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Abstract. The paper presents the results of scientific visualization of the 

nonlinear dynamics of contact interaction of a nanoscale beam structure 

under the action of an external harmonic load. The beam structure consists 

of two beams obeying the kinematic hypotheses of Euler-Bernoulli and S.P. 

Timoshenko. The constructed mathematical model takes into account 

geometric and constructive nonlinearities. The size-dependent behavior of 

the structure is implemented on the basis of the modified moment theory of 

elasticity. The resulting system of partial differential equations is reduced 

to a system of ordinary differential equations by the second order finite 

difference method. The Cauchy problem is solved by the fourth order 

Runge-Kutta method. In this work, using the methods of scientific 

visualization of the results of applying the methods of nonlinear dynamics, 

the influence of the size-dependent parameter and external load on the 

vibrations of the beam structure is investigated. As methods for studying 

nonlinear dynamics, the work uses wavelet spectra based on the mother 

Morlet, Fourier power spectra, signals. The use of scientific visualization 

methods makes it possible to develop specific recommendations for the 

operating conditions of the beam structure. This, in turn, makes it possible 

to avoid unwanted vibration modes of beam nanostructures, which are 

widely used as sensitive elements of sensors of micro and nano 

electromechanical systems.  
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1 Introduction 

 
Scientific visualization is one of the effective methods of analysis of data obtained as a 

result of numerical experiments, therefore, it is widely used in various kinds of research 

[1], [2]. The main objective of this work is the application of scientific visualization 

methods to study the nonlinear dynamics of a nanoscale beam structure.  

Such beam structures are components of sensitive elements of various 

nanoelectromechanical systems and sensors and during the operation of such systems 

can be subjected to various external influences, including dynamic ones [3]. 

 

2 Formulation of the problem 
 

The object of study is the beam structure, consisting of two nanobeams with a gap 

between them (Fig. 1). Beam 1 is described by the Euler-Bernoulli kinematic 

hypothesis, and beam 2 is described by the Timoshenko hypothesis, which takes into 

account the shear strain. l  - is a length, h2  - is a thickness of beams. Both beams are 

geometrically non-linear according to the model of T. von Karman. A transverse 

alternating load (1) distributed over the surface acts on the beam 1, and the beam 2 only 

starts moving after contact with the beam 1. 

 

),sin(),( 0 tqtxq p=  (1) 

 

where ),( txq  - is the alternating load; p  -is the frequency; 0q  - is the amplitude; t  

- it is time.   

Contact interaction is described by the model of Cantor B.Ya. [4], that is, at each 

time step, the problem of contact of two bodies with an unknown contact boundary is 

solved. The equations of motion, boundary and initial conditions are obtained from the 

Hamilton-Ostrogradsky energy principle. Classical solid mechanics is not able to 

interpret and predict size-dependent behavior, due to the lack of a parameter that takes 

into account scale effects. Therefore, when obtaining the equations, we use the 

modified moment theory of elasticity [5], where the scale parameter of the material 

length is taken into account, taking into account the effect of higher-order 

moments [6,7]. 

 
 

Fig. 1. Nanobeam structure 
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The equations of motion of beams in a dimensionless form take the form: 
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2,1=i - is the serial number of beams. 
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nonlinear operators, xi  is the transverse shear function, iw , iu  are the deflections and 

displacements of the beams, respectively, kh  is the gap between the beams (see Fig. 

1), 3.0=  is the Poisson's ratio, is the scale parameter of the material length, 1  is the 

dissipation coefficient, 
h

l

2
=  is the geometrical parameter.  

To model contact interaction, the theory of B.Ya.Cantor [4], according to which it 

is necessary to add a term to the equations of motion of structural elements 

−−−= )()1( 211 whwKq k
i

k , K is the stiffness coefficient of the transverse 

compression of the structure in the contact zone. The function Ψ is defined by the 

formula ( ) 211
2

1
whwsign k −−+= , (if 21 whw k + , then there is contact 

between the structural elements and Ψ = 1; in the absence of contact Ψ = 0). 
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To equations (2), boundary conditions in the case of rigid pinching (3), (5) and initial 

conditions (4), (6) for beams 1 and 2, respectively, should be added. 

For beam 1: 
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For beam 2: 
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3 Solution methods 

 
The resulting system of partial differential equations is reduced to an ordinary 

differential equation system by the second-order finite difference method. The obtained 

Cauchy problem is solved by the fourth-order Runge-Kutta method. 

To study the nonlinear dynamics of the contact interaction of a nanoscale beam 

structure on the basis of nonlinear dynamics methods, we construct signals, plots, power 

spectra, wavelet spectra based on the Morlet mother wavelet, and phase portraits. The 

totality of the visual presentation of the results obtained by these methods will allow us 

to have an almost complete picture of the features of the nonlinear dynamics of the 

described mechanical structure, depending on the value of the size-dependent parameter 

  and the amplitude of the external load 0q . 

 

4 Numerical experiment 

 
We are present the results of a numerical experiment with the following values of the 

control parameters:    .5.0;3.0;1.0;1;5000;1000;1.0;50 0 ===  qhk  

Table 1 shows the signals of beams 1 (red) and 2 (blue) )5.0,(tw , ( )20;0t  for 

various values of the amplitude load  5000;10000 q  and the size-dependent 

parameter  5.0;3.0;1.0 . 

Depending on the value of the size-dependent parameter  , the oscillation 
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amplitude of the beam 1 changes, an increase in the parameter leads to a decrease in the 

amplitude of the oscillations. Visualization of the beam signals allows you to see the 

points in time at which the beam contacts. But, to determine the shape of the vibrations 

of the beams, it is necessary to analyze the plots of the deflections of the beams.  

 

Table 1. Signals of the nanobeams for    5.0;3.0;1.0;1;5000;10000 = q  

 
 

Table 2 shows the plots for 1.0= ,  5000;10000 q , at different points in time. 

Graphical visualization of deflection diagrams of a beam nanostructure allows obtaining 

information about the vibration mode at any moment of interest, which cannot be seen 

with only a numerical solution. 
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Table 2. Plots of deflections of beams 1 and 2. 

 
 

The diagrams at 1.0= , 10000 =q , are given for the moment of the first contact 

of the beams, at 264.3=t . It was possible to determine the time of the first touch by 

visualizing the beams deflection diagrams in three-dimensional space ( )tzx ,, . As 

you can see, the first contact of the beams does not occur at the central point, but in 

quarters. The increase in load leads to the fact that the first contact of the beams occurs 

at 64.0=t , and the appearance of the diagrams at the first contact changes. The 

visualization of vibration modes allows you to develop specific recommendations for 

the operating conditions of the studied mechanical structure. 

To obtain the frequency characteristics of signals, we use the wavelet spectra based 

on the Morlet mother wavelet, as well as the Fourier power spectra. Wavelet analysis 

allows you to see the change in the frequency characteristics of the oscillatory process 

in time and is a kind of "microscope". 

Tables 3 and 4 show wavelets )(tp  and Fourier power spectra for beams 1 and 2 

at 10000 =q  (table 3) and at 50000 =q  (table 4).  
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Table 3. Wavelet spectra at  5.0;3.0;1.0;10000 = q  

Beam 1 Beam 2 

1.0=  

Wavelet spectrum 

  
Fourier Power Spectra 

  
3.0=  

Wavelet spectrum 

  
Fourier Power Spectra 

  

5.0=  

Wavelet spectrum 

  
Fourier Power Spectra 
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Table 4. Wavelet spectra at  5.0;3.0;1.0;50000 = q  

Beam 1 Beam 2 

1.0=  

Wavelet spectrum 

  
Fourier Power Spectra 

  
3.0=  

Wavelet spectrum 

  
Fourier Power Spectra 

  
5.0=  

Wavelet spectrum 

  
Fourier Power Spectra 
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Wavelets are given for ( )20;0t , and the Fourier power spectra are built on the time 

interval ( )1024;0t . This is due to the fact that if the wavelet spectra are plotted over 

the entire time interval, the frequency changes characteristic of the initial time interval 

are not visible. 

The wavelet spectra of beams 1 and 2 are distinguished by the presence of a low-

frequency component in the spectrum of beam 1 5.0=  when the wavelet spectra of 

beam 2 is generated, a low-frequency component occurs over the entire time interval.  

The Fourier power spectra do not differ in frequency components. The same frequencies 

can be seen on wavelet spectrum.  

Table 4 shows the wavelet spectra and the power spectra of the Fourier beams at 

50000 =q . 

The wavelet spectra for reducible loads differ significantly for the same values of the 

size-dependent parameter, as well as the Fourier power spectra. An increase in the size-

dependent parameter leads to a decrease in frequencies, i.e., to regularization of 

oscillations. This is due to a decrease in the amplitude of oscillations of the beams, 

which was mentioned above. 

 

5 Conclusions 

 
Scientific visualization of the nonlinear dynamics of the contact interaction of the beam 

structure allows you to have a detailed idea of the influence of control parameters on 

the nature of the vibrations of the beam structure, which makes it possible to develop 

specific recommendations on the operating conditions of the beam structure and avoid 

undesirable vibration modes, which can ultimately lead to the destruction of the beam 

structure. 
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