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Abstract 
The knapsack problem is used in many mathematical models, including in the field of 
information security. Solving a problem (finding the optimal knapsack load) or even answering 
the question about the existence of a valid solution is an NP-complete problem. In this regard, 
the question of finding the power of the set of acceptable solutions or estimates of this power 
is relevant. The paper analyzes the combinatorial aspects of this problem based on the method 
of generating functions. Formulas and estimates for the number of solutions and the average 
number of solutions depending on the coefficients of the constraint vector are obtained. On 
their basis, computational algorithms for finding these values can be constructed. All this can 
be used to assess the adequacy and quality of the original mathematical model.  
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1. Introduction

Use The knapsack problem with Boolean variables has the form:
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where x=(x1,,xn) is an n-dimensional Boolean vector. 
In what follows, we will assume that all parameters of the problem under consideration are non-

negative integers. The set of feasible solutions to this problem Vb is the set of Boolean vectors satisfying 
the inequality 
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i

a x b
=

≤∑ .  (2) 

The volume Vb is the number |Vb | feasible solutions to problem (2). 
This is a classical combinatorial optimization problem (see [1], [2]). This work is a continuation of 

the research carried out in [3], [4]. Various aspects of the knapsack problem related to the topic of this 
work were studied, for example, in [2], [5], [6]. The approach proposed by the authors has no direct 
analogs, as can be seen, for example, from the most detailed survey monograph devoted to the knapsack 
problem [7]. 

The importance of this topic from the point of view of cryptography is confirmed by numerous 
works in specialized journals. 
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For example, in the works of G.V. Balakin [8] and [9] consider specific classes of systems of 
Boolean equations (of recurrent type) and their application in cryptography. 

 In the work of A.M. Zubkov [10] the moment characteristics of the weights of vectors in random 
binary linear codes are described in terms of the properties of special systems of equations.  

Linearization of systems of Boolean equations is a method for solving systems, which consists in 
replacing all monomials of degree higher than the first with new variables, solving the resulting linear 
system and then checking the obtained solutions for correctness. This, for example, is the subject of the 
articles [11], [12]. 

 A group of scientists led by N. Courtois proposed improvements to XL4 and XSL5 of the 
linearization method for cases when the number of equations in the system is not enough to effectively 
apply linearization in the classical form [13]. The essence of these methods is to supplement the system 
with new equations that do not change the set of solutions to the system, but increase the size of the 
system and the rank of the linearized system. Later N. Courtois and G.V. Bard [14] proposed another 
method based on the ElimLin linearization method.  

As it was said in the annotation, in our work we consider the problem of finding the number of 
feasible solutions. The results along this path are illustrated by works [15-17]. And in the applied works 
of A.S. Meluzov [18] and [19], a software package was developed and implemented to solve the above 
problem.  

This article also discusses the problem of parametrization of the system on its right side. The authors 
are not aware of any analogues of the approach presented here. To some extent, both classical 
algorithms of parametric linear programming and, for example, work [20], where linear equations of 
the Boolean type with a “distorted” right-hand side are investigated, are related to it.  

The paper proposes a method for constructing a set containing the desired vector with a probability 
not less than a given one, and estimates the cardinality of this set. Theoretical calculations of the 
parameters of the method are illustrated by the results of experiments. This approach uses a probabilistic 
setting, while the combinatorial apparatus is used here.  

This work consists of an introduction and three sections. The main lemma is given in the next 
section. In the third section, we consider the question of the average number of solutions depending on 
the values of the right-hand side, and then in the section following this we consider the case of a 
hypercube of bounded volume. 

 Some definitions, concepts and methods of proof were previously used by the authors in [3-6].  
In what follows, we will assume that all the parameters of the problem under consideration, the 

numbers c1,…,cn; a1,…,an; b - non-negative integers. 

2. Generating functions for the number of feasible solutions 

The answer to the question about the existence of solutions to the problem under consideration is 
already an NP-complete problem. Therefore, finding the number of solutions to the knapsack problem 
is currently carried out either by exhaustive search algorithms, or is estimated from heuristic methods. 

In both cases, knowledge of the average number of solutions can be used both for constructing 
algorithms and for modifying them. In addition, formulas for finding the average number of solutions 
depending on the parameters of the problem can be used to assess the feasibility of using both 
exhaustive search and heuristic algorithms.  

For example, we need to find at least one solution to an individual problem that lies in a class of 
problems with a fixed right-hand side. We find the average number of solutions in this class. If it is 
large, then this can serve as a justification for the expediency of using heuristic or probabilistic methods. 
Otherwise, the exhaustive search algorithm is most likely more reasonable. 

The main method that is used in the work is the method of generating functions. 
First, we directly express the volume of feasible solutions using the generating function for 

1 1 2 2
1 1 2( ,..., ) ... n n

b
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b n n
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P z z z z z

∈

= ∑ . 

 The following lemma was proved in [4].  
Lemma 1. The following formula is valid 
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Consequence. Let 0 <ρ <1. Then equality holds for the volume of the region of feasible solutions: 
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3. Average number of feasible solutions 

Let us now consider the question of the average value of the volume of solutions.  
Let be  
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Recall that our variables are Boolean. The number b is fixed, and the dimension n is also fixed. 

Therefore, each coefficient of the constraint vector varies from 0 to b, i.e. takes n + 1 values. Hence 
(5) follows.  

Of course, the question of the average number of solutions is rather theoretical in nature. 
However, it sheds light on the combinatorics of the problem when investigating the interdependence 
of b and n.  

Below we give several statements that give various formulas (calculation algorithms) for the 
average number of solutions. As an illustration of the use of the method of generating functions, 
their proofs are presented. 

 
Theorem 1. The following formula is valid  
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Proof. Directly from (4) and (5) we have   
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Further, we note that, firstly,  
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Therefore, further we have
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Now note that  
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Therefore, from (7) it follows:  
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After obvious transformations, we obtain  
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But now the assertion of the theorem follows from (7) and (8).  
The theorem is proved. 
  
Let's look at this expression from the other side.  
 
Theorem 2. The following formula is valid 
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Proof. Let's apply the method of coefficients to the calculation of the sum.  
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The theorem is proved. 
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Examples. 
1. Let n=b=2, then we have 9 restrictions: 1) x1+x2≤2; 2) 2x1+x2≤2; 3) x1+2x2≤2; 4) 2x1+2x2≤2.  

. And 4 more with one variable, as well as with two zero coefficients for variables. The last 5 
have four solutions, and for the first four we have: |V1|=4; |V2|=3; |V3|=3; |V4|=3.  
Directly we get: | | 33 / 9 11/ 3bV = = . 
 The same is obtained from (9): 
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2. Let b is  arbitrary and n=3. The kind of restrictions is obvious. Direct calculation is difficult, 
but from (9) we immediately obtain: 
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This is asymptotically equals 25
3

. 

 

4. Average number of solutions to the knapsack problem on a hypercube of a 
fixed size 

Let us now consider the question of the average value of the volume of feasible solutions on a 
hypercube of a fixed size.  

Let be 
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0 , 1,...,ia c i n≤ ≤ =  and ct is the average value for the volume of feasible solutions on a 
hypercube of a fixed size, i.e. 
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Proof. Directly from (4) and (6) we have 
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Now we will find the sum of the residues to calculate the integral 
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Notice, that 
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In the general case, we obtain
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The theorem is proved.  
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5. Conclusions 

The method of generating functions can be successfully applied to the analysis of problems of a 
"combinatorial" nature. In the above study, with its help, new formulas were obtained for the number 
of olutions and the average number of solutions in the knapsack problem.  

They can be improved and refined by considering equations not of a general, but of a special form. 
It is these problems that arise in specific applied areas, in particular, in mathematical models of 
information security, taking into account the real features of the original formulations.  

Therefore, the results presented here can serve as a basis for further research.  

The reliability of the results follows from the correctness of the definitions and proofs of the 
theorems.  
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