ the probability mass in q(t) and q(o) (t) towards
k =0.0n the other hand, the A -terms (different in both SQ) correspond with the arrival of the tasks; these terms
shift the probability mass to larger k 's. The A -term in (4) is smaller than the one in (5) when u, (t) is small;

pictorially speaking, system (4) provides (for the same values of 4 and x ) more 'protection’, for large k , against
the shift to the right, which may lead to an 'explosion’, when the relation Zmuk (t) <o or Zk>1yk (t) < oo may fail
as t — 0. Because of this, the entries a, of sequence a (see (2)) giving the fixed point of (4) decrease 'super-

exponentially’, in contrast with the exponential decay of the tail probabilities in the fixed point a’ = (a,f ) of (5).

Large-scale queueing systems model with a small parameter

Let's consider a system that consists of N servers with a Poisson input flow of requests of intensity NA . Each
request arriving to the system randomly selects two servers and is instantly sent to the one with the shorter queue.
The service time is distributed exponentially with mean t =1/ x. Let u, (t) be a share servers that have the queues

lengths with not less than k. It is possible to investigate the asymptotic distribution of the queue lengths as
N — o0 and A <1 [25]. The considered system of the servers is described by ergodic Markov chain. There is a
stationary probability distribution for the states of the system and if N — o the evolution of the values u, (t)

becomes deterministic and the Markov chain asymptotically converges to a dynamic system the evolution of which
is described by infinite system of differential-difference equations for which we can formulate the Cauchy problem
of such type

0 (1) = 20Uy (O~ U, (0) + A (U, (1)~ (U 1)2),

Uy (t) =0, (6)
u 0)=g,20k=12,..1t>0.

where g ={g,} _, isanumerical sequence (1=g, >g,,...) [25].
We can investigate infinite system of differential-difference equations with small parameter such form
Uy (1) = (U (0) = () + A Uea () - (U (1)),
k=0,1,...,n-1,
0, (1) = 2 (U,0 () = U, (0) + (U, (0)° = (U, (1)),

U, (0 = (U0 -U, 0)+ (U, , ) - U, O)),
k=n+l,n+1,...,
u ©=9,20k=0,12,...,
where ¢ >0 is a small parameter that bring a singular perturbation to the system (6), which allows us to describe

()

©

vons1+(Sc > 0) is a numerical sequence.

the processes of rapid change of the systems, and s = {Sk}

Using (7) we can write Tikhonov problems for systems of ordinary differential equations of infinite order with
a small parameter ¢ and initial conditions

u=fu x1,9,)UtA109)1).
e*U = F(U(t, 11,4, 9,).1); (8)
u0,44,2,9,)= 9,80, 1,4,9y) = 9y
where u, f € X, X €R" are n-dimensional functions; U,FeY , Y c |, are infinite-dimensional functions and
te[0,T,] (0<T, <), teT,TeR; g,eX and g, €Y are given vectors (9, = {9, },_,. 9y ={0},_..,), >0
is a small real parameter; u(t,g,) =g, = {uk}:=0 and U(t,g,) = {u,},_ ., are solutions of (8). Given functions

f(u(t,z,4,9,),U(t, 26 4,9,).t) and FU(t, 1, 4,9, ),t) are continuous functions for all variables



f Ut 2,2,9,),8) = p(Uya (8) —u (0) +
+A((U ) = (U, (©)°) k=01,...,n-1,
fo (Ut 44,9, U (t 1.4,95),1) = 1 (U0 (1) —u, (1) +
+A (U ) = (U, ©)°),
FUM#A49,).0) = 1(U 0 -U, )+
+A (U2 ) —U )7 ) k=n+1n+1,..

)

Let S is an integral manifold of the system (8) in X xY xT . If any point t" €[0,T,] (u(t’),U(t"),t")eS of
trajectory of this system has at least one common point on S this trajectory (u(t,G),U(t,g),t) €S belongs the

integral manifold S totally.
If we assume in (8) that & =0 than we have a degenerate system of the ordinary differential equations and a
problem of singular perturbations

u=fu i g,)U()t),
0=F(u(t 4,9,)U(t ul)t); (10)
u@©,4,9,)=49,,

where the dimension of this system is less than the dimension of the system (8), since the relations
F(u(t, A),U(t, 1), A,t) =0 in the system (10) are the algebraic equations (not differential equations). Thus for the

system (9) we can use limited number of the initial conditions then for system (8). Most natural for this case we
can use the initial conditions u(0,4,9,) =g, for the system (10) and the initial conditions U(0,4,U,) =g,

disregard otherwise we get the overdefined system. We can solve the system (10) if the equation
F(u(t, A),U(t, 1), A,t) =0 has roots. If it is possible to solve we can find a finite set or countable set of the roots

U,(t4,9,) =u,(u(t, 4,9,),t) where qeN . If the implicit function F(u(t, 4),U(t,4),4,t)=0 has not simple
structure we must investigate the question about the choice of roots. Hence we can use the roots
U, (t,4,09,)= u, (u(t,2,9,),t) (geN)in (10) and solve the degenerate system
{Ud = f(ug (t,4,9,).U, (Uy (. 4,9,). 1), A1)
U,(0,4,9,) =9,

Since itis not assumed that the roots U, (t,4,9,) = U, (u(t, 4,9,), 4,t) satisfy the initial conditions of the Cauchy
problem (8) (U,(0) # g,, qeN), the solutions U(t,4,9,) (8) and U,(t,2,d,) do not close to each other at the
initial moments of time t > 0. Also there is a very interesting question about behaviors of the solutions u(t, 4, 9,)
of the singular perturbed problem (8) and the solutions u, (t,4,9,) of the degenerate problem (10). When t =0

(11

we have u(0,4,9,) =uy(0,4,9,) . Do these solutions close to each other when te (O,TO] ? The answer to this
question depends on using roots U, (t,4,09,)= U, (ut,2,9,),t) and the initial conditions, which we apply for the
systems (8) and (11).

Analysis of infinite order system of differential equations

We can rewrite Tikhonov problems (8) for systems of ordinary differential equations of infinite order with a
small parameter ¢ and initial conditions in the form

{v = R (V(t, 1, 4, &,V°),1),

v(0, 1, 4, &,v,) = V°, (12)

where
V= (U, Uy,...,u, U UL,
Fa = 24(U s (0 =, (0) + (U ©)° — (U 1)),k =0,1,...,n—1,
Fan = 2(Up (0 =, (0) + 2((U, 5 (1) = (U, (1)?), (13)
Fa =& *u(Ua(-U, () +& *A((U L, 0) U, 1)°) k=n+Ln+1,...,

VO =(0,,00) (v =g, k=0,1,..)
Using methods from [19], [28-19] we can consider Tikhonov-type problems (12)



{v: Fe (Vo Voo Vyeoes 1, 4, 6,1), (14)

V(0, 1, 4, €,Vy) = Vy,
Definition. A function Fy (Vo,vl,‘..,vn,...,,u,/l,e,t) is called strongly continuous if forany &, >0 , there exist N,
and &, >0 such that the inequality |VI —vi" <&, i=0,1,2,..., N,,implies the estimate for any x#>0,4>0,6>0
| P (Vo Vi 18,2 8) = e (Vo Wy oo 11,2,8 ) [< . (15)
Theorem. Assume that the right-hand sides of the system of equations (14)
« are defined for any V, (1, 4,6,t) eR,,i=0,1,2,... , u>0,1>0,6>0 andall teT, = [0,At]= RY;
e are strongly continuous in V,,V,,... for fixed teT,, £>0, 1 >0, £ >0 and measurable in t €T for fixed
Vi(u, A4, 6,1),i=0,1,2,...;
e satisfy the inequalities
| Fi (£ Vo Vieens s, 4, 8) [< M (1) (16)
forall 1=0,1,2,..., where M,(t) are functions summable on the segment T, and for any 11>0,1>0,6>0.

Then, for any vector (Vg V) ) with real coordinates, there exists at least one solution

(v0 (1, A, 6,8),v, (1, 4, 8,t),...) of the system of equations (14) such that v,(0) =v?,i =0,1,2,....
Proof. We replace the system of equations (14) by the following system of integral equations:

t
v, (1) =v? +j|:Ri (Vo (), vy (1), 11, 4, ) dL,i = 0,1,2,..., (17)
0
and consider a mapping (A )

Z(t) =P +jFRi (4 ®) Vo)., 11, 4,6) 0,1 = 0,1,2,...., (18)

which establishes a correspondence between an arbitrary countable system of continuous functions {vi (t)}iw: , and

0
i=

another system of this sort {z (t)} o - Note that if F (t,v,,...,V,, 4,4, &) is a continuous function of finitely many

variables {V;(t)}" measurable with respect to t for fixed V; i = 0,n, then the function

O(t) = Rty (1),.... ¢, (1), 1, 4, 6)
is measurable if ¢ (t),i = 0,n, are measurable.
Thus, the function
Y () = Rt ¢®),....4,1).0,0,...,4,8)
is measurable and, therefore, the function
Fo(th (0, A O, 11,2, 8) = Pt 11,2, )
is also measurable because
PO = lim¥, (. 4,2), (19)

which readily follows from the condition of strong continuity. The requirement of summability follows from

condition 3 of Theorem. We consider a system of functions {Vi (t)} , asapoint P ofanabstract space R .If there

exists a point P invariant under mapping ( A ) (18), then it specifies a solution of the system of equations (17)
and, hence, of system (14).

©
i=

Consider a set M, formed by three points P for which {Vi (t)} , Satisfy the conditions
t t”
[V, (£) =V < IMk(t)dt, [V, () =V, (") < ij (tydt,k=0,1,2,....
0 t'

Itis easy to see that mapping ( A ) (18) maps the set M, into itself. We now introduce mapping ( B ) by putting
every point P in correspondence with a set of numbers

L
Nol lNol l

...... , (20)



an an
nN, "N,
At
where N, =V + jMi (t)dt and the numbers {a;} . (aﬁ, .,a,,...) are the coefficients of the Fourier expansion
nr=
0

of a function v, (t) in a certain complete orthogonal system of functions on the segment T, . By ordering the set of

numbers (20), we obtain a numerical sequence by,,b,...,b,,.... Moreover, we have
- , A , At t 2
(&) = [(v,®) dt< j[vﬁ +ij(t)dt] dt < (21)
k=0 0 0 0

At
< [N2dt=aN?,
0

whence it follows that
2

j <ay =2 (22)

n=o N

IR
omik=o NN,

Thus, mapping ( B ) maps the set M, into a subset M, of the Hilbert space |, . Therefore, mapping (A)
induces a mapping (A") of the set M, into itself. Further, if mapping (A") has a fixed point P* € M, then the
corresponding point P e M, determines the solution of equation (17) and, hence, (14). To use the Schauder
theorem, it suffices to show that the set M, is compact and convex. If P™ = (f,,...,b,,...) and P"" = (b,...,b,,...)

are points from M, then the point

aP” + pP" = (aby + Ay, ab + B ,..),a+ B=1,a>0,5>0, (23)
belongs to M; because it corresponds to the system of functions
av, (t) + BV, (1), av, (t) + Bv, (1),.... (24)

specifying a point from the set M, . Indeed,
t t
|V, (0 + By (0 = Vi | = [@(vi O =) + B, () —V0)| < (@ + B) M, ()t = [M, ©)dt, (25)
0 0
i.e., condition 1 is satisfied. Similarly, the inequality

@V (©)+ By (©) —av, (') - Bu ()| < (@ +ﬂ)jM (()dt (26)

implies condition 2. Hence, the set M; is convex. In this set, we choose an arbitrary sequence of points Pi*. This

sequence corresponds to the sequence of points P, (V, ( (t) A M ®,.. ) in the set M. According to conditions 1 and

2, the sequence VOI (t),i=0,1,2,..., is uniformly bounded and equicontinuous and, consequently, it contains a

subsequence v, 0)(t) V(al)(t), véas)(t) . that converges uniformly in teT, . However, the sequence

A h)(t), h— o , is also uniformly bounded and equicontinuous and, hence, it also contains a convergent
subsequence
vV O @), v (), (27)

This process can be continued infinitely.
We compose the table

v v v ). ..
v v w2 ... (28)
v v v ...

and rewrite the set of sequences row by row
(ao)(t) (ﬁl (t) (72 (t)...



v e v (t).... (29)

v v v (b). ..

Each of these sequences converges as a subseque.r.léc.e}).f.‘:i.éonvergent sequence supplemented by finitely many
elements. Thus, the sequence of points
P ,P ...cM, (30)

o' A !
converges weakly (coordinatewise) to a point Py € M, (uniformly in t €T,). For the sake of convenience, we
rewrite sequence (30) as

P,R.P,...,P (31)

2yeeer pyees

Let us show that the sequence of the corresponding points P, , Pl*, PZ*,... from the set MS converges to the

point P, € M, in the norm of the Hilbert space I, . Indeed, the distance between the points P”* and P from M,
is given by the formula

* o < ' v o 1 i ! !
P(P P ): Z(bi -b)* = Z 2N 2 ,[(Vn -v,)*dt, (32)
i=0 a0 NNy 5
whence it follows that
- O 1 % e |
p(PR)< D s [ —viydt+at Yy = (33)
n=0 N Nn 0 n=n, n

is arbitrarily small for sufficiently large n, and k. This means that the set M; is compact. Note that one can easily

prove that mapping (B) is a homeomorphism, i.e,, the sets M, and M; are topologically equivalent. Theorem is
proved.

Conclusions

We investigated the large-scale queueing system model that consists of infinite number of servers with a
Poisson input flow of requests of intensity NA. We assume that each request arriving to the system randomly
selects two servers and is instantly sent to the one with the shorter queue. The service time is distributed
exponentially with mean 1/ 4. In this case a share u, (t) of the servers that have the queues lengths with not less

than k can be described using an infinite system of differential equations. Tikhonov type Cauchy problem for this
system with small parameter ¢ is investigated. The theorems of existence of solutions for this Cauchy problem is
proved with taking into account parameters A, i, ¢ .
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