Supporting Identity Reasoning in SPARQL
Using Bloom Filters

Gregory Todd Williams

Rensselaer Polytechnic Institute, Troy, NY, USA
willig4@rpi.edu

Abstract. The SPARQL Query Language presents a standardized in-
terface to accessing RDF graphs. Its use allows templated queries to re-
trieve information from remote sources about known entities. However,
such templated queries present a key problem: Queries cannot be made
directly about nodes whose identity depends on reasoning. We present
an efficient approach to solving this problem using a SPARQL extension
function and the SPARQL XML Results format. We then discuss the use
of this technique in federated query execution.

1 Introduction

The SPARQL Query Language[13] presents a standardized interface to accessing
RDF graph data. It is particularly useful for querying remote endpoints to re-
trieve data about known entities. However, there are limits to how SPARQL may
be used in this way: unlike entities identified by URI, queries cannot be made
about specific blank nodes. Unfortunately blank nodes are often used in situa-
tions where they are uniquely identified by their properties. Such properties can
be defined with the Web Ontology Language[9] (OWL) as being Functional or
Inverse Functional properties. Blank nodes using these properties are endowed
with identity, even if they themselves aren’t directly identifiable.

Making queries about such blank nodes (with identities based on Functional
and Inverse Functional properties) is desirable, even if SPARQL fails to sup-
port them directly. We present a system to allow efficient querying of identifi-
able blank nodes using Bloom filters[7], a probabilistic approach to set mem-
bership testing. A Bloom filter-based SPARQL extension function is used to
determine which nodes satisfy the identity constraints of the query, returning
a result set that closely approximates the desired data. Additional identity in-
formation about each result is returned with the result set, allowing the query
results to be joined with local information to produce the desired information.

The rest of the paper is organized as follows. In section 2 we introduce a
motivating example used throughout the paper, and discuss background infor-
mation on formulating SPARQL queries for this example and the Bloom filter.
In section 3 we introduce a Bloom filter SPARQL extension and show how it can
be used to express equivalent queries. In section 4 we look at the space savings
of using this approach in formulating queries (and by implication, the reduction

in query complexity). Section 5 discusses performance considerations relevant to
deployment and optimization of this technique. Finally, in sections 6 and 7 we
look at related work and conclude by proposing future work on optimization and
analysis of this technique as well as studying its application in federated query
environments.

2 Background

In this section we will examine the problem of querying a SPARQL endpoint for
information about nodes identified by their properties. To do this, we use the
following motivating example: we have a local address book database of known
people we’d like to discover more information about. We would like to make
a single query to a SPARQL endpoint, retrieving certain desired information
(their phone number, for example) for all the people in our address book. Each
person also has one or more identifying properties in the address book database
(e.g. email address or homepage URL). Below we discuss how SPARQL can be
queried for this information without the use of any extensions. We also look at
Bloom filters, whose use will aid in more efficiently expressing and executing
these queries.

2.1 Graph Pattern Matching in SPARQL

One possible solution to this problem is to load the remote data into the local
store (merging it with the local identity data) and use an OWL reasoner before
making the query. Unfortunately, this strategy can only work in situations where
the remote data is accessible as RDF and the size of RDF to be loaded is rea-
sonable for downloading, importing, reasoning and querying. In many common
cases these requirements cannot be guaranteed; the data may be too large for
downloading and local querying to be practical (such as DBpedia and DBLP
from the Linked Open Data project[6]) or a SPARQL interface may be the only
way to access otherwise private data. In these cases, using SPARQL is the only
practical way to access the desired information.

In order to write a SPARQL query that will return the phone numbers of
all the known people, the query must encode the identifying properties of each
person. If we were only concerned with a single identifying property, such a query
might look like this:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7email 7phone
WHERE {
?p foaf:mbox 7email ; foaf:phone ?7phone .
FILTER(
7email = <mailto:alice@example.org> ||
7email = <mailto:eve@example.net>

Here we match all people with email addresses and telephone numbers, and
use a filter to keep only those people who have an email address we know of.
It is important to note that we must retrieve ?email, the email address used
to identify the person, so that when we process the results we can match each
telephone number with the appropriate person. The situation becomes more
complex when we consider situations with more than one identifying property.
For multiple properties, we must construct a pattern for each property and the
associated values of interest, and take the union of all such patterns before going
on to match for a telephone number:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7email 7homepage 7phone
WHERE {
{
7p foaf:mbox 7email .
FILTER(
7email = <mailto:alice@example.org> ||

?email = <mailto:eve@example.net>
) .
} UNION {
?p foaf:homepage 7homepage .
FILTER(
7homepage = <http://example.com/>
)
}
?p foaf:phone 7phone .

}

Since node identity isn’t constrained to a single property-value pair, the num-
ber of potential patterns in the union can grow with the number of possible prop-
erty chains (where the value of the first property-value pair is itself identified by
another property-value pair).

This approach will work, but the query size scales with O(nml), the number
of local nodes (n) multiplied by the number of expected identifying properties
per node (m) multiplied by the expected length of each property chain (1) with a
constant multiplier of the expected size of representing the properties and values
in each node’s property chain in the SPARQL syntax (in this example, roughly
30 bytes are used for each equality test and single property-value pair).

As these examples indicate, the query size can grow quite large with just
modest numbers of nodes and predicates. If possible, we’d like to express the
query in a more compact form that decreases total bandwidth (both query and
result size).

2.2 Bloom Filters

Bloom Filters[7] provide a probabilistic method for testing set membership. A
Bloom filter consists of a bit vector of length N, and uses a set of ¢ hashings

of an input to compute ¢t bit addresses in the vector. The bits of the vector
are initially set to all zero. For each member of the set, the bits of the vector
referenced by the ¢ hashings of the input are all set to one. Testing an input 7 for
membership involves computing ¢ bit addresses using the hashing functions on
i, and checking each of the ¢ referenced bits of the vector. If any of the ¢ bits is
set to zero, 7 is not part of the set. If all ¢ bits are set to one, then 7 is accepted
as belonging to the set. Notice that testing any valid member of the set will
always involve t set bits yielding a positive result, while testing a non-member
may involve ¢ bits coincidentally set to one, resulting in a false positive.

The use of hashing techniques such as Bloom filters have been used in rela-
tional database systems as an efficient way to compute semijoins[8], [10]. This
usage informs our approach of using them in SPARQL, a usage that may be seen
as a semijoin over data whose equality may be tested based not just on node
value (as in relational systems) but also on a node’s relationships (the value of
Functional and Inverse Functional properties).

3 Methodology

Here we present an extension function to SPARQL for testing a node’s member-
ship in a set based on a pre-computed Bloom filter. We have implemented this
function in RDF::Query|[14], a SPARQL implementation for Perl. The function,
<http://kasei.us/code/rdf-query/functions/bloom> (abbreviated k:bloom),
is invoked as k:bloom(VAR, FILTER), taking a variable VAR and a serialized
Bloom filter FILTER as arguments. The function returns true if the value bound
to the variable is accepted as a member of the set, false otherwise. It may be
used in place of the union-and-filter pattern described above with similar results
(but with potential false positives).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX k: <http://kasei.us/code/rdf-query/functions/>
SELECT ?p 7phone
WHERE {
7p foaf:phone 7phone .
FILTER k:bloom(
7p,
"AAAACgAAACTAAAACAAAAAgAAAAUAAAAD2aCcopHv9zsoAAQgADAuMg==\n"
) .
}

Fig. 1. SPARQL Query using a Bloom-filter function

In Figure 1 is an example of a SPARQL query using the Bloom filter exten-
sion function. Encoded in the Bloom filter are two nodes with the identifying
properties:

— foaf:mbox <mailto:willig4Qrpi.edu>
— foaf:isPrimaryTopicOf
<http://dblp.13s.de/d2r/resource/authors/Gregory Williams>

This query will return bindings for ?p and ?phone for all nodes 7p that are
identified with these specific foaf:mbox and foaf:isPrimaryTopicOf values
(and might also, with fixed low probability, return false positives).

To encode all the information required for identity reasoning about each
node, we must add each identifying property chain to the Bloom filter. To add
each chain to the Bloom filter, we first encode each chain as a string based on
the N3[5] syntax for paths. We refer to these identifying property chain strings
as “names” for a given node. The name of a node is computed recursively as
follows:

(('77

name(n) = “<” n “>” if n is an IRI

name(n) = “’”? n “’”” if n is a Literal

name(n) = “=" name(o) Vo s.t. { 7n owl:sameAs 7o }
(n)

p name(o) Vp, o s.t.
{ ™ ?p ?0. ?p a owl:InverseFunctionalProperty }
[1%a3

name(n) = p name(o) Vp, o0 s.t.
{ ™ ?p ?0. 7p a owl:FunctionalProperty }

Thus, the two identifying properties above are represented with the names:

— “lfoaf:mbox <mailto:willigd@rpi.edu>”
— “~foaf:isPrimaryTopicOf
<http://dblp.13s.de/d2r /resource/authors/Gregory Williams>".

The error rate of a Bloom filter, or the probability that all ¢ bits are set to
one, is P, = (1—(1—4)™)" with ¢ being the number of items added to the filter.
It can be seen that the error rate may be made arbitrarily small by increasing
the size of the vector N. Using a fixed hashing count of ¢t = 7 and error rate of
P, = ﬁlo, for example, we see that the filter size grows by approximately 10 bits
for each additional item expected in the filter. This space requirement is clearly
better than the requirements of the union-and-filter approach mentioned in the
previous section which depends on the length of the node identifiers and is on
the order of at least tens of bytes per item.

Compared to the union-and-filter approach, the use of the k:bloom function
doesn’t leave us with a query that will return enough information to know which
telephone number belongs to each person. This is because the query only returns
values for ?p and ?phone, not any of the identifying property values such as email
address. For this reason, the use of the k:bloom function triggers an extension
to the query result generation code, allowing the required information to be
returned along with the binding results.

During query execution, the implementation of the k:bloom function re-
trieves all the names for each candidate binding of VAR and tests them against

FILTER. If any name matches, the node is a member of the requested set with
high probability. Each such matching node name is added to a list of “identity
hints” that will be returned with the query results. Once results are returned to
the client, the hints will allow the client to determine which local nodes share
identity with each value of VAR.

The SPARQL XML Results Format allows a link element “with an href
attribute containing a relative URI that provides a link to some additional meta-
data about the query results”[4]. This 1ink element is used to reference the list
of “identity hints” generated during query execution. Two approaches to the use
of this element are possible: either the identity information may be stored on
the server with a persistent URL that the client may retrieve prior to joining
the results with local data, or the identity information may be encoded using
the data: URI scheme, allowing it to be included directly in the XML result
data. Our implementation chooses to rely on data: URIs, but the next section
discusses tradeoffs between the two approaches.

<?xml version="1.0"7>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="p"/>
<variable name="phone"/>
<link href="data:text/xml, (identity hints) " />
</head>
<results>
<result>
<binding name="p"><bnode>ri</bnode></binding>
<binding name="phone"><uri>tel:+1-518-276-4431</uri></binding>
</result>
</results>
</sparql>

Fig. 2. SPARQL XML Results with identity hints

Figure 2 shows an example of SPARQL XML results including a data: URL
link element. For brevity, the actual identity hints content has been left out of
the data: URL; the identity hints in this case might map:

(rl) « “loaf:mbox <mailto:willigd@rpi.edu>"

dictating that the blank node r1 referenced in the results could be joined with
any local node identified by the email address <mailto:willigd@rpi.edu>.

As is the case with Bloom filter use in relational databases, it is possible that
due to the error rate of the filter, no local node will share identity with a value
of VAR. In this case, there will be extra results and identity mappings. However,
for each such extra result, the names of the node bound to VAR (provided by the

identity map) will not correspond to any local node names, and a join of the
result and local data will simply discarded the extra results.

4 Results

Although we are currently working on a more thorough analysis of the use of
Bloom filters in SPARQL queries (discussed in section 7), we present a brief set
of results looking at the reduction in query size using Bloom filters in queries
compared to equivalent union-and-filter queries.

We used the ESWC 2007 RDF data! as a basis for constructing queries. From
this data, we consider three sets of resources which we use as the local data for
Bloom filter construction: the set of all resources, the set of all foaf:Persons,
and a small subset of people (chosen by matching an arbitrary substring against
foaf:firstName values). We refer to these sets as large, medium, and small,
respectively.

For each set, we constructed a query to retrieve a specific property value for
each of the local resources using both the full union-and-filter-style query and a
Bloom filter. Table 1 shows, for each set, the total number of local resources, the
total number of identifiers (node “names”), and the corresponding query sizes
(in bytes). We show the size for two different Bloom filter queries using different
fixed error rates of 1% and 10%. In general, the choice of error rate (and thus
filter size) will affected by the size of the SPARQL endpoint’s database. If the
endpoint’s database is small, a larger error rate is acceptable as few false positives
will be returned, while a large database will necessitate a smaller error rate to
keep false positives small.

Table 1. Query size for Union-Filter (U-F) style and Bloom-filter (BF) queries (with
1% and 10% error rate)

Data Set Resources Identities U-F Size BF Size (1%) BF Size (10%)

Small 23 47 3345 382 323
Medium 449 987 61274 1926 1095
Large 1419 1730 106176 3146 1705

As Table 1 shows, using a Bloom filter with a fixed error rate of 1% compared
to an equivalent union-filter query, the query sizes shrink by between 88% and
97% for the small and large datasets, respectively. Whereas a union-and-filter
query size of over 100 kilobytes for the large dataset is likely unreasonably large
for a query over HTTP (the typical protocol for communicating with SPARQL
endpoints), the equivalent Bloom filter query with 1% error (at 3146 bytes) is

! http://data.semanticweb.org/dumps/conferences/eswec-2007-complete.rdf

much more reasonable, even within the limit of most webservers for encoding
the query in the request URL.

5 Performance Considerations

There are several performance issues to be considered when implementing and
using a function such as the one described above. Here we discuss some of these
issues and how they were dealt with in our implementation.

The use of Bloom filters as described here has the potential to reduce the
overall bandwidth requirements of making a query. However, there are cases
where the bandwidth requirements actually increase through the filter use. In
cases where the selectivity of the filter on the remote data is close to 1, it may
be more efficient to send a small query that selects all values, and simply remove
unwanted data with a local join.

The use of the Bloom filter approach is predicated on the assumption that a
typical SPARQL endpoint contains much more information than a typical query
is interested in, and does not contain all relevant information about a node. In
these cases, and with the ability to place an upper bound on the irrelevant data
returned from a query due to Bloom filter error, we note that the expected total
bandwidth required by the use of the k:bloom function is less than the previously
described union-and-filter pattern resulting in an overall saving. Whereas the
union-and-filter approach must send all names of local nodes in the (verbose)
SPARQL syntax, by using k:bloom the same names can be sent in a single
Bloom filter, and only those names that match remote data will be included in
the result. Since the size of a filter given a fixed error rate is on the order of tens
of bits per name (regardless of the size of the name), the space savings can be
significant.

Beyond the space savings to be had through the use of Bloom filters, our
intuition based on work in the relational database literature is that this approach
may also yield performance gains based on query execution. We discuss this
briefly below as potential future work.

Our implementation currently uses data: URIs for including the identity
information in the query result. In choosing between using data: URIs and
persistent URLs for storing the identity information, there is a tradeoff between
code simplicity and query efficiency. Using data: URIs has the advantage of
requiring no persistent storage for identity information, simplifying the endpoint
implementation. The identity information is calculated during query execution
(as each result is matched), and so isn’t complete until the query execution is
complete. Unfortunately, the 1ink element of the result XML must appear in the
document header before the binding data, requiring the entire result set to be
held in memory until the 1ink element is output. This might require a significant
amount of memory at a performance cost to the server. Using a persistent URL
for the identity information alleviates this memory requirement, allowing the
result data to be streamed to the client but also requiring code to manage the
data persistence and insure that persistent identity information isn’t accessed

before all data is written (a possibility if the client requests the data concurrently
as soon as the link element has been parsed).

Care must be taken in computing node names. Cycles in the property chains
must not cause the computation to enter an infinite loop. Such situations may
simply be ignored if no URI or literal value is included in the chain since such
chains could never be used to identify a node in SPARQL. Even in cases where
there are URI or literal values in a property chain, or simply in cases where a
chain is particularly long, it may be desirable to declare a threshold length be-
yond which computation of names simply stops. This may result in queries that
return in only partial results, a situation whose acceptability must be weighed
against the computational demands and the specifics of the particular applica-
tion. In RDF::Query, we do not define a cutoff threshold, favoring query com-
pleteness over efficiency.

To alleviate the issue of determining a cutoff threshold, notice that the names
of nodes can be pre-computed, leaving only the actual hashing of the names
(which depends on the query-specific Bloom filter) for execution at runtime.
In cases where an endpoint’s data is fairly static with infrequent updates, pre-
computing the names of nodes could dramatically reduce the per-query cost of
the k:bloom function. The cost of pre-computing the names would be amortized
over all executed queries. Conversely, if the endpoint updates its data frequently,
the number of total node names exceeded the practical ability to compute or store
them, or the expected number of node names required by queries is much smaller
than the total number of node names, it may be more desirable to compute node
names at query execution time. Again, in RDF::Query we favor simplicity over
efficiency and so compute names during query execution.

6 Related Work

Hashing has been used in relational databases to efficiently compute joins[8].
Mackert and Lohman[10] discuss the use of Bloom filters in distributed queries
and find that the Bloomjoin outperforms many other distributed join methods
except in cases where the involved semijoin has a selectivity very close to 1.
Mullin[11] extends the Bloomfilter approach by sending a sequence of Bloom
filters until sending back all remaining tuples is more efficient than continuing
to filter them.

The ARQ SPARQL engine[3] includes a SPARQL extension to allow basic
federated queries[1]. The extension can be used to make similar queries to those
discussed in this paper, but is implemented using a naive nested loop join and
addresses neither the issue of identity reasoning nor of reducing the number of
queries sent to the remote endpoint.

SPARQLfed[12] is an extension to SPARQL allowing intermediate result sets
to be included alongside a query with a BINDINGS keyword, constraining the pos-
sible values of specific variables. The motivation of expressing variable binding
constraints is shared between SPARQLfed and our work. Use of BINDINGS could
be used to replace filtering in the union-and-filter pattern, but would still yield

very large queries and requires changes to the SPARQL grammar (a more com-
plex change to a SPARQL engine than our extension function).

DARQJ2], an extension to ARQ, provides a more complete system for feder-
ated queries, including methods to define service descriptions including remote
database size and the expected selectivity of triple patterns. Such values could
be used to determine when Bloom filter use is appropriate, and to optimize
the construction of Bloom filters. However, DARQ, like ARQ), fails to address
identity reasoning in the evaluation of federated queries.

7 Future Work and Conclusion

The Bloom filter function introduced here could be used in federated queries
similar to their use in relational database systems. RDF::Query implements the
SERVICE extension (introduced in ARQ), and we modified the query engine to
automatically use the Bloom filter function when making remote query calls. The
modified implementation works as expected, interacting with both standard and
k:bloom-enabled endpoints. Based on work with relational databases and Bloom
filters such as [10], we believe their use may yield performance gains in federated
query evaluation compared to the union-and-filter approach.

We are currently evaluating the performance of our system, and investigating
how different optimization techniques affect query execution time. In particular,
we hope to look more closely at the impact of traditional indexes on the union-
and-filter approach compared to the impact of pre-computation on the Bloom
filter approach, and to develop techniques for determining which will perform
better for a specific query and dataset.

The federated query implementation in RDF::Query also has several restric-
tions we would like to remove. Currently, the use of Bloom filters in SERVICE
calls rely on the join computing node names using local data. This requires all
information used to compute the names of nodes used in a join (and so appear-
ing as an argument to k:bloom) to be loaded in the local graph. This restriction
doesn’t preclude the join of two SERVICE calls, but the identity of nodes shared
between such calls is always computed locally and so can’t rely on remote knowl-
edge of identity. Further work is needed to investigate how a query engine might
choreograph the movement of result and identity data between remote endpoints
to allow all participating endpoints to contribute to node identity computation.

The use of k:bloom works on the assumption that both the local client
and the remote endpoint share an understanding of what properties are defined
as Functional and Inverse Functional. We currently assume both sides have
relevant ontologies loaded so that such properties can be used in computing
node names. Future work in this area might allow the query to specify which
ontologies, predicates, or even specific property chains should be considered in
computing names. This information could be passed as additional arguments to
the k:bloom function, but this runs the risk that the remote endpoint might need
to load additional ontologies at runtime. Further study is needed to determine if

such a feature is needed in practice, and what level of granularity is appropriate
for restricting the predicates used.

We have proposed the use of Bloom filters in SPARQL, allowing compact
queries to be made about known entities. We have shown how this method can
support joining query results with local data not just with direct node equality,
but also with simple identity reasoning. The methods proposed in this paper
have been implemented in RDF::Query and are available with that package from
http://search.cpan.org/dist/RDF-Query/. We found the method to be useful in
both simple and federated query evaluation, and are currently working on a more
thorough analysis of theoretical and practical impacts of the method on query
evaluation.

Acknowledgements

We wish to thank Sibel Adali for her helpful comments on this work.

References

ARQ - Basic Federated SPARQL Query. http://jena.sourceforge.net/ARQ/service.html.
DARQ - Federated Queries with SPARQL. http://darq.sourceforge.net/, 2006.
ARQ - A SPARQL Processor for Jena. http://jena.sourceforge.net/ARQ/, 2008.
Dave Beckett. SPARQL Variable Binding Results XML Format.
http://www.w3.org/ TR /rdf-sparql-XMLres/.

Tim Berners-Lee. Notation 3. http://www.w3.org/Designlssues/Notation3, 1998.

6. Chris Bizer, Tom Heath, Danny Ayers, and Yves Raimond. Interlinking Open
Data on the Web. Demonstrations Track, 4th European Semantic Web Conference
(ESWC2007), Innsbruck, Austria., 2007.

7. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422-426, 1970.

8. Kjell Bratbergsengen. Hashing Methods and Relational Algebra Operations. In
VLDB ’84: Proceedings of the 10th International Conference on Very Large Data
Bases, pages 323-333, San Francisco, CA, USA, 1984. Morgan Kaufmann Publish-
ers Inc.

9. Mike Dean and Guus Schreiber. OWL Web Ontology Language Reference.
http://www.w3.org/ TR /owl-ref/.

10. Lothar F. Mackert and Guy M. Lohman. R* Optimizer Validation and Perfor-
mance Evaluation for Distributed Queries. In VLDB ’86: Proceedings of the 12th
International Conference on Very Large Data Bases, pages 149-159, San Francisco,
CA, USA, 1986. Morgan Kaufmann Publishers Inc.

11. James K. Mullin. Optimal Semijoins fo Distributed Database Systems. IEEE
Transactions on Software Engineering, 16(5):558-560, 1990.

12. Eric Prud’hommeaux. Federated SPARQL. http://www.w3.org/2007/05/SPARQLfed/,
2007.

13. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/ TR /rdf-spargl-query/.

14. Gregory Todd Williams. RDF::Query. http://search.cpan.org/dist/RDF-Query/.

=W

o

