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Аннотация 

В данной статье рассматривается система массового обслуживания, которая состоит из 
бесконечного числа идентичных серверов FCFS с буфером, который способен хранить очередь 
бесконечной длины, и с пуассоновским входящим потоком заявок в систему массового 
обслуживания с интенсивностью N . Каждый запрос, поступающий в систему массового 
обслуживания, случайным образом выбирает и опрашивает два произвольных сервера этой 
системы, а затем мгновенно отправляется на один из них, где более короткая очередь. 
Динамика изменения доли серверов в системе ( )ku t , имеющих длину очередей не менее k , 

можно описать с помощью бесконечной системы дифференциальных уравнений. Для этой 
бесконечной системы дифференциальных уравнений поставлена задача Коши тихоновского 
типа с начальными условиями и малым параметром, который присутствует перед 
производными, начиная с уравнения, описывающего функцию ( )ku t . Наличие малого 

параметра в бесконечной системе дифференциальных уравнений позволяет описывать 
быстроизменяющиеся процессы в крупномасштабных системах массового обслуживания, 
что дает возможность анализировать переходные процессы в системах такого типа.   Для 
рассматриваемой сингулярно возмущенной задачи Коши тихоновского типа с начальными 
условиями и малым параметром доказана теорема существования. 
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MEAN-FIELD APPROXIMATION FOR LARGE-SCALE QUEUEING SYSTEMS WITH A SMALL 
PARAMETER 

Abstract 

In this paper it is considered the queueing system, consisting of an infinite number of identical servers 
with FCFS buffer, which can store a queue of infinite length, with Poisson input flow of requests in a 
queueing system with intensity N . Every request entering the queuing system, randomly selects and 
uses any of two servers of the system, and then is instantly sent to one of them, where a shorter queue. 
A share dynamics ( )ku t  of servers in the system having the queue length is not less than k  can be 

described by infinite system of differential equations. It is possible to formulate Tikhonov type Cauchy 
problem with initial conditions and small parameter for this infinite system of differential equations. 
A small parameter in the infinite system of differential equations allows describing rapidly changing 
processes in large-scale queueing systems. The existence theorem is proved for the considered 
singularly perturbed Tikhon type Cauchy problem with initial conditions and small parameter. 
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Introduction 

The recent research of queueing systems with complex routing discipline in [16], [25], [26], [27] transport 
networks [1], [7], [8] and the asymptotic behavior of Jackson networks [21] faced with the problem of proving the 
global convergence of the solutions of certain infinite queueing systems of ordinary differential equations to a 
time-independent solution. Scattered results of these studies, however, allow a common approach to their 
justification. This approach will be expounded here. In work [17] the countable systems of differential equations 
with bounded Jacobi operators are studied and the sufficient conditions of global stability and global asymptotic 
stability are obtained. In [15] it was considered finite closed Jackson networks with N  first come, first serve nodes 

and M  customers. In the limit M  , N  , / > 0M N  , it was got conditions when mean queue lengths 
are uniformly bounded and when there exists a node where the mean queue length tends to   under the above 
limit (condensation phenomena, traffic jams), in terms of the limit distribution of the relative utilizations of the 
nodes. It was deriven asymptotics of the partition function and of correlation functions. In papers [5], [11], [20] 
the authors built various models of large-scale queueing systems and considered their dynamics. 

Cauchy problems for the systems of ordinary differential equations of infinite order was investigated 
A.N.Tihonov [22], K.P.Persidsky [18], O.A.Zhautykov [28-29], Ju.Korobeinik [10], A.M.Samoilenko, Yu.V.Teplinskii  
[19] other researchers. For example, Markus Kreer, Aye Kzlers and Anthony W. Thomas [13] investigated 
fractional Poisson processes, a rapidly growing area of non-Markovian stochastic processes, that are useful in 
statistics to describe data from counting processes when waiting times are not exponentially distributed. They 
showed that the fractional Kolmogorov-Feller equations for the probabilities at time t could be represented by an 
infinite linear system of ordinary differential equations of first order in a transformed time variable. These new 
equations resemble a linear version of the discrete coagulation fragmentation equations, well-known from the 
non-equilibrium theory of gelation, cluster-dynamics and phase transitions in physics and chemistry. 

It was studied the singular perturbed systems of ordinary differential equations by A.N. Tihonov [23], 
A.B.Vasil'eva [24], S.A. Lomov [14] other researchers. 

In paper  [2] we investigated the singular perturbed systems of ordinary differential equations of infinite order 

of Tikhonov-type = ( ( , ), ( , ), )x yx F x t g y t g t , = ( ( , ), ( , ), )x yy f x t g y t g t  with the initial conditions 
0( ) = xx t g , 

0( ) = yy t g , where , xx g X , 
1X l  and , yy g Y , nY R ,  0 1,t t t  (

0 1<t t ), 
0 1,t t T , T R , 

xg  and yg  are 

given vectors, > 0  is a small real parameter. 
In this paper we apply Dobrushin mean-field approaches from [26] for the singular perturbed systems of 

ordinary differential equations of infinite order of Tikhonov type. We considered a system that consists of infinite 
number of servers with a Poisson input flow of requests of intensity N . Each request arriving to the system 

randomly selects two servers and is instantly sent to the one with the shorter queue. In this case a share ( )ku t  of 

the servers that have the queues lengths with not less than k  can be described using an infinite system of 

differential equations. It is possible to investigate Tikhonov type Cauchy problem for this system with small 
parameter   and initial conditions. It is studying the singular perturbed Tikhonov systems of ordinary differential 

equations of infinite order = ( ( , ), ( , ), )u Uu f u t g U t g t , = ( ( , ), ( , ), )u UU F u t g U t g t  with the initial conditions 

(0, ) =u uu g g , (0, ) =U UU g g , where ,u f X , nX R  are n -dimensional functions; ,U F Y , 1Y l  are infinite-

dimensional functions and  00,t T  ( 00 < T   ), t T , T R ; ug X  and Ug Y  are given vectors, > 0  is a 

small real parameter. The evolution analysis of ( )ku t  ( =1,2, )k  be applied to application in large-scale queueing 

systems. 

Large-scale queueing systems model 

The basic model considered there is a queueing system NS , with N  identical infinite-buffer FCFS (First-Come, 

First-Served) single-servers, with a Poisson arrival flow of rate N  and with i.i.d. exponential service times of 

mean 1/  , where 0 < <  . Upon its arrival each task chooses m  servers at random (i.e., independently of the 

pre-history of the queueing system (QS) and with probability 1/ ( )mN ) and then selects, among the chosen ones, 

the server with the lowest queue-size, i.e., the lowest number of tasks in the buffer (including the task in service). 
If there happen to be more than one server with lowest queue-size, the task selects one of them randomly. 

One is interested in the 'typical' behavior of a server in NS , as N  . Formally, it means that 0t   and 
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= 0,1,k , we consider the fraction ( ) = ( ) /k kq t M t N  where ( )kM t  is the random number of servers with the 

queue-size k  at time t . Clearly, 0 ( ) 1kq t  , ( ) = 1kk
q t ; and ( ) = ( ( )), 0kQ t q t t  , forms a Markov process (MP). 

Technically, it is more convenient to pass to the tail probabilities ( ) = ( )k kj k
r t Q t

 ; the state space of the 

corresponding MP ( ) = ( ( )), 0N kU t f t t  , is the set 
NU  of non-increasing non-negative sequences 

= ( , = 0,1, )ku u k  with 
0 = 1u , 

>1
<kk

u   and with the 
ku 's multiple of 1/ N , which implies that = 0ku  for all 

k  large enough. It is convenient to prolong the sequences 
Nu U  to the negative k 's by the value 1 . 

The generator of  ( )NU t  is an operator A  acting on functions 1: Nf U C  and given by  

  1

>0

( ) = ( )k
N k k

k

e
A f u N u u f u f u

N


  
     

  
  (1) 

  2 2

1

>0

( ) ( ) ( ) .k
k k

k

e
N u u f u f u

N
 

  
     

  
  

Here, 
ke  stands for the sequence with the k -th entry 1  and all others 0 , the addition of the sequences is 

componentwise. Process  ( )NU t  is positive-recurrent and thus possess a unique invariant distribution, 
N ; 

given any initial distribution  , the distribution of ( )NU t  approaches 
N  as t  . The main result of  [25] is 

that, as N  , the expected value ( )k
N

E r t  converges to the value  ka , where  

 

( 1)/( 1)

= 0.

km

k

m

a k




 
 

 
 

 (2) 

Pictorially speaking, it means that, as N  , an 'average' server in the QS will have k  or more tasks in the 

buffer with probability 
ka . 

It is interesting to compare 
NS  with another queueing system L , where the arriving task chooses the server 

completely randomly (i.e., independently of the pre-history and with probability 1/ N ). Clearly, L  is equivalent 
to an isolated / /M M   queue with the arrival and service rates   and  , respectively, which justifies omitting 

subscript N  in this notation. More precisely, the average server in L  will have k  or more tasks in the buffer with 
the geometrical probability  

 0 = 1,

k

ka k




 
 

 
 (3) 

independently of N , which is much larger than 
ka . 

In fact, as was shown in [25], the whole process  ( )NU t  is asymptotically deterministic as N  . More 

precisely, let U  denote the set of the non-increasing non-negative sequences = ( , )ku u k Z  with = 1ku  for 0k   

and 
0

<kk
u


 .Then, if the distribution   of initial state (0)NU  approaches a Dirac delta-measure 

concentrated at a point  = kg g U , the distribution of  ( )NU t  is concentrated in the limit at the trajectory 

( ) = ( ), 0ku t u t t  , giving the solution to the following system of differential equations  

 

   2 2

1 1

0

( ) = ( ) ( ) ( ( )) ( ( )) , 1,

( ) = 0,

(0) = 0, = 1,2, , 0.

k k k k k

k k

u t u t u t u t u t k

u t

u g k t

  
    


  


 (4) 

Point = ( )ka a  (see (2)) is a (unique) fixed point for system (4) in U . 

These results illustrate the essence of the mean-field approximation for QS NS . Equations (4) describe a 'self-

compatible' evolution of vector ( )u t , or, equivalently, of the probability distribution  ( ) = ( )kq t q t  defined by 

1( ) = ( ) ( )k k kq t u t u t , 0t  , = 0,1,k  As before, ( )u t  is simply the sequence of the tail probabilities for ( )q t . 

We will compare system (4) with the linear system  

    1 1( ) = ( ) ( ) ( ) ( ) , 1,k k k k ky t y t y t y t y t k       (5) 

describing the evolution of the probability distribution 
0 0 0

1( ) = ( ( )), ( ) = ( ) ( )k k k kq t q t q t y t y t  in a standard 

/ /1/M M   queue with the arrival and service rates   and  , respectively. The  -terms in (4) and (5) are the 
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same; they correspond with the departure of the tasks and 'push' the probability mass in ( )q t  and (0) ( )q t  towards 

= 0k . On the other hand, the  -terms (different in both SQ) correspond with the arrival of the tasks; these terms 

shift the probability mass to larger k 's. The  -term in (4) is smaller than the one in (5) when ( )ku t  is small; 

pictorially speaking, system (4) provides (for the same values of   and  ) more 'protection', for large k , against 

the shift to the right, which may lead to an 'explosion', when the relation 
>1

( ) <kk
u t   or 

>1
( ) <kk

y t   may fail 

as t  . Because of this, the entries 
ka  of sequence a  (see (2)) giving the fixed point of (4) decrease 'super-

exponentially', in contrast with the exponential decay of the tail probabilities in the fixed point 0 0= ( )ka a  of (5). 

Large-scale queueing systems model with a small parameter 

Let's consider a system that consists of N  servers with a Poisson input flow of requests of intensity N . Each 
request arriving to the system randomly selects two servers and is instantly sent to the one with the shorter queue. 
The service time is distributed exponentially with mean = 1/t  . Let ( )ku t  be a share servers that have the queues 

lengths with not less than k . It is possible to investigate the asymptotic distribution of the queue lengths as 

N   and < 1  [25]. The considered system of the servers is described by ergodic Markov chain. There is a 

stationary probability distribution for the states of the system and if N   the evolution of the values ( )ku t  

becomes deterministic and the Markov chain asymptotically converges to a dynamic system the evolution of which 
is described by infinite system of differential-difference equations for which we can formulate the Cauchy problem 
of such type 

 

   2 2

1 1

0

( ) = ( ) ( ) ( ( )) ( ( )) ,

( ) = 0,

(0) = 0, = 1,2, , 0.

k k k k k

k k

u t u t u t u t u t

u t

u g k t

  
   


  


 (6) 

where  
=1

= k k
g g


 is a numerical sequence (

1 21 = ,g g ) [25]. 

We can investigate infinite system of differential-difference equations with small parameter such form  

 

   

   

   

2 2

1 1

2 2

1 1

2 2

1 1

( ) = ( ) ( ) ( ( )) ( ( )) ,

= 0,1, , 1,

( ) = ( ) ( ) ( ( )) ( ( )) ,

( ) = ( ) ( ) ( ( )) ( ( )) ,

= 1, 1, ,

(0) = 0, = 0,1,2, ,

k k k k k

n n n n n

s
k

k k k k k

k k

u t u t u t u t u t

k n

u t U t u t u t u t

U t U t U t U t U t

k n n

u g k

 

 

  

 

 

 

   

 


  

   

  




 (7) 

where > 0  is a small parameter that bring a singular perturbation to the system (6), which allows us to describe 

the processes of rapid change of the systems, and  
= 1

= ,( > 0)k kk n
s s s




 is a numerical sequence. 

Using (7) we can write Tikhonov problems for systems of ordinary differential equations of infinite order with 
a small parameter   and initial conditions  

 

= ( ( , , , ), ( , , ), ),

= ( ( , , , ), );

(0, , , ) = , (0, , , ) = ,

u U

s
k

U

u u U U

u f u t g U t g t

U F U t g t

u g g U g g

  

  

   







 (8) 

where ,u f X , nX R  are n-dimensional functions; ,U F Y , 1Y l  are infinite-dimensional functions and 

 00,t T  ( 00 < T   ), t T , T R ; ug X  and Ug Y  are given vectors    
=0 = 1

( = , = )
n

u k U kk k n
g g g g




, > 0  

is a small real parameter;  
=0

( , ) = =
n

u u k k
u t g g u  and  

= 1
( , ) =U k k n

U t g u



 are solutions of (8). Given functions 

( ( , , , ), ( , , , ), )u Uf u t g U t g t     and ( ( , , , ), )UF U t g t   are continuous functions for all variables  



23 

 

 

 
 

 
 

 

1

2 2

1

1

2 2

1

1

2 2

1

( ( , , , ), ) = ( ) ( )

( ( )) ( ( )) , = 0,1, , 1,

( ( , , , ), ( , , , ), ) = ( ) ( )

( ( )) ( ( )) ,

( ( , , , ), ) = ( ) ( )

( ( )) ( ( )) , = 1, 1,

k u k k

k k

n u U n n

n n

k U k k

k k

f u t g t u t u t

u t u t k n

f u t g U t g t U t u t

u t u t

F U t g t U t U t

U t U t k n n

  



    



  















 

  

 

 

 

   













 (9) 

Let S  is an integral manifold of the system (8) in X Y T  . If any point  *

00,t T  * * *( ( ), ( ), )u t U t t S  of 

trajectory of this system has at least one common point on S  this trajectory ( ( , ), ( , ), )u t G U t g t S  belongs the 

integral manifold S  totally. 
If we assume in (8) that = 0  than we have a degenerate system of the ordinary differential equations and a 

problem of singular perturbations  

 

= ( ( , , , ), ( ), ),

0 = ( ( , , ), ( , , ), );

(0, , ) = ,

u

u

u u

u f u t g U t t

F u t g U t t

u g g

 

  









 (10) 

where the dimension of this system is less than the dimension of the system (8), since the relations 
( ( , ), ( , ), , ) = 0F u t U t t    in the system (10) are the algebraic equations (not differential equations). Thus for the 

system (9) we can use limited number of the initial conditions then for system (8). Most natural for this case we 

can use the initial conditions (0, , ) =u uu g g  for the system (10) and the initial conditions (0, , ) =y UU U g  

disregard otherwise we get the overdefined system. We can solve the system (10) if the equation 
( ( , ), ( , ), , ) = 0F u t U t t    has roots. If it is possible to solve we can find a finite set or countable set of the roots 

( , , ) = ( ( , , ), )q u q uU t g u u t g t   where q N . If the implicit function ( ( , ), ( , ), , ) = 0F u t U t t    has not simple 

structure we must investigate the question about the choice of roots. Hence we can use the roots 
( , , ) = ( ( , , ), )q u q uU t g u u t g t   ( q N ) in (10) and solve the degenerate system  

 
= ( ( , , ), ( ( , , ), ), , );

(0, , ) = .

d d u q d u

d u u

u f u t g u u t g t t

U g g

  







 (11) 

Since it is not assumed that the roots ( , , ) = ( ( , , ), , )q u q uU t g u u t g t    satisfy the initial conditions of the Cauchy 

problem (8) ( (0) ,q uU g  q N ), the solutions ( , , )UU t g  (8) and ( , , )q uU t g  do not close to each other at the 

initial moments of time > 0t . Also there is a very interesting question about behaviors of the solutions ( , , )uu t g  

of the singular perturbed problem (8) and the solutions ( , , )d uu t g  of the degenerate problem (10). When = 0t  

we have (0, , ) = (0, , )u d uu g u g  . Do these solutions close to each other when  00,t T ? The answer to this 

question depends on using roots ( , , ) = ( ( , , ), )q u q uU t g u u t g t   and the initial conditions, which we apply for the 

systems (8) and (11). 

Analysis of infinite order system of differential equations 

We can rewrite Tikhonov problems (8) for systems of ordinary differential equations of infinite order with a 
small parameter   and initial conditions in the form  

 
0

0

0

= ( ( , , , , ), ),

(0, , , , ) = ,

Rv F v t v t

v v v

  

  





 (12) 

where 

0 1 1 2= ( , , , , , , ),n n nv u u u U U   

   2 2

1 1= ( ) ( ) ( ( )) ( ( )) , = 0,1, , 1Rk k k k kF u t u t u t u t k n      , 

   2 2

1 1= ( ) ( ) ( ( )) ( ( ))Rn n n n nF U t u t u t u t     ,            

   2 2

1 1= ( ) ( ) ( ( )) ( ( )) , = 1, 1, ,
s s
k k

Rk k k k kF U t U t U t U t k n n   
 

       

0 0= ( , ); ( = , = 0,1, )u U k kv g g v g k  

 
 
 
(13) 

Using methods from [19], [28-19] we can consider Tikhonov-type problems (12) 
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0 1

0 0

= ( , , , , , , , , ),

(0, , , , ) = ,

R nv F v v v t

v v v

  

  





 (14) 

Definition. A function  0 1, , , , , , , ,R nF v v v t    is called strongly continuous if for any 
0 > 0  , there exist 

0N  

and 
0 > 0  such that the inequality ' '

0| |<i iv v 


 , = 0,1,2, ,i  
0N , implies the estimate for any 0, 0, > 0      

    ' ' ' '

0 1 0 1 0| , , , , , , , , , |< .R RF v v F v v      
 

  (15) 

Theorem. Assume that the right-hand sides of the system of equations (14)   

    • are defined for any 1( , , , ) , = 0,1,2,iv t R i    , 0, 0, > 0     and all   1

0 = 0,t T t R   ;  

    • are strongly continuous in 
0 1, ,v v  for fixed 

0t T , 0  , 0  , > 0  and measurable in 
0t T  for fixed 

( , , , ), = 0,1,2,iv t i   ;  

    • satisfy the inequalities  

                                                                0 1| , , , , , , |< ( )Ri iF t v v M t    (16) 

for all = 0,1,2,i , where ( )iM t  are functions summable on the segment 
0T  and for any 0, 0, > 0    .  

Then, for any vector  0 0

0 1, ,v v  with real coordinates, there exists at least one solution 

 0 1( , , , ), ( , , , ),v t v t       of the system of equations (14) such that 0(0) = , = 0,1,2,i iv v i .  

Proof. We replace the system of equations (14) by the following system of integral equations:  

  0

0 1

0

( ) = , ( ), ( ), , , , , = 0,1,2, ,

t

i i Riv t v F t v t v t dt i     (17) 

and consider a mapping ( A )  

  0

0 1

0

( ) = , ( ), ( ), , , , , = 0,1,2, ,

t

i i Riz t v F t v t v t dt i     (18) 

which establishes a correspondence between an arbitrary countable system of continuous functions  
=0

( )i i
v t


 and 

another system of this sort  
=0

( )i i
z t


. Note that if 

0( , , , , , , )R nF t v v     is a continuous function of finitely many 

variables  
=0

( )
n

i i
v t  measurable with respect to t  for fixed , = 0,iv i n , then the function  

 
0( ) = ( , ( ), , ( ), , , )R nt F t t t      

is measurable if ( ), = 0,i t i n , are measurable. 

Thus, the function  
 

0( ) = ( , ( ), , ( ),0,0, , , , )n R nt F t t t      

is measurable and, therefore, the function  
 0 1( , ( ), ( ), , , , ) = ( , , , )RF t t t t         

is also measurable because  
 ( ) = ( , , , ),lim n

n

t t   


   (19) 

which readily follows from the condition of strong continuity. The requirement of summability follows from 

condition 3 of Theorem. We consider a system of functions  
=0

( )i i
v t


 as a point P  of an abstract space R . If there 

exists a point P  invariant under mapping ( A ) (18), then it specifies a solution of the system of equations (17) 
and, hence, of system (14). 

Consider a set 0M  formed by three points P  for which  
=0

( )i i
v t


 satisfy the conditions   

0

0

| ( ) | ( )

t

k k kv t v M t dt   , | ( ) ( ) | ( ) , = 0,1, 2,

t

k k k

t

v t v t M t dt k





    . 

It is easy to see that mapping ( A ) (18) maps the set 0M  into itself. We now introduce mapping ( B ) by putting 

every point P  in correspondence with a set of numbers  

 
0

0 0

0 0

, , , ,
na a

N N
 

 ,  (20) 
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1

, , , ,
n

n n

n n

a a

nN nN
 

 ,  

where 0

0

= ( )

t

i i iN v M t dt



   and the numbers  
, =0

r

n
n r

a


 ( 0 , , ,n

n na a ) are the coefficients of the Fourier expansion 

of a function ( )nv t  in a certain complete orthogonal system of functions on the segment 
0T . By ordering the set of 

numbers (20), we obtain a numerical sequence 
0 1, , , ,nb b b . Moreover, we have  

    

2

2 2 0

=0 0 0 0

= ( ) ( )

t t t

k

n n n k

k

a v t dt v M t dt dt

   
    

 
     (21) 

 2 2

0

= ,

t

n nN dt aN



   

whence it follows that  

 

2
2

2

2
=0 0=1 =0 =0

1
= = .

6

k

n
i

i k nn

a a
b a

nN n

    
 

 
    (22) 

Thus, mapping ( B ) maps the set 
0M  into a subset *

0M  of the Hilbert space 
2l . Therefore, mapping ( A ) 

induces a mapping ( *A ) of the set *

0M  into itself. Further, if mapping ( *A ) has a fixed point * *

0P M , then the 

corresponding point *

0P M  determines the solution of equation (17) and, hence, (14). To use the Schauder 

theorem, it suffices to show that the set *

0M  is compact and convex. If * ' '

0= ( , , , )nP b b  and * ' '

0= ( , , , )nP b b
   

are points from *

0M , then the point  

 * * ' ' ' '

0 0 1 1= ( , , ), = 1, > 0, > 0,P P b b b b         
       (23) 

belongs to *

0M  because it corresponds to the system of functions  

 ' ' ' '

0 0 1 1( ) ( ), ( ) ( ), .v t v t v t v t   
 

   (24) 

specifying a point from the set 
0M . Indeed,  

 ' ' 0 ' 0 ' 0

0 0

( ) ( ) = ( ( ) ) ( ( ) ) ( ) ( ) = ( ) ,

t t

k k k k k k k k kv t v t v v t v v t v M t dt M t dt     
 

          (25) 

i.e., condition 1 is satisfied. Similarly, the inequality  

 ' ' ' ' ' ' ' '

0

( ) ( ) ( ) ( ) ( ) ( )

t

k k k k kv t v t v t v t M t dt     
   

       (26) 

implies condition 2. Hence, the set 
*

0M  is convex. In this set, we choose an arbitrary sequence of points 
*

iP . This 

sequence corresponds to the sequence of points  ( ) ( )

0 1( ), ( ),i i

iP v t v t  in the set 
0M . According to conditions 1 and 

2, the sequence 
( )

0 ( ), = 0,1,2,iv t i , is uniformly bounded and equicontinuous and, consequently, it contains a 

subsequence 
( ) ( )( )

0 1
0 0 0( ), ( ), , ( ),sv t v t v t
 

 that converges uniformly in 0t T . However, the sequence 

(

1

)
( ),hv t h


 , is also uniformly bounded and equicontinuous and, hence, it also contains a convergent 

subsequence  

 
( ) ( )( )

0 1
1 1 1( ), ( ), , ( ), .sv t v t v t
 

 (27) 

This process can be continued infinitely. 
We compose the table  

 
( ) ( ) ( )

0 1 2
0 0 0( ) ( ) ( )v t v t v t
  

 

 
( ) ( ) ( )

0 1 2
1 1 1( ) ( ) ( )v t v t v t
  

 (28) 

  
( ( (

0 1 2
2 2 2

) ) )
( ) ( ) ( )v t v t v t

  
 

  
and rewrite the set of sequences row by row  

 
( ) ( ) ( )

0 1 2
0 0 0( ) ( ) ( )v t v t v t
  
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( ) ( ) ( )

0 1 2
1 1 1( ) ( ) ( )v t v t v t
  

 (29) 

  
( ) ( ) ( )

0 1 2
2 2 2( ) ( ) ( )v t v t v t
  

 

  
Each of these sequences converges as a subsequence of a convergent sequence supplemented by finitely many 

elements. Thus, the sequence of points  
 0

0 1 2
, , ,P P P M     (30) 

converges weakly (coordinatewise) to a point 
0 0P M  (uniformly in 

0t T ). For the sake of convenience, we 

rewrite sequence (30) as  
 

0 1 2, , , , ,nP P P P  (31) 

Let us show that the sequence of the corresponding points * * *

0 1 2, , ,P P P  from the set *

0M  converges to the 

point * *

0 0P M  in the norm of the Hilbert space 
2l . Indeed, the distance between the points *P  and *P  from *

0M  

is given by the formula  

  * * ' ' 2 ' ' 2

2 2
=0 =0 0

1
, = ( ) = ( ) ,

t

i i n n

i n n

P P b b v v dt
n N


 

        (32) 

whence it follows that  

  
0

* * 0 2

0 2 2 2
=0 =0 0

1 1
, ( )

n t

k

k n n

n n nn

P P v v dt t
n N n


 

      (33) 

is arbitrarily small for sufficiently large 
0n  and k . This means that the set *

0M  is compact. Note that one can easily 

prove that mapping (B) is a homeomorphism, i.e., the sets 
0M  and *

0M  are topologically equivalent. Theorem is 

proved. 

Conclusions 

We investigated the large-scale queueing system model that consists of infinite number of servers with a 
Poisson input flow of requests of intensity N . We assume that each request arriving to the system randomly 
selects two servers and is instantly sent to the one with the shorter queue. The service time is distributed 
exponentially with mean 1/  . In this case a share ( )ku t  of the servers that have the queues lengths with not less 

than k  can be described using an infinite system of differential equations. Tikhonov type Cauchy problem for this 

system with small parameter   is investigated. The theorems of existence of solutions for this Cauchy problem is 
proved with taking into account parameters , ,   . 
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