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Poccuiickuii yHUBEPCUTET JpYK6bI HAPOZOB, I'. MockBa, Poccus

HCI10/Ib30BAHME INPUBJINXXEHWUA CPEAHETO 110J14 AJ1 AHAJIM3A
KPYITHOMACIITABHBIX TPAHCIIOPTHBIX CETEX C MAJIBIM IAPAMETPOM*

AHHOTAIMA

PeweHue 3adavy mamemamu4ecko2o MOGEAUPOBAHUS C/IOHCHBIX MPAHCNOPMHbIX cemell Ha OQHHOM
amane npedcmasssiem 60/4bWYH0 CAOHCHOCMb NO NPUYUHE 60/bUI020 06BemMa OaHHLIX, KOmopble
npuxodumcsi aHaau3uposame. Hanpumep, 02poMHOe KO/AU4ecmeo B03MOMCHLIX 8apUaHMOo8
nepego3ok 3ampyodHsiem noJjyveHue 0OCMAMOYHO 3KOHOMHO20 NJAAHA 3MNUPUYECKUM UAU
IKcnepmHbiM nymem. [IpumeHeHue MamemMamuveckux Memodos U UCno/b308aHUe COBPEMEHHbBIX
8bIYUCAUMENAbHBIX A/120pUMMO8 8 NJAAHUPOBAHUU hepeso3ok daem 60bWoll IKOHOMUYeCKUll
agpexm. I[IposedeHHblll aHaau3z nokasasa, 4mo smom hodxod sieasemcs 3P@PekmusHbIM 045
peweHuss WUPOKO20 Kpyed MexHU4eCcKUX U MexHO/A02UYeCKUX npobsem npoeKmuposaHusl,
cmpoumesabcmea U @PYHKYUOHUPOBAHUSL MPAHCNOPMHbLIX cucmeM. B pamkax smozo nodxoda
ydaemcsi co3damb 3d@dekmusHbIll aszopummM MUHUMU3AYUU 3ampam HA NhpoeKkmuposaHue,
cMpoume/bCmeo U 3KChJayamayui makux cucmem. TpaHchopmHbsle 3adayu Moz2ym 6bimb peuieHbl
CUMNAEKCHbIM MemodoM, 00HAKO MaAmMpuya cucmemsl 02paHu4eHull mpaHcnopmHoli 3adavu 4acmo
HACMO/IbKO C/0XHCHA, YUMo 0.151 ee pewleHusl pad3pabomatul cheyuaabHvle Memodsl. B daHHoU pabome
uccaedyromesi KpynHomacuwmabHvle MmpaHCnopmHble cemu € UCNO0/1b308AHUEM NPUBAUNCEHUS
cpedHezo noas  [flobpywuna. IlokazaHo, 4mo aHA/AU3 360AKWYUU  KPYNHOMACWMAGHbLIX
MPAHCNOPMHbBIX CUCMEM MONCHO ONUCAMb C NOMOWbH0 cucmeMmbl duddepeHYua1bHbIX YPA8HEHUU
b6eckoHeYH020 hopsidka. /151 amoii cucmembl MOXCHO nocmasumas 3adavy Kowiu muxoHoecko2o muna
C Ma/ablM napamempoM, KOmopblll 8HOCUM CUH2Y/sipHOe eo3myujeHue. B cmambe dokazaHa
meopema cyujecmeogaHus pewleHusl amotii 3adavu Kowu.

KiiodeBble cioBa

AHaaumuveckue Memodsl 8 meopuu MpAaHCNOpMHbIX cemell; cucmembvl JuddepeHyuarbHbIX
ypasHeHull 6ecKkOHeyHO020 nopsidka; MaJjvlli napamemp; c4emHvle yenu Mapkosa;
KpynHomacuimabHble MpAHCNOpMHble cemu; npubaudceHue cpedHezo hoas Jo6pywuHa;
mpaHcnopmHuas 3a0a4a; OUHAMUKA CAOHCHBIX CUCEM.
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MEAN-FIELD APPROXIMATION FOR LARGE-SCALE TRANSPORT NETWORKS WITH A
SMALL PARAMETER

Abstract

The solution of mathematical simulation problems of complex transport networks at this stage is
more difficult because of the large amount of data that must be analyzed. For example, a huge number
of possible options of traffic makes it difficult to obtain sufficient economical plan through empirical
or using expert approach. Application of mathematical methods and use of modern computational
algorithms for transport planning gives considerable economic benefit. It is shown this approach is
effective for solving a wide range of technical and technological problems of design, construction and
operation of transport systems. In this approach manages to create an efficient algorithm for
minimizing the cost of design, construction and operation of such systems. The transportation
problem can be solved by simplex method but the matrix of the constraints of the transportation
problem is often so complex that its solution developed special methods. In this paper it is studied
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large-scale transport network using Dobrushin’s mean-field approximation. It is shown that the
analysis of the evolution of large-scale transport systems can be described using systems of differential
equations of infinite order. For this system, it is formulated the Cauchy problem Tikhon type with a
small parameter &, which introduces a singular perturbation. The theorem of existence of the
solution of this Cauchy problem is proved.

Keywords

Analytical methods in transport networks theory; systems of differential equations of infinite order;
small parameter; countable Markov chains; large-scale transport networks; Dobrushin mean-field
approximation; transportation problem; dynamics of complicated systems.

Introduction

In this paper large-scale transport networks are studied using Dobrushin mean-field approach [1,4-5,10,17-
19]. We assume that the transport networks deal with the problem of proving the global convergence of the
solutions of certain infinite systems of ordinary differential equations to a time-independent solution. In work,
[4,5,10] the infinite systems of differential equations modelling large-scale transport systems are studied and the
sufficient conditions of global stability and global asymptotic stability are obtained.

Cauchy problems for the systems of ordinary differential equations of infinite order was investigated
AN. Tihonov [14], K.P. Persidsky [11], O.A. Zhautykov [20-21], Ju. Korobeinik [6], M.A. Krasnoselsky, P.P. Zabreyko
[8], A.M. Samoilenko, Yu.V. Teplinskii [12] other researchers.

It was studied the singular perturbed systems of ordinary differential equations by A.N. Tihonov [15],
A.B. Vasil'eva [16], S.A. Lomov [9] other researchers.

In papers [3], [7], [13] the authors built various models of large-scale queueing systems and considered their
dynamics.

In paper [2] it was investigated the singular perturbed systems of ordinary differential equations of infinite

order of Tikhonov-type ¢X= F(X(t,0,), y(t.9,).t) 'y = f(x(t,9,), ¥(t, 9,),1) with the initial conditions X(t) = 9y,
() =9, where %0, X | Xl and ¥:9,€Y | YeR", te[tt] (Lb<h), t,teT TeR, 0, and 9y are
given vectors, € > 0 is a small real parameter.

In this paper we considered large-scale transport network systems that consists of infinite number of network
service nodes with a Poisson input flow of requests. We assume that the queuing system has N nodes and N
servers. At each node (N nodes) the arrivals of particles form a Poisson flow of rate 4. For an empty node a
particle leaves the system. A server at the node takes the particle and moves to a random node. Travelling time is
exponential of mean 1/ 1 The number of servers at each node (of these N nodes) is bounded by M We consider

the property of the system for the limiting deterministic process as N = % The evolution analysis of large-scale
transport systems can be described using an infinite system of differential equations. It is possible to investigate
Tikhonov type Cauchy problem for this system with small parameter. In this paper we apply Dobrushin mean-field
approaches from [5,10] for analysis of the singular perturbed systems of ordinary differential equations of infinite
order.

It is possible to formulate Tikhonov type Cauchy problem for this system with small parameter ¢ and initial
conditions. We study the singular perturbed Tikhonov systems of ordinary differential equations of infinite order

u=futg,)Utgy)t), sU=F(u(tg,)U(tg,)t) with the initial conditions Y(0.9,)=9,, U(0,9,) =g,
where ¢ >0 is a small real parameter. The theorem of existence of solution for this Cauchy problem is proved.

)

Large-scale transport network model

Let's consider a large-scale transport networks that consist of N nodes, a virtualnode and "N servers. At each

node (of these N nodes) the arrivals of particles form a Poisson flow of rate A Ifa particle arrives at an empty
node then the particle leaves the system. Otherwise, if there is a server at the node then the server takes the particle

and jumps to the virtual node. At this node the server waits for an exponential time of mean t=1/u After the
server jumps to a random node with uniform distribution. If the number of servers at the chosen node equals m
then the server waits for the following attempt at the virtual node. The non-negative number of servers at each

node (except virtual) is bounded by M. Consider the fractions fc =™ /N V =W /N where ™ is the (random)
number of nodes with K servers and W is the number of servers at the virtual node. It is more convenient to

regard the tail probabilities Uk = Zim:kfi . The state space of the corresponding Markov process
Uy ®) = U ®).V() is the set Xn of all vectors U= (Up,...,U,,V)" in (1/N)ZM™ such that 15U 2Up 2.2 Uy,



V20, U+...+U, +V =T. The generator of Un (1) is the operator Av(!) acting on functions and given by

AT = N2, -, )0 (- - e

e e
NAu [f|u—-K 4 md |_ f ,
+NAu, [ [u N+ N j w1+

+N/N§(uk_l—uk)[f [u—eﬁuef&—“j— f W]

where € denotes a vector with the component of number K equal to 1 and others equal to 0.

The mean-field approximation suggests that the whole process Uy® is asymptotically deterministic as
N — o More precisely, let X denote the set of all R™*" vectors defined by (1). Then, if the distribution of the
initial state Un (0) converges to the Dirac delta-measure concentrated at some point 9 € X' the distribution of

Uy () is concentrated on the orbit U) € X a5 N = where U() is the solution of the following system of
differential equations (mean-field equations)

V(t) = Au, (1) -V (1) Uy (1), Up(t) = 1;
Uy (8) = A (U, () =y, (©) + 2V () (u, (©) -y, (1),
Su, 0 +V (1) = Ft), r(r) >0,

vV(0)=V,20,u,(0)=g,20,k=0,1,2,...,
1=9,29,20,,...,t=20

where ') >0 jsa parameterand 9 = {gk }:;1 is a numerical sequence. The infinite order system (2) is non-linear
and its right-hand side depends on time.

Large-scale queueing systems model with a small parameter

We can investigate infinite system of differential equations with small parameter such form
V(1) = A0, (1) -V (1) Ug (1), Up () =1;
Uy (£) = A (U (8) = U (1)) + 2V (t) (U, () —u (1)), k =1,2,...,n,
%y (£) = A(Up,o (1) —U (0)) + 2V (t) (U, (1) —u (1)), k =n+1,n+2,...,

S, (1) +V (1) = r(t), r(t) >0,

v(0)=V,20,u,(0)=9g,20,k=0,1,2,...,
1=9,20,20,,...,t =0,

where ¢ is a small parameter that bring a singular perturbation to the system (2) which allows us to describe the
processes of rapid change of the systems and S = {Sk }kzml (S >0) isa numerical sequence.

Using (3) we can write Tikhonov problems for systems of ordinary differential equations of infinite order with
a small parameter ¢ and initial conditions

V(1) = Au, (1) -V () Ug (1), Uy (t) =1;
u=fut ui g,) Ut mi,gy)t),
g*U = FU(t, i, A, 9, ) 1);
V)=V, >0,u(,1,4,9,) =9,

U@©,u,4,9,)=0y,

where U feX , X eR™ are (n+1)-dimensional functions; UFeY , Ycl are infinite-dimensional functions
and t€[0.T,] ( 0<To<eo 3 teT | TeR ; 6 €X and 9 €Y are given vectors



(9, = {gk}Ezo,gU = {gk}f:nﬂal: 9,20,20,,--) , €>0 is a small real parameter; Y(0.9,) =09, and

U(0,9y) =9y are the conditions for solutions of (4). Given functions fU(t4,9,).U(t 44,9,)1) and
FU(t 4,95):1) are continuous functions for all variables

fo(ut, 16, 4,9,),1) = 2(Up o (8) —u (1) + 2V (1) (U, (1) —u, (1)), k =1,...,n,

FU2,05)1) =AU, (1)U )+ 4V 1) (U (1) -U, (1), k=n+1,n+2,...

Let S is an integral manifold of the system (4) in X xY xT _If any point t €[0,T,] UE).U({t),t)eS of

trajectory of this system has at least one common point on S this trajectory ut,G) Ut g)t)es belongs the
integral manifold S totally.

If we assume in (4) that € =0 than we have a degenerate system of the ordinary differential equations and a
problem of singular perturbations

V() = Auy () =V (t) Uy (t), up(t) =1,
u=futmig,)U)t),
0=F(u(t 4,9,).U(t 1 2),1);
u(,4,9,) =4,

where the dimension of this system is less than the dimension of the system (4), since the relations

Fu2)U(t,4),4,1)=0 i the system (6) are the algebraic equations (not differential equations). Thus for the
system (9) we can use limited number of the initial conditions then for system (4). Most natural for this case we

can use the initial conditions Y(0:4,9,) = 9, for the system (6) and the initial conditions u@©4U,) =g,
disregard otherwise we get the overdefined system. We can solve the system (6) if the equation

F(u(t,2),U(t,4),4,t) =0 has roots. If it is possible to solve we can find a finite set or countable set of the roots
Ug(t.24,9,) =Uy (Ut 2,90).) where €N | If the implicit function F(U(tA)U(t.4),4,t)=0 has not simple
structure we must investigate the question about the choice of roots. Hence we can use the roots
Ug(t,4,9,) =ug(ut, 4,9,),1) (d€NYyin (10) and solve the degenerate system
{ud = (Uq (t.2,9,), U (Ug (£, 2,9,), 1), A,1);
U;(0,4,9,) =9,

Since it is not assumed that the roots Yq (t:4,9,) = Uy (U(t, 4,9,), 4,1) satisfy the initial conditions of the Cauchy
problem (4) (Ya(©® #9u: d€ N the solutions Ut 4,9u) (4) and Ya(t4 %) do not close to each other at the
initial moments of time £ > 0, Also there is a very interesting question about behaviors of the solutions u(t,2,9,)
of the singular perturbed problem (4) and the solutions Y (t,4,9.) of the degenerate problem (6). When £ =0 we
have U(0,4,9,) =U4(0,4,9,) . Do these solutions close to each other when t € (O’To] ? The answer to this question
depends on using roots Uq(t.2,9,) =Ug(u(t, 2,9.).1) and the initial conditions, which we apply for the systems (7).
Analysis of infinite order system of differential equations

We can rewrite Tikhonov problems (4) for systems of ordinary differential equations of infinite order with a
small parameter ¢ and initial conditions in the form

V= Fo (V(t, 1, A,&,V°),1),
v(0, 1, 4, &,v,) = V°,

where
v=V,u,Uu,...,u U, U, ,,..),
Fro = AU, (1) =V (1) U, (1),

I:Rk = A(ukﬂ(t)_uk (t))+ﬂv(t)(uk—l(t)_uk (t)),k :1,...,n, ,
Fae =& (U () = (©)+& iV (©) (U, (€) —U (1), k =n+1,n+2,...,
V0= (Y5, 9,.9u),

where Vo =V, V. =g, ,k=1,2,...
Using methods from [12], [20-21] we can consider Tikhonov-type problems (8)



{\7 = Py (Vo Vyseeei Viseons 41, 4, 8,),
v(0, 1, A, 6,Vy) =V,
Definition. A function Fe (Vova eV f Ay 5:t) is called strongly continuous if for any € ~ 0, there exist No
and % >0 such that the inequality | V; -V, <8, i=01,2,., N, implies the estimate for any #=0:420,&>0
| e (Voo Vi 1248 ) = P (Vo Vi oo 11,2, 8 ) < &,
Theorem. Assume that the right-hand sides of the system of equations (10)
« are defined for any Vi (1. A,&,0) R, i=0,1,2,... , #20,420>0 gpq4y teT, =[0,At]c R,

« are strongly continuous in Vo:Vi:--- for fixed t€To, #20 120 &>0 gnd measurable in t€To for fixed
Vi(u,4,6,1),1=0,1,2,....
e satisfy the inequalities
| Fai (6 Vo, Vieeny a1, A, 8) [< M (1)
forall 1=201,2,... where M;(t) are functions summable on the segment T and for any # 204206>0
0 ,,0
Then, for any vector (Vo Y ) with real coordinates, there exists at least one solution
(Vo (#’ﬁ,g’t)’vl(#’/Ilglt)’---) of the system of equations (14) such that V; (0) = v,i=012,...
Proof. We replace the system of equations (8) by the following system of integral equations:

v, (t) =V° +JI.FRi (t,Vo (), v, (),..., 11, 4,€)dt,i=0,1,2,...,

and consider a mapping ( A )

z,(t) =V} +leRi (tve (), vy (1),..., 11,4, €)dt,i=0,1,2,...,

which establishes a correspondence between an arbitrary countable system of continuous functions {Vi ('[)}i:0 and
another system of this sort {Zi (t)}izo. Note that if Fz (t:Vo,---,Vy, £4,4,€) is a continuous function of finitely many

variables {Vi (t)}in:O measurable with respect to U for fixed Vi i = ﬁ , then the function
q)(t) = FR (tl ¢0 (t)! AR ¢n (t); ,Llu ﬂ’y 8)

is measurable if 4 (t),i =0,n , are measurable.
Thus, the function
Y, ()= F(té()....4,1).,0,0,...,1,4,8)
is measurable and, therefore, the function
Fa(t g (1), (),.... 10, A, 8) = P(t, 1, 4, €)
is also measurable because
\P(t) = Ilm‘Pn (tl :Lll 2" {;‘)’
which readily follows from the condition of strong continuity. The requirement of summability follows from
condition 3 of Theorem. We consider a system of functions {Vi (t)}zo asapoint P of an abstract space R .If there

exists a point P invariant under mapping (A ) (14), then it specifies a solution of the system of equations (13)
and, hence, of system (10).

Consider a set Mo formed by three points P for which {Vi (t)}iw:o satisfy the conditions
t t”
[V, () =V |< ij ®dt v, (') -V, ") [ ij (t)dt,k =0,1,2,...
0 t'

Itis easy to see that mapping ( A ) (14) maps the set My into itself. We now introduce mapping ( B ) by putting
every point P in correspondence with a set of numbers



where N; =V} + IMi (t)dt and the numbers {a; }n oo (a,? --+8y,...) are the coefficients of the Fourier expansion of
: :

a function Va () in a certain complete orthogonal system of functions on the segment To. By ordering the set of
numbers (16), we obtain a numerical sequence by, by, By.-.. . Moreover, we have

2
i(aﬁ )2 = Ajt(vn(t))2 dt < Af{vg +ij(t)dtJ dt <
k=0

0 N 0 0
< [NZdt=aN?,
0

whence it follows that

So-gE(A ) gt

:O

Thus, mapping ( B ) maps the set My into a subset Mo of the Hilbert space l, . Therefore, mapping ( A)
induces a mapping ( A") of the set M; into itself. Further, if mapping ( A") has a fixed point P'e M;, then the
corresponding point P e M, determines the solution of equation (17) and, hence, (10). To use the Schauder
theorem, it suffices to show that the set M; is compact and convex. If P = (b' bn) and P = (b”""ibr:l"')
are points from My, then the point

aP” + P = (aby + oy, ab + B0 ,..),a+ B =1,a>0,5>0,
belongs to M, because it corresponds to the system of functions
av, (t) + v, (), av, (t) + BV, (1), ....

specifying a point from the set M. Indeed,

t t
v (©)+ By (1) = VP | = |y (1) =) + BV (1) = 0| < (e + B) [M, (D)dlt = M, (t)att,
0 0
i.e., condition 1 is satisfied. Similarly, the inequality

v () + By () —avi () - A ()] < (@ +ﬂ)ij(t)dt

implies condition 2. Hence, the set My is convex. In this set, we choose an arbitrary sequence of points P’. This

. (i) (i) i . o
sequence corresponds to the sequence of points R (Vo' ®)v' (t)!---) in the set My. According to conditions 1 and

2, the sequence Vé')(t) i=012,... is uniformly bounded and equicontinuous and, consequently, it contains a
a.) . .
subsequence Vo ),V (1), v (t),... that converges uniformly in '€To . However, the sequence
(ah)

(t), h—o0 , is also uniformly bounded and equicontinuous and, hence, it also contains a convergent
subsequence
WO OMY O, ©)...

This process can be continued infinitely.
We compose the table

v OV (v ).
v v o2 (1)....
vé“)(t)vé’l’ OW ...

and rewrite the set of sequences row by row
v v oV ().



v e v (t). ..

() (B) (75)
v O (v, Y OV, (). -
Each of these sequences converges as a subsequence of a convergent sequence supplemented by finitely many

elements. Thus, the sequence of points
Pm0 , Pﬂl’ Py2 . My

converges weakly (coordinatewise) to a point B eM, (uniformly in teT, ). For the sake of convenience, we
rewrite sequence (26) as
P, R.P...,P,,...

Let us show that the sequence of the corresponding points Fy . P, P, ... from the set M, converges to the point

Po* € M; in the norm of the Hilbert space l, . Indeed, the distance between the points P” and P"" from M, is

given by the formula
™~ "* S ' " > 1 i ' v
p(PP7)= (S -bY = [¥ s (v, —v.) e,
i=0 o NNy o

whence it follows that

o 1 A 0 1
p(PO*’Pk*)S Z 2N 2 I(VS—VE)Zdt+AtZ—2
o N“Ny g n=ny N

is arbitrarily small for sufficiently large M and K. This means that the set M, is compact. Note that one can easily

prove that mapping (B) is a homeomorphism, i.e., the sets Mg and My are topologically equivalent. Theorem is
proved.

Conclusions

We consider the property of the system for the limiting deterministic processas N = % The evolution analysis
of large-scale transport systems can be described using an infinite system of differential equations. It is possible to

formulate Tikhonov type Cauchy problem for this system with small parameter ¢ and initial conditions. Tikhonov
type Cauchy problem for this system with small parameter ¢ is investigated. The theorems of existence of
solutions for this Cauchy problem is proved with taking into account parameters s
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