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MOJIEJTUPOBAHUE NPOTMBA MEMEPAHBKI C TOMOIIbI0 MHOTOC/IOMHBIX
MOJIYSMITMPUYECKHX MOJEJIEH HA OCHOBE 3KCNIEPUMEHTA/IbHBIX IAHHBIX®

AHHOTAIMA

B daHHoll cmambe Mbl U3/siazaem pewleHue 3ada4u 0 NocmpoeHuu adanmugHoll Mamemamu4eckoll
Modeau npo2uba HA2py*CeHHOU Kpyeoeoll membpaHbl HA OcHogee ypasHeHus IlyaccoHa u
IKCnepuMeHmMabHuIX aHHbLIX. B pe3yibmame Mol NOAYYUAU NOAYIMNUPUYECKYIO PYHKYUOHASILHYHO
Modesb, 8bIPANCAOUYIO 3A8UCUMOCMb NPo2U6A MeMOPAHbl OM paAcCMOsHUSL 0 OCU cuMmempuu.
Modeab nocmpoeHa ¢ nOMOWbI0 NPUBAUHCEHHO20 AHAAUMUYECKO20 pewleHUs1 ypasgHeHus1 npo2uba
MeMOPaHbl, K03dPuyueHmvl KOomopo2o onpedeasiomcsi ¢ UCh0/1b308aHUEM IKCNEPUMEHMAAbHO
noJ1y4eHHbIX 0aHHbIX. [IpubauiIcEHHOEe peuleHUue NOCMpPOEeHo NPU NOMOWU a8mopcKoll Modudukayuu
YymouHéHHO20 Memoda liiepa, 0CHO8AHHOU HA NPUMEHEHUU YKA3AHHO020 Memoda K uHmepeany ¢
nepemMeHHbIM  8epxHum  npedesom. JlawHas — Modugukayus — no3eoauad  hoCmMpoums
mamemamuyeckyro Modesb 8 gude (YHKYUOHAAbHOU 3a8UCUMOCMU, Ap2yMeHmamu Komopoil
SA8/510MCsl HeU38ECMHble NapamMempbsl peaabHoll MeMmopaHbl. [JaHHble napamempbl HAX00IMcs NO
UBMEPEHUSIM C NOMOUbI0 Memodd HAUMEeHbWUX Keadpamos. B pesysbmame Mbvl NOAyvUAU
YAYHUIEHHYI0 Modesb, 60o/1ee 00CMOBEPHO Bblpaxcarujee 3d8UCUMOCMb NPO2U6A 0m paccmosiHus 0o
yeHmpa, YeMm ImMOYHOe peuleHue UCXO0H020 YpPABHEeHUsl npozuba memoOpaHbul. PazpabomaHHble
Memoodbl Mbl peKOMEHAYeM NPUMEHSIMb K MOOeAUPO8AHUI0 ped/IbHbIX 065eKmMo8 8 cumyayuu, Ko2oda
dusuyeckue npoyeccobl 8 HUX ONUCAHbI HE OYEHb MOYHO, KPOME MO020, UMetomcsl daHHble Hab.1HJdeHUll
3a 065eKMOM MOJeAUPO8AHUS, KOMOpble MO2YM NONOJHAMbCS 8 npoyecce e20 YHKYUOHUPOBAHUSL.
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MODELING OF THE MEMBRANE BENDING WITH MULTILAYER SEMI-EMPIRICAL
MODELS BASED ON EXPERIMENTAL DATA

Abstract

In this article we present the solution of the problem of constructing an adaptive mathematical model
of deflection of a loaded circular membrane based on the Poisson equation and experimental data. As
a result, we got a semi-empirical functional model that expresses the dependence of the deflection of
the membrane from the distance from the axis of symmetry. The model is constructed using the
approximate analytical solution of the equation of deflection of a membrane whose coefficients are
determined using experimentally obtained data. The approximate solution is constructed using the
author's modifications to the revised Euler method based on the application of this method to the
interval with a variable upper limit. This modification allowed us to construct a mathematical model
in the form of functional dependence, the arguments of which are the unknown parameters of the real
membrane. These parameters are measured by the method of least squares. As a result, we got an
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improved model that more accurately expresses the dependence of the deflection on the distance to
the center than the exact solution of the original equation of the deflection of the membrane. Methods
have been developed we recommend you to apply to the modeling of real objects in situations where
physical processes are described not very accurately, in addition, there are monitoring data on the
simulation object, which may be in the process of its functioning.

Keywords

Semiempirical method; qualified Euler method; circular membrane; Laplace operator; study of the
dependence of deflection on the radius.

Introduction

This paper develops methods of work that allow us to construct approximate semiempirical models using
differential equations and experimental data.

A circular membrane of radius R is considered, alternating cargos of various masses are placed on it. The
membrane is assumed to be weightless (the mass of the membrane is much less than the weight of the load), the
cargo is placed in the center of the membrane, its radius a << R . It is assumed that the stretching is isotropic (the
tension is the same in all directions).

In this paper, we compare the exact solution of a differential equation and its approximate solution obtained
by our modification [1-4] of the two-step Euler method [5], according to their agreement with the experimental
data. The modification consists in applying to the variable-length interval known recurrence formulas for
numerical methods for solving differential equations.

The problem under consideration turned out to be one of several problems with real objects for which the
approximate solution better reflects the experimental data than the exact one. The reason for this seemingly
unexpected result is that the differential equation under consideration displays the simulated object inaccurately.
The derivation of more precise equations is very time consuming and does not guarantee success, therefore, the
approach of constructing semiempirical models under consideration has the right to exist.

Material and methods

Let U(r) is the deflection of the membrane from the equilibrium position. For its description we use the
equation:
, 1, [B,ecure[0a],
Uy +=uy =
r 0,ecmu r € (a,R],

which is the Poisson equation in polar coordinates, where U(r, @) = U(r), that is the desired function does not

(1)

depend on the direction, but depends only on the distance I' of the point from the center of the membrane. Here

B= é, A - the weight of the load, T - the absolute value of the tensile force applied to the edge of the membrane.

Since the weight of the membrane is small in comparison with the weight of the load, its effect is neglected. The
above approach to the physical situation studied is taken from the book [6], where additionally the term due to
the membrane weight is taken into account on the right-hand side of the equation.

The equation under consideration is an ordinary differential equation of the second order. Let us write down
its exact solution u(r) , taking into account continuity for r = a and boundedness with r=0:

lBa2 In3+u0 +%B(r2 —a*) npur €[0,a],

2
u(r) = r @
~Ba’In—+u, npur e (a,R].
2 R
Here u, = u(R) is taken from measurements. We choose the parameter B by using the least squares method
10
so as to minimize the value Z(u(rl) _ui)2 . Here r, are the values of I for which the deflection measurements
i=1
were made, U; - the results of the corresponding measurements, u(ri) - the values of the function found by the

formula (2). Obviously, finding the value B , we will know the corresponding value z,=Uu’(R). Taking into account

the above formulas, knowing the weight of the cargo from the experiment, and determining the value B, we
determine the value of the tensile force T .
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To obtain an approximate solution, we reduce equation (1) to the normal system of differential equations:
u'=z,
z (3)
2 =-241(r).
r
Here f (r) is the right-hand side of equation (1).

We seek an approximate solution of (1) in the form of a piecewise given function. To do this, we apply Euler's
method, which for the equation ¥ = g(X, ¥) has the form of a recurrence formula 'y, , =y, +h, g(X.,y,).In
accordance with [1-4], we apply this method to a gap of variable length. In this problem we will construct solutions
from two sides of the interval [0, R], joining them by the continuity of the function and the derivative at the point
r=a.

For the interval (&, R] we construct a solution starting at its right end. After changing the variable

X =R —T, solve the system (3) by the two-step Euler method with h, = X/ 2, we obtain:

Xz,
u(X) = Uy — Xz, — ,
() 0 0 4R (4)
XZ,y 2R
z(X)=(z,+=—=2)-
0)=(20+50) 50—

The value of Uy, as before, is taken from the experiment. The value Z; is not defined yet. An approximate
solution of (4) is considered for x €[0,R —a), thatis, for r € (a,R].
For the interval r €[0,a], we solve the system (3) by the same method, assuming the value of the deflection

LTO unknown for the r =0, and the value of the derivative U; zero for I =0. Then we get:

- r’B

u(r)=u0+—4 , )
rB

z(r)_?.

Demanding the continuity of the solution U and its derivative Z at a point I' = @, we obtain the following
conditions:

2 2
- a‘B (R-a)z
Uy +——=Uy,— (R-a)z, —— 22,
0+, =Y~ (R-2a)% R 6)
1aB:zo3R_a.
2 R+a

From the continuity conditions (6), we find the expressions for the parameters JO and B in terms of the value
ZO, and the last one is determined using the least squares method so as to minimize the value 1Zol(u(ri)_ui)z ,
i=1
where we calculate U(I"I) by formula (5) for I; < & and from (4) for I; >a, X, =R —r;.
Now, in the approximate solution U expressed by formulas (4) and (5), all the parameters will be found, and
we can compare it with the exact solution.

Calculation

In the first experiment (Fig. 1, 2) with the mass of 100 grams the following results were obtained: Z; = 0.0455

for the exact solution, ZO = 0.070 for an approximate solution; B = 40.5 for an exact solution, B = 23.2 for an
approximate solution; T = 0.00247 for the exact solution, T = 0.00431 for the approximate solution.

In the second experiment (Fig. 3, 4) with the mass of 228 grams the following results were obtained: Z;=0.904

for the exact solution, ZO = 0,140 for an approximate solution; B = 80.3 for an exact solution, B = 46.4 for an

approximate solution; T = 0.00124 for the exact solution, T = 0.00215 for the approximate solution.

In the third experiment (Fig. 5, 6) with the mass of 456 grams the following results were obtained: = 0.0817
for the exact solution, = 0.127 for an approximate solution; = 72.6 for an exact solution, =42.0 for an approximate
solution; T = 0.00138 for the exact solution, T = T = 0.00238 for the approximate solution.
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Results and Discussion

For all three values of the mass of the cargo, the exact solution deviates more strongly from the results of the
experiment than the approximate one. At the same time, the same parameter (the deflection derivative at the edge
of the membrane) is selected for approximate and exact solutions from the experimental data, from which the
value of the tensile force is determined. The insufficient accuracy of the solution (2) indicates that the model (1)
needs to be refined. This refinement can be done by refining the physical model of the membrane. The most
obvious way is to take into account the weight of the membrane itself, but it is doubtful that this weight could
explain the large deviation of the experimental results from formula (2), since the weight of the membrane is small
compared to the weight of the goods.

Research of the deflection of the membrane
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Fig. 1. Diagrams of the deflection of the membrane for the mass of the cargo 100 grams
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Fig. 2. Graphs of deviation of solutions from experimental values for the mass of the cargo 100 grams

We can take into account the thickness of the membrane: in the experiments carried out, we are dealing with a
large deflection U(R)—U(0), whose values are only several times smaller than the radius of the membrane,
whereas the thickness of the membrane is small compared to its radius. In problems of material resistance
associated with the calculation of the deflection of membranes, a change in thickness is considered when
deformation of the membrane is in the case of a large deflection (see, for example, the book [9]). But on the other
hand, when writing the Poisson equation for a membrane, the thickness is neglected. Probably, the question of
introducing into the model the thickness of the membrane should be related to the refinement of its physical
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properties in further research. It is possible to build a deflection model based on the filamentary structure of the
tissue, but such a model will contain many difficult-to-identify parameters.
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Fig. 3. Diagrams of the deflection of the membrane for the mass of the cargo 228 grams
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Fig. 4. Graphs of the deviation of solutions from the experimental values for the mass of the cargo 228 grams
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Fig. 6. Graphs of deviation of solutions from the experimental values for the mass of the cargo 456 grams
Conclusions

In the future, it is proposed to study the dependence of the tension force T on the mass and shape of the load.
This requires more experiments. The approach proposed in this paper can be useful for the rapid construction of
semi-empirical models in situations when the theoretical model in the form of a differential equation does not
accurately describe the available experimental data, and the ways of its refinement are not obvious or
unnecessarily time-consuming.
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