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ЗАДАЧА H∞-ОПТИМАЛЬНОГО СИНТЕЗА С НЕЕДИНСТВЕННЫМ РЕШЕНИЕМ* 

Аннотация 

Данная статья посвящена задаче синтеза H∞-оптимального управления для объектов, 
заданных линейной стационарной системой со скалярными управляющим воздействием и 
внешним возмущением, и невозмущенным измерением по нескольким переменным. Решение 
этой задачи не единственно, что дает возможность выбирать структуру наблюдателя и 
обеспечивать его дополнительные свойства. Отсутствие шумов в измерениях делает 
невозможным решение данной задачи стандартными средствами теории H-оптимизации, 
основанными на решении уравнений Риккати или линейных матричных неравенств. Вместо 
этого применяется спектральный подход, основанный на факторизации полиномов, что 
снижает вычислительную сложность синтеза. Продемонстрированы теоретическое 
обоснование подхода и пример его практического применения. 
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H∞-OPTIMAL SYNTHESIS PROBLEM WITH NONUNIQUE SOLUTION 

Abstract 

This paper is devoted to H∞-optimization problem for LTI systems with scalar control and external 
disturbance signals and with no noisy multivariate measurement signal. The solution of this problem 
is not unique, that provides possibility to construct the controller with desired structure and 
additional properties. Besides, the absence of the measurement noise makes solution of this problem 
with implementation of standard H-theory methods, such as various modifications of 2-Riccati or LMI 
technique, impossible. A special analytical spectral approach in frequency domain based on 
polynomial factorization can be used that increases computational efficiency. Its theoretical 
description and example of practical implementation are presented in this paper.  
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Введение 

Problem of H∞ optimal controller synthesis is a hot research area, paid serious attention in both papers and 
monographies. Various algorithms of the optimal control design are proposed in much-quoted monographs such 
as [1, 2]. Let us note that most of them are based on solution of Riccati matrix equations («2-Riccati» approach) or 
linear matrix inequalities («LMI» technique).  

However, there are situations, where implementation of these well-known algorithms is non-effective or even 
impossible. For example, such problem with no-noisy measurement is irregular is directly unsolvable by «2-
Riccati» approach.  This difficulty can be overcome can be solved by using a special approach, based on polynomial 
factorization and parametrization of the set of stabilizing controllers. The proposed method is close to ones, 
proposed in the papers [3, 4]. Its additional serious advantage is computational efficiency, outbalancing 2-Riccati 
or LMI techniques one. It is not very significant the stationary laboratory conditions, but can be crucial for the 
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plants, operated in real-time regime, especially with adoptive changeover of control laws, mentioned in [4]. 
This work is a development of concepts, proposed in [5-7]. The considered LTI system is affected a scalar 

control, scalar external disturbance and measurement signal is noiseless. The similar problem of synthesis of H2 – 

optimal controller has already been considered in [6] and the paper [7] is devoted to solving SISO (Single Input-
Single Output) H∞ – synthesis problem with implementation of interpolation technique. 

The paper is organized as follows. In the next section, equations of a controlled plant are presented and the 
problem of H∞-optimal synthesis is posed. Section 3 is devoted to computation of the transfer functions of H∞-
optimal closed-loop system. In Section 4, we consider calculation of the optimal controller. In section 5, we give 
illustrative examples of synthesis. Finally, Section 6 concludes this paper by discussing the overall results and 
future perspective of research in this area. 

2. Mean-square Optimization Problem  

Let us introduce a linear time invariant plant 
),(tdu cbAxx   (1) 

where nRx  is the state space vector, which can be measured, u  and )(td  are the scalar control and external 

disturbance respectively. All components of the matrices cbA ,,    are known constants, the pair  bA,   is 

controllable. 
External disturbance )(td  for the system (1) is treated as an output of the following system 

)()()( 1 sisSsd d , )()()(1 sTsNsS  , (2) 

where the polynomials N and T  are Hurwitzб )(sid  is an auxiliary signal with unknown structure. Let us use the 

following notation в дальнеи шем 
)()()( 11 sSsSsSd  . 

The controller is to be designed in the form 
xW )(su  ,  (3) 

where )(/)()( 21 sWss WW  ,  )(...)()()( 112111 sWsWsWs nW , ),1(,1 niW i  , 2W  are polynomials. The choice 

of the transfer matrix function should provide minimum of functional 
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Note that the exact value of the functional (4) cannot be calculated, because structure of the external disturbance 
is not completely known, but it is possible to minimize its upper bound. Now we rewrite the expression (4) in 
frequency domain: firstly, introduce the transfer function )(sH , such as 

)()()()()()( 2 sFsFksFsFsHsH uux
T
x  R , where  (5) 
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Integrand in the formula (4) can be presented in the frequency domain as )()()( sSsHsH d  . Let introduce the 

following functional to be minimized: 





W

jSWjHsSWsHJ min)(),(max)(),(
2

1
)[0,
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1 ,                                           (7) 

where is the set of controllers )(sW , such that the characteristic polynomial of the closed – loop system (1)-(3) 

)()()()()( 12 sssWsAs BW ,  (8) 

is stable. 

3. H∞-Optimal Transfer Matrices 

 Solving of the stated problem directly is significantly obstructed by the fact that dependency of the 
functional J  of the transfer function )(sW  is nonlinear. This difficulty can be avoided by using of the 

parametrization technique, proposed in [3]. Let introduce the function parameter  
)()()()()( sFssss ux  Fα ,  (10) 

where  )()()()( 21 ssss n α , ),1(),( nisi  , )(s  where α  and   are polynomials such that  

)()()()()( ssssAsQ Bα  

is Hurwitz polynomial. Transfer functions )(sFu , )(sFx can be expressed as functions of the parameter )(s , 



 
272 

 ,~
,

~
)(

,
~

)(

11

11

cP

BcPFF









AQFF

Q

uu

xx
   (11) 

The auxiliary transfer f 

   

.)/()(

,/,/

где,)
~

)(
~

()()(

***
3

2
*

1

32121

GGAAT

QGTGAT

TTTTTsHsH

sssssss

sss

RCBRBCRCC

RCB







  (12) 

The initial problem (8) can be transformed to minimization of the functional 






~22122 min,)
~

()( JSHJJ ,  (13) 

where 


 ~  is set of rational fractions )(
~

s  with Hurwitz denominators. In accordance with the formulae (12) 

  .min)()()
~

(sup

)()(sup)()
~

,()
~

(

~
3

2

121
),0[

2

1
),0[

2

1













jSjTSTT

jSjHsSsHJ

djs




  (14) 

It is evident, that )(3 sT  is independent of the parameter )(
~

s  and the value 
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Is the lower bound of the functional )
~

(J . So we can consider search of the parameter 

~~
 such that: 
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~

( 22
aJJ    (16) 

instead solving of the initial problem (7). Nevanlinna-Pick interpolation can be implemented to guarantee this 
inequality. 
Let formulate the necessary and sufficient conditions of problem solvability, using the Pick's theorem. 

Theorem 1. The problem (16) is solvable if and only if the value   is such that Hermitian matrix 

 )()( 22  ijh lL  is non-negative, where 
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Here ),1( nig i    are the roots of polynomial )( sG   (we assume that they all for simplicity) and the polynomial  

)(sR  is result of the following factorization 

 )()(/)()()()(3
2 sGsGsRsRsSsT d  . 

Proof.  It is necessary and sufficient to design function   such that  
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Let us execute the following factorization 

 )()( )()(/)()()()(3
2 sGsGsTsTsRsRsSsT d   , (19)   

where )(sR  is a Hurwitz polynomial and rewrite the expression (18) as 
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Now we consider a transfer function 
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and calculate the values  )( igZ . It can be seen that 

,,1,)( nidgZ ii   

where the complex values id  are determined by the formulas (17). The initial problem can be solved as NP –one 

1)( sZ , ii dgZ )( , ni ,1 ,  (22) 

where )(sZ  is the transfer function to be designed. Non-negativity of the Pick matrix  )()(  ijh lL  necessary 
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and sufficient condition of solvability of the problem (18) that proves the theorem. 
Theorem 2. The dynamics of the optimal closed-loop system (1), (2) can be described by the following transfer 
functions 
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where the polynomial matrix )(s is result of division  

  )()()()()()( sAsssss TT
CBBCγ  , 

and division is done totally [6].  
Proof.  Let us consider, that the condition of the theorem 1 выполняется is and the transfer function 

)(/)()( 21 smsmsZ   is solution of the Nevanlinna-Pick interpolation problem (20). As a result 
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One can check that the expression in the square brackets in (23)-(24) is equal to zero in the points  igs  :  this 

follows that division to )( sG   is done totally. Substitution (25) to the formulae (11) results in (23)-(24).  

Remark. Note that transfer functions of the optimal control process can be improper, that is undesirable. One 

of ways to overcome this difficulty is to deform the spectral power density, using )()(
~

)(
~

1 sTsNsS  , where 

)()()(
~

sNsNsN d


  and polynomial )(ˆ sN  is Hurwitz. 

4. Transfer Matrix of the Optimal Controller  

As a result, the optimal transfer functions (23), (24) of the closed loop system are calculated, but it is necessary 
to design controller (3), providing such dynamics of the closed – loop system. Optimum condition, proved in [6], 
can be used for its computation. 

Theorem 3 [6].: The controller (3) provides the optimal transfer functions (37), (38) for the closed loop system 
(1), (3) if and only if its transfer matrix )(/)()( 21 sWss WW   satisfies the following main polynomial equation 

(MPE): 
0)()()()( 21  sfsWss uxfW ,  (26) 

where polynomial column xf  and polynomial uf  represent the numerators of the optimal transfer functions (23), 

(24). 
Now we specially note that, the polynomial equation (39) has infinitely many solutions, if there are no common 

roots of the items )(sf xi  of the column )(sxf  and the polynomial )(sfu , which implies that the optimization 

problem has no unique solution. Also, it is necessary to mention that the functions xF
~

, uF
~

 can have the common 

multiplier )(0 sC . It can be seen that )(0 sC  is divider of the characteristic polynomial )(s  of the closed-loop 

system and it must be a Hurwitz polynomial to provide solvability of the problem.  
Let us implement one way of construction of the optimal controller (3), described in [6], accepting the following 

particular structure of the controller (3) transfer matrix: 
)(/)()( 21 sWss WW  , )()( 01 sWs wkW  ,  (27) 

where )(0 sW  is the polynomial and wk  is n-dimensional real raw such that the polynomial )(0 sC  

)()(0 ssC wCk , 

is  Hurwitz. The polynomials )(0 sW  and )(2 sW can be calculated as follows 
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Substitution of (28) to the expression of the characteristic polynomial )(s  (8) results in 

)()()()( 0 sCsGsNs  , 
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i.e. stability of the closed-loop systems is guaranteed. It is easy to verify that the designed controller satisfies the 
optimality conditions (26). 

5. Examples of Synthesis 

Let us use Theorems 3 – 5 to design the optimal controller with the model (1) of a control plant, having the 
following matrices: 




















010

00717.0048.0

0634.00936.0

A , 















0

0160.0

0196.0

b , 















0

0076.0

41.0

c . 

The functional (4) is determined by the parameters 
















100

000

000

R , 005.0k , 

to minimize external disturbance effect to the coordinate 3x  of the state vector. The external disturbance has the 

spectrum (2) with the parameters 103.03.0 23  sssNd , 08.187.39.113.1720)( 234  sssssTd . It will be 

deformed by the polynomial 25.2075.249)( 23  ssssN


. 

Firstly, we consider presentation of this system in the frequency domain: 
















0.0024 +  0.016

 0.0024 +  0.016

 0.0238 +  0.019

)( 2

2

s

ss

ss

sB , 















0.0024 +  0.016

 0.0024 +  0.016

 0.0238 +  0.019

)( 2

2

s

ss

ss

sC , ssssA 037.0811.0)( 23  . 

Then calculate the polynomial 0024.0018.0014.0005.0)( 23  ssssG ,  the value 6300000.0aJ and the 

polynomial 00010001500050013500240032600189000540)( 234567 .s.s.s.s.s.s.s.  sR  . Now let us 

receive the values d1=0.0166 + 0.0394j,   d2=0.0166 – 0.0394 j  d3=-0.0007  and construct the Pick matrix 



















0.0000i + 3.3182     0.3338i - 0.4061    0.3338i + 0.4061 

0.3338i + 0.4061   0.0000i + 0.3784    0.1893i + 0.2062

0.3338i - 0.4061      0.1893i - 0.2062                    0.3784

)( ah JL , 

and calculate its eigenvalues: 0.076, 0.49, 3.5090, i.e. NP-interpolation problem (20) has a solution. It is notable 
that there are infinitely many solutions of this problem because all eigenvalues of the Pick matrix are positive. Then 
we compute the solution of the interpolation problem 

090.0678.049.0

010.0077.0055.0

)(

)(
)(

2

2

2

1






ss

ss

sm

sm
sZ , 

and receive the transfer functions of the optimal closed-loop system:   

)(

0.015 - s 0.6 - s^2 9.17 - s^3 70.22 - s^4 275.9 - s^5 537.5 - s^6 589.4 - s^7 382.4 - s^8 139.8 - s^9 24.53- 
)(

s
sFu


 , 



































(s)

0.0006 + 0.01s + s 0.06 + s 0.175 + s 0.36+0.49s + s 0.6 +s 0.35 + s 0.117+s 0.0076

(s)

s 0.0006 + 0.01s + s 0.06 + s 0.175 + s 0.36+0.49s + s 0.6 +s 0.35 + s 0.117+s 0.0076

(s) 

0.005+0.19s + s 2.967+s 22.1 + s 82.32 + s 147.3 + s 145.1 + s 84.84 + s 29.4 + s 5.49+s 0.41 

)(

23456789

2345678910

2345678910

sFx
, 

where )(s is the characteristically polynomial of the closed-loop system 

..s+. +  s. +  s. +  s.

 +  s. +  s. +  s. +  s. +  s. +  s. + s

002008305614315185

725894181390621991734713Δ(s)

234

567891011




 

It can be seen that roots of the polynomial )(s  coincides with ones of the polynomials )(sG , )(sNd , )(2 sm . 

Let us choose the vector wk , such that the polynomial )()(0 ssC wCk  is Hurwitz 2)(0  ssC . As a result, we 

receive  98.081   17.141   -0.318wk  and the optimal controller (28), where 

.0.056  s 0.91  s 5.01  s 11.13s 12.53  s 7.81 s 20.5  s 17.45 s 8.1s)(

,0.015 - s 0.6 - s 9.17 - s 70.22 -s 275.9 - s 537.5 - s 589.4 - s 382.4 - s 139.8-s 24.53-  )(

23456789
2

23456789
0





sW

sW
 

Let us demonstrate the frequency response: 2

1 )()()(  jSjHAd  on the Figure 1. It can be seen that 
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ad JA )(  it possesses the maximal value aJ  on the frequency 46.00  . 

 

Figure 1. Frequency response )(dA  and the bound aJ  

The dynamics of minimized variable )(3 tx  before and after activation of the controller at 250 s is shown on the 

figure 2. It can be seen that oscillation is successfully suppressed. 

 

Figure 2. Dynamics of the )(3 tx  before and after activation of the controller at 250 s 

6. Conclusion 

A novel special approach in frequency domain to H∞-optimization for LTI controlled plants is proposed and 
described in details. The demonstrated method is not absolutely universal and can be implemented only for 
systems with scalar control. Despite this flaw, the mentioned approach is of importance for a wide range of 
practical control applications, such as marine autopilots, tokamak plasma control, mobile robots etc.  

The solution of the presented problem is not unique, because there is no measurement noise, i.e. it is irregular. 
Irregularity is the main property of the stated problem, making its solving by popular methods impossible and 
defines suitability to design an alternative special spectral approach in frequency domain that is free from this 
disadvantage and can be successfully implemented for this problem investigation. Model of the plant is presented 
in a polynomial form and transfer functions of the closed loop system are parameterized in accordance to the 
special method. Then we use Nevanlinna-Pick interpolation and obtain transfer functions of the H∞ – optimal 
system. Finally, we can compute transfer function of the optimal controller, providing dynamics.  

Using approach, based on the polynomial factorization instead implementation of the well-known methods, 
makes an optimal synthesis procedure significantly easier, especially for the plants with small dimension. This 
property is very important for onboard control systems.  

The working capacity and effectiveness of the proposed method is demonstrated with numerical example: H∞ 
optimal controller is designed for the control plant of 3-th order in one of the easiest variants of synthesis 

Finally, let us note that the proposed approach has one serious disadvantage: it cannot be used for plants with 
multiple control signals. Overcoming of this difficulty is the problem of the future research. Also the polynomial 
presentation is very suitable for investigation of the additional properties of the control system, which means that 
robust features of the controller, disturbance with non-fractional representation of the specter, task with transport 
or time delays can be paid serious attention in the future. 
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