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Abstract. A hybrid evolutionary algorithm that combines genetic 
programming philosophy, with localized Extended Kalman Filter 
(EKF) training method is presented here. This algorithm is used for 
the topological evolution and training of Multi-Layered Neural 
Networks. It is implemented as a visual software tool in C++ 
programming language. The proposed hybrid evolutionary 
algorithm is applied on two bio-signal modeling tasks: the Magneto 
Encephalogram (MEG) of epileptic patients and the Magneto 
Cardiogram (MCG) of normal subjects, exhibiting very satisfactory 
results. 

1 INTRODUCTION 
One of the main problems that are faced when Artificial Neural 
Networks (ANN) and especially Multilayer Perceptrons, are applied 
on some tasks, is finding the network architecture or topology that 
is best suited for the task at hand. A small network for the problem 
might causes poor learning ability, while a large one might cause 
poor generalization. Until now the common method to determine 
the architecture of a neural network is by trial and error. However, 
in the last years there have been many attempts, in the direction of 
designing the architecture of a neural network automatically, that 
have led to a variety of methods. 

Two subcategories of such methods are a) the constructive and 
b) pruning (destructive) algorithms, [28], [29]. Roughly speaking, a 
constructive algorithm starts with a minimal network, that is an 
ANN with a minimal number of hidden layers, hidden neurons and 
connections, and adds new layers, neurons or connections, if it is 
necessary, during the training phase. On the opposite, a pruning 
(destructive) algorithm does the opposite, starts with a maximal 
network and deletes the unnecessary layers, nodes and connections 
during training.  

Another approach to this problem is by using Genetic 
Algorithms. Genetic Algorithms are a class of optimization 
algorithms, which are good in exploring a large and complex space 
in an intelligent way in order to find values close to the global 
optimum (see [12], [15], [20] and [22] for details). The design of a 
near optimal topology can be formulated as a search problem in the 
architecture space, where each point in the space represents network 
architecture. The training can be formulated as a search problem in 
the weight space. Since the end of the last decade, there have been 
several attempts to combine the technology of neural networks with 
that of genetic algorithms. Given some performance criteria, for 
example error, generalization ability, learning time, architectural 
complexity etc, for the architecture, the performance level of all 

architectures forms a surface in the space. The optimal architecture 
design equals to finding the optimum point on this surface.  

The first attempts, described in [10], [23], [25] and [27], focused 
mainly on the problem of training the networks and not in the 
topology design. They used neural networks with fixed architecture 
and genetic algorithms in order to search the weight space for some 
near optimum weight vector that solves the problem of network 
training. That is, they used genetic algorithms instead of some 
classical training algorithm. Soon the main research interest moved 
from the training, to the search for the optimal architectural (or 
topological) design of a neural network. Some first works used 
genetic algorithms in order to imitate the pruning algorithms. They 
start with a network larger than necessary for the task and then use 
a specially designed genetic algorithm to define which combination 
of connections is sufficient to, quickly and accurately, learn to 
perform the target task, using back propagation. Miller et al. [21] 
did that for some small nets. The same problem, but for larger 
networks, was faced by Whitley and Bogard in [26]. Bornholdt and 
Graudenz in [9], used a modified GA in order to evolve a simplified 
model of a biological neural network and then applied the algorithm 
to some toy Boolean functions. A different approach to the design 
and evolution of modular neural network architectures is presented 
in [13]. Billings and Zheng in [8] used a GA for the architectural 
evolution of radial basis function (RBF) networks. The most recent 
approach and maybe the most successful one, to the problem of 
finding the near optimum architecture is presented in [28]. There, 
Yao and Liu propose a new evolutionary system, the EPNet, for 
evolving artificial neural networks’ behavior.  

The last couple of years, there is an increasing interest in the use 
of multi-objective optimization methods and especially 
evolutionary multi-objective techniques for neural network training 
and structure optimization. Two very interesting approaches are 
presented in [31] and [32]. 

The present work is the sequence of a series of efforts 
concerning the application of evolutionary algorithms for the 
optimization of neural networks. In [17] a neural network model 
with binary neurons was evolved by a modified genetic algorithm in 
order to learn some Boolean functions. In [1], [2], [3], [4], [5], [6], 
[7], [11], [18] and [19] genetically evolved artificial neural 
networks were successfully used for a variety of problems.  

In this paper we present a hybrid evolutionary method that looks 
like more to a genetic programming technique for the evolution of a 
population of feed-forward Multi Layered Perceptrons [14]. This 
hybrid algorithm combines a genetic programming technique (for 
details see [16]) for the evolution of the architecture of a neural 
network, with a training method based on the localized Extended 
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Kalman Filter (EKF), known as Multiple Extended Kalman 
Algorithm (MEKA). The MEKA is described in detail in [24]. The 
novelty of this effort depends on, apart from the combination of 
evolution techniques with MEKA, the capability of the proposed 
method to search, not only for the optimal number of hidden units, 
but also, for the number of inputs needed for the problem at hand; 
of course this stands only for time series prediction problems where 
the number of needed past values, which represent the network’s 
inputs, is unknown. This hybrid algorithm is an evolved and heavily 
enriched version of an older algorithm that was developed by the 
authors and presented in [4], [7] and [19]. Furthermore this 
evolutionary neural network system has been implemented as a 
visual tool in C++ with a graphical user interface. In order to test 
the ability of this algorithm to produce networks that perform well, 
we apply the system on two biosignals, namely the Magneto 
Encephalogram (MEG) recordings of epileptic patients and 
Magneto Cardiogram (MCG) of normal subjects. The algorithm 
produces networks with small sizes that perform well.  

The rest of the paper is organized as follows. Section 2 describes 
the hybrid evolutionary algorithm, while the numerical experiments 
are presented in section 3. Finally, section 4 discusses the 
concluding remarks.  

2 THE HYBRID EVOLUTIONARY 
ALGORITHM  

2.1 THE MULTIPLE EXTENDED KALMAN 
ALGORITHM - MEKA 

Consider a network characterized by a weight vector w. The 
average cost function that should be minimized during the training 
phase is defined in terms of N input-output patterns as follows: 
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Where ( )jd n  is the desired response and ( )jy n the actual 

response of output neuron j when input pattern n is presented, while 
the set C includes all the output neurons of the network. The cost 
function depends on the weight vector w due to the fact that ( )avE w

( )jy n  itself depends on w. 
Concentrating on an arbitrary neuron i, which might be located 

anywhere in the network, its behavior during the training phase may 
be viewed as a non-linear dynamic system, which in the context of 
Kalman filter theory may be described by the following state-
measurement equations [14], [24]: 
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Where the iteration n corresponds to the presentation of the nth 

input pattern, ( )ix n  and  are the input and output vector of 

neuron i respectively and 

( )iy n

( )ie n  is the measurement error at the 
output of neuron i, the instantaneous estimate of which is given by: 
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The differentiation in equation (5) corresponds to the back-

propagation of the global error to the output of neuron i. The 
activation function ϕ(•) is responsible for the non-linearity in the 
neuron. The weight vector of the optimum model for neuron i is 
to be “estimated” through training with examples. The activation 
function is assumed to be differentiable. Accordingly, we can use 
Taylor series to expand equation (3) about the current estimate of 
the weight vector and thereby linearize the equation as follows [14]: 

iw
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 is the output of neuron i that results from the use of the 
weight estimate. In equation (8) we have assumed the use of the 
logistic function; other sigmoid functions, like the hyperbolic 
tangent, can be used as well. The first term of the right hand side of 
equation (7) is the desired linear term while the remaining term 
represents a modeling error. Thus substituting equation (7) and (4) 
in (3) and ignoring the modeling error we obtain: 

 
( ) ( ) ( ) ( )T
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Where ( )ie n  and ( )iq n  are defined in equations (5) and (8) 

respectively.  
Equations (2) and (9) describe the linearized behavior of neuron 

i. Given the pair of equations (2) and (9), we can make use of the 
standard Recursive Least Squares (RLS) algorithm equations [14], 
which is a special case of the Kalman filter, to make an estimate of 
the weight vector ( )iw n  of neuron i. The resulting solution is 
defined by the following system of recursive equations [14] that 
describe the Multiple Extended Kalman Algorithm (MEKA) [24]: 
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Where, n=1,…,N is the iteration number and N is the total 

number of examples.  
The vector ( )iq n  represents the linearized neuron activation 

function given in equation (6),  is the current estimate of the 

inverse of the covariance matrix of  and  is the Kalman 
gain. The parameter λ is a forgetting factor which takes values in 
the range (0,1], and 

( )iP n

( )iq n ( )ik n

( )ie n  is the localized measure of the global 
error. Equation (13) is called the Riccatti difference equation.  

Each neuron in the network perceives its own effective input 
( )iq n , hence it has to maintain its own copy of ( )iP n  even in the 
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case in which it  may share some of its inputs with other neurons in 
the network. 

2.2 THE EVOLUTIONARY ALGORITHM 
The proposed evolutionary algorithm is an improved version of a 
modified genetic algorithm that was used aforetime by the authors.  
It maintains the basic working philosophy of evolutionary 
algorithms and resembles genetic programming (see [16] for 
details) since it evolves complicated structures like linked lists and 
not simple bit strings as genetic algorithms do.  

The algorithm evolves, using a number of genetic operators, a 
population of artificial neural networks (multilayered perceptrons) 
that are represented as linked lists of network layers and neurons; 
thus it is used the direct encoding scheme. The basic steps of the 
algorithm are as follow: 
1. Initialization: An initial population of neural networks (called 

individuals) is created. Every individual has a random number 
of neurons (or nodes) and connections (synapses). The 
connection weights are initialized to some random values 
within a specific range. 

  
2. Training: Every individual (neural network) in the population 

is trained using MEKA for a small number of training epochs. 
For populations other than initial, training occurs only for 
those networks that have been changed by the application of 
genetic operators. 

 
3. Fitness Evaluation: As fitness function it is used a function that 

combines the performance of the network in the training 
and/or validation set with the size of the network. The 
performance is evaluated using the Mean Squared Error (MSE) 
or the Mean Relative Error (MRE). While, the size is the 
number of neurons and/or the number of active synapses in the 
network. So the fitness function for the case of MRE has a 
formula of the type: 
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Where sp is a parameter that controls the weight of the 
network size in the evaluation of fitness, MRE(i) is the value 
of MRE of individual i, SIZE(i) is the size of individual i 
which can be calculated as the number of active connections 
or the number of neurons and i is an index taking values in the 
range 1 to population size. 
 

4. Selection: Selection operator is been used in order to create a 
new, intermediate, population from the old one, by selecting 
individuals based on their fitness. This can be done using any 
of the following three different selection schemes  that have 
been implemented, namely: 

 The Elitism Roulette Wheel Selection Operator, with 
variable elitist pressure (for more details see [12], [16], [20] 
and [22]). 

 The Rank Based Selection (for more details see [12], [16], 
[20] and [22]). 

 The Tournament Selection with variable tournament size 
(for more details see [12], [16], [20] and [22]). 

 
5. Mutation: It works on the members of Three different 

mutation operators are implemented: 
 Input Mutation: it selects randomly a neural network from 
the population and changes its number of inputs. This 
operator works only on time series modeling and prediction 
problems, where the number of past values (network inputs) 

needed to predict future values is not usually known a 
priory. 

 Hidden mutation: it selects randomly a neural network from 
the population and changes the structure of its hidden 
region by adding or deleting a random number (selected 
uniformly from a given interval) of hidden neurons.  

 Non Uniform Weight mutation: it is responsible for the fine 
tuning capabilities of the system. It selects randomly a 
number of connection weights and changes their values to 
new ones as follows: Let suppose that w is the old weight 
value then the new one is given by the formula:  

 
( ) ( ) (( )1 ,w n w n w t ub w n+ = ± Δ − )  (15) 

 
Where lb and ub are the lower and upper bounds of the 
weight values, t is the generation number, and Δ(t,y) is a 
function that returns a value in the range [0,y], such that the 
probability of Δ(t,y) being close to 0 increases as t 
increases. This property causes this operator to search the 
solution space initially uniformly (while t is small) and very 
locally at the later stages. In our experiments the following 
function, [20] was used: 
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Where r is a random number on [0,1], T is the maximal 
generation number (a parameter of the algorithm), and b is a 
system parameter determining the degree of non-uniformity. 
 

 Gaussian weight mutation: it works like the Non Uniform 
Weight mutation operator with the difference that the new 
weight value is calculated by the formula: 

 
( ) ( ) (1w n w n w n+ = + Δ )  (17) 

 
Where, Δw is a small random number following Gaussian 
distribution.  

 Uniform weight mutation: it works like the Gaussian 
mutation operator with the difference that, Δw is a small 
random number following Uniform distribution.  
 

6. Crossover: It selects two parents (neural networks) and 
generates one or two offspring by recombining parts of them. 
The offspring take the place of their parents in the new 
population. In the presented algorithm crossover recombines 
whole neurons with their incoming connections. But since we 
have to deal with networks with different structures, the new 
connections that might have to be produced are initialized with 
random weight values as in the initialization phase. Herein 
crossover works more like a mutation operator, like in most 
genetic programming systems, than as the recombination 
operator of genetic algorithms  

 
Therefore the presented hybrid evolutionary algorithm works in 

brief as follows: it starts with a population of randomly constructed 
Neural Networks (step 1). Networks undergo some training for a 
couple of epochs with MEKA, using the training set (step 2). 
Performance is measured with the fitness function (step 3) using the 
validation set, in order to improve generalization. Then a new, 
intermediate, population is created, by selecting the more fit 
individuals according to their fitness (step 4) using any of the three 
selection schemes. Some members of this intermediate population 
undergo transformations by means of genetic operators to form the 
members (individuals) of the new population: mutation (step 5) and 
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crossover (step 6) operators. The new population that is created is 
trained again (step 2); new members are trained for a couple of 
epochs, while the members that have survived and passed from the 
old population may be trained with MEKA for some more epochs, 
or may not be trained at all. This is the new generation. This whole 
process continues until a predefined termination condition is 
fulfilled; the termination condition might be a maximum number of 
generation or a minimum error (MSE or MRE) value. Once 
terminated the algorithm is expected to have reached a near-
optimum solution, i.e. a trained network with near optimum 
architecture. 

2.3 THE TOOL 
This hybrid evolutionary algorithm has been implemented as a 

visual tool in C++ programming language, having a graphical user 
interface (GUI). Specifically, it was used the Borland C++ version 
6.0 IDE for Windows. Figure 1 and 2 depict two of the basic forms 
of the program, for the two main categories of problems that it can 
be used for, classification and time series prediction. Figure 3 is the 
“statistics” form that illustrates the evolutionary process and prints 
useful information about it.    

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.     The main form for classification problems of the evolutionary 
neural network system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.     The main form for prediction problems of the evolutionary 
neural network system 

 
The user can select between this two problem categories. Then 

he/she can insert the values of the various genetic parameters, the 
training, validation and test files, as well as the output log files. The 
user can observe the evolutionary process using some real time 
graphical display of the error, the performance of the best ever 
network and other parameters.  

Figure 3.     The “statistics” form 

3 NUMERICAL EXPERIMENTS 
In order to examine the ability of the algorithm to produce networks 
that learn and generalize well we have tested it on two real world 
problems: the modeling of the MEG recordings of epileptic patients 
and the modeling MCG recordings of normal subjects.  

Brain dynamics can be evaluated by recording the changes of the 
neuronal electric voltage, either by the electroencephalogram 
(EEG), or by the MEG. The EEG recordings represent the time 
series that match up to neurological activity as a function of time. 
On the other hand the MEG is generated due to the time varying 
nature of the neuronal electric activity, since time-varying electric 
currents generate magnetic fields. EEG and MEG are considered to 
be complementary, each one carrying a part but not the whole of the 
information related to the underlying neural activity. Thus, it has 
been suggested that the EEG is mostly related to the inter-neural 
electric activity, whereas the MEG is mostly related to the intra-
neural activity. The MEG recordings of epileptic patients were 
obtained using a Super-conductive QUantum Interference Device 
(SQUID) and were digitized with a sampling frequency of 256Hz 
using a 12-bit A/D Converter. SQUID is a very sensitive 
magnetometer, capable to detect and record the bio-magnetic fields 
produced in the human brain due to the generation of electrical 
micro-currents at neural cellular level [30].  

The same stands for the MCG recordings which are magnetic 
recordings of the heart operation of normal subjects. MEG and 
MCG data were provided by the Laboratory of Medical Physics of 
the Democritus University of Thrace, Greece, where a one-channel 
DC SQUID is operable. Both biosignal data were normalized in the 
interval [0,1] in order to be processed by the neural networks. 

In all the experiments we used, for comparison reasons, the same 
parameter values, which are depicted in table 1. For the case of the 
MEG modeling, as training set where used 1024 data samples 
(corresponding to a four seconds epoch of the MEG) while for the 
testing was used 512 data samples (corresponding to a two seconds 
epoch of the MEG). For the case of the MCG modeling, as training 
set where used 1024 data samples and for the test set was used 1024 
data samples The algorithm was left to run over 1000 generations. 

In order to evaluate the forecasting capability of the produced 
networks we used three well-known error measures, the Normalized 
Root Mean Squared Error (NRMSE), the Correlation Coefficient 
(CC) and the Mean Relative Error (MRE). The performance of the 
hybrid algorithm for the case of MEG modeling is depicted in 
tables 2 and 3 and in figure 4, while for the case of MCG in tables 4 
and 5 and in figure 5.   
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Table 1.     Parameters used for the cases of MEG and MCG modeling 
Parameter Value 

Population 
Max number of Generations 
Crossover Probability 
Input Mutation Probability 
Weight Mutation Probability 
Uniform Mutation Probability 
nonUniform Mutation Probability 
Gaussian Mutation Probability 
MeanGaussian 
StDev Gauss 
Predicting Horizon 

50 
1000 
0,1 
0,1 
0,1 
0,1 
0,1 
0,1 
0,1 
0,25 
1 

 
Table 2.     MEG forecasting - Errors on the Training Set 

Architecture  NRMSE C.C. MRE 
4-9-1 0.2540 0.9674 0.0350 
3-3-1 0.2913 0.9581 0.0386 
4-5-1 0.2564 0.9672 0.0357 
3-2-1 0.2967 0.9557 0.0411 
3-3-1 0.2705 0.9656 0.0369 
3-4-1 0.2655 0.9645 0.0361 

 
Table 3.     MEG forecasting - Errors on the Test Set 

Architecture NRMSE C.C. MRE 
4-9-1 0.1971 0.9805 0.0403 
3-3-1 0.2189 0.9757 0.0438 
4-5-1 0.2063 0.9786 0.0434 
3-2-1 0.2309 0.9733 0.0466 
3-3-1 0.2177 0.9765 0.0446 
3-4-1 0.2111 0.9775 0.0429 
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Figure 4.     MEG forecasting, performance on the test set. 

 
Table 4.     MCG forecasting - Errors on the Training Set 

Architecture  NRMSE C.C. MRE 
12-10-1 0.1918 0.9815 0.8421 
9-20-1 0.1840 0.9829 0.8073 
10-11-1 0.1790 0.9839 0.6790 
13-10-1 0.1869 0.9824 0.7875 
13-12-1 0.2213 0.9761 0.8983 
10-9-1 0.2274 0.9740 0.9702 
4-4-1 0.3593 0.9441 0.9822 
3-1-1 0.6481 0.8262 0.9061 

Table 5.     MCG forecasting - Errors on the Test Set 
Architecture  NRMSE C.C. MRE 

12-10-1 0.2419 0.9704 1.4222 
9-20-1 0.2081 0.9781 1.1874 
10-11-1 0.2214 0.9752 1.3642 
13-10-1 0.1858 0.9827 0.9617 
13-12-1 0.2163 0.9774 0.8677 
10-9-1 0.2193 0.9760 0.9882 
4-4-1 0.3586 0.9445 0.9817 
3-1-1 0.6497 0.8241 0.9915 
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Figure 5.     MCG forecasting, performance on the test set. 

4 CONCLUSIONS  
In the current paper it was presented a hybrid biological inspired 
evolutionary algorithm that combines a genetic programming 
technique with a training method based on the Multiple Extended 
Kalman Algorithm.  This hybrid algorithm is implemented in C++ 
as a software system with a graphical user interface.  

The main novelties of the proposed hybrid algorithm are the 
combination of genetic programming technique with MEKA, the 
use of a fitness function that combines performance with network 
size, the ability to evolve not only the structure of the hidden layers 
but the number of inputs as well, and the large number of different 
genetic operators and especially mutation operators that have been 
implemented. Another novelty is the representation used for neural 
networks. As said before, every network in the population is 
represented as a link list of layers and neurons, using the direct 
encoding scheme. The use of link lists has some certain advantages 
that have to do mainly with the memory management; you use only 
the memory that is needed every time and you don’t have to 
allocate a maximum memory size, for maximum network size like 
other representation schemes. Moreover link lists are dynamic data 
structures, which it means that the neural network architecture can 
change dynamically during run time in contrast with other data 
structures like matrices that in C++ can not change during run time.           

This hybrid algorithm was used for the modeling of two 
biological time series, namely the Magneto Encephalogram (MEG) 
recordings of epileptic patients and Magneto Cardiogram (MCG) of 
normal subjects. All the reported cases refer to predictions on 
recordings of the dynamics of nonlinear systems. In all the 
performed experiments the algorithm was able to find a near 
optimum network architecture that gave small prediction errors. 
Therefore we can conclude that the algorithm is able to produce 
small and compact networks that learn and generalize well.  

The algorithm has only tested on time series prediction problems 
and it is in our intention to test it on some difficult classification 
problems as well.  
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One of the main drawbacks of this kind of algorithms, namely 
the evolutionary algorithms, hybrid or not, is that they are 
computational expensive in terms of computer memory and CPU 
time. Even though the proposed algorithm belongs to this category, 
the use of MEKA for just a couple of epochs for the training phase 
of the neural networks and the representation where each member 
of the population is a network represented as a link list so that there 
is no need to use encoding and decoding functions for the 
calculation of network’s performance, makes the algorithm less 
computational expensive than other approaches to the same 
problem of neural networks evolution.  

The algorithm could be further improved by adding some more 
genetic operators for better and faster local search both to the 
architecture and weight space and this is going to be one of our 
future research targets. Furthermore, in the integrated software 
system there are already implemented a large number of genetic 
operators whose influence to the performance of the hybrid 
algorithm needs to be appraised; we need to see which of the three 
selection schemes, or the many mutation operators give better 
results.  Another future research direction will be the combination 
of MEKA with other evolutionary techniques like Particle Swarm 
Optimization and Differential Evolution for neural network 
evolution.  
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