
BitMat: A Main Memory Bit-matrix of RDF

Triples

Medha Atre and James A. Hendler

Tetherless World Constellation,
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy NY USA

{atrem, hendler}@cs.rpi.edu

Abstract. BitMat is a main memory based bit-matrix structure for
representing a large set of RDF triples, designed primarily to allow pro-
cessing of conjunctive triple pattern (join) queries. The key aspects are
as follows: i) its RDF triple-set representation is compact compared to
conventional disk-based and existing main-memory RDF stores, ii) ba-
sic join query processing employs logical bitwise AND/OR operations
on parts of a BitMat, and iii) for multi-joins, intermediate results are
maintained in the form of a BitMat containing candidate triples without
complete materialization, thereby ensuring that the intermediate result
size remains bounded across a large number of join operations, provided
there are no Cartesian joins. We present the key concepts of the BitMat
structure, its use in processing join queries, describe our experimental
results with RDF datasets of different sizes (from 0.2 to 47 million), and
discuss the use case scenarios.

1 Introduction

RDF [4] and SPARQL [16] are gaining importance as semantic data is increas-
ingly becoming available in the RDF format. The growing scale of RDF data
necessitates novel ways of storing and querying this data in a compact form. To
handle this large scale RDF data, numerous systems are being developed [13,
23, 1]. Many of these systems are implemented as a straight-forward extension
of relational database systems and SQL querying techniques. These systems can
be broadly classified as persistent disk-based and main-memory-based systems.
The work described in this paper belongs to the latter category proposing a
main-memory RDF triple store.

Most of the other RDF store systems depend on building efficient auxiliary
indexes on the RDF data and using them either for specific type of queries or
to improve the overall query performance. In contrast, in our approach, BitMat
which is an compressed inverted index structure itself makes up the primary
storage for RDF triples. Our proposed query processing algorithm voids the
need to uncompress this data at any point during query processing.

33

Generic relational data can have varied dimensions (i.e. number of columns),
and hence the SQL query processing algorithms have to encompass this nature of
relational data. As opposed to that, an RDF triple is a fixed 3-dimensional (S, P,
O) entity and the dimensionality of SPARQL conjunctive triple pattern queries
is also fixed (which depend on the number of conjunctive patterns in the query).
Hence while building the BitMat structure and query processing algorithms, we
made use of this fact.

In essence, BitMat is a 3-dimensional bit-cube, in which each cell is a bit
representing a unique triple denoting the presence or absence of that triple by
the bit value 1 or 0. This bit-cube is flattened in a 2-dimensional bit matrix for
implementation purpose. Figure 1 shows an example of a set of RDF triples and
the corresponding BitMat representation.

Object

:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0 1 0

0 1 0

0 0 0

1 0 0

0 0 1

0 0 1

:the_matrix "1999"
"1999":released_in

:released_in

:similar_plot_as :the_matrix
:the_matrix :is_a :movie

:is_a :movie

:the_thirteenth_floor
:the_thirteenth_floor

:the_thirteenth_floor

Distinct subjects: [
Distinct predicates: [:is_a]:released_in, :similar_plot_as,
Distinct objects: []

:the_matrix,

:movie:the_matrix, "1999",

]:the_thirteenth_floor

Note: Each bit sequence represents sequence of objects (:the_matrix, "1999", :movie)

Subject Predicate

Fig. 1. BitMat of sample RDF data

If the number of distinct subjects, predicates, and objects in a given RDF
data are represented as sets Vs, Vp, Vo, then a typical RDF dataset covers a very
small set of Vs×Vp×Vo space. Hence BitMat inherently tends to be very sparse.
We exploit this sparsity to achieve compactness of the BitMat by compressing
each bit-row using D-gap compression scheme [7]1.

Since conjunctive triple pattern (join) queries are the fundamental building
blocks of SPARQL queries, presently our query processing algorithm supports
only those. These queries are processed using bitwise AND, OR operations on
the compressed BitMat rows. Note that the bitwise AND, OR operations are
directly supported on a compressed BitMat thereby allowing memory efficient
execution of the queries. At the end of the query execution, the resulting filtered
triples are returned as another BitMat (i.e. a query’s answer is another result
BitMat). This process is explained in Section 4.

Figure 2 shows the conjunctive triple pattern for movies that have similar plot
and the corresponding result BitMat. Unlike the conventional RDF triple stores,

1 E.g. In D-gap compression scheme a bit-vector of “0011000” will be represented as
[0]-2,2,3. A bit-vector of “10001100” will be represented as [1]-1,3,2,2.

34

where size of the intermediate join results can grow very large, our BitMat based
multi-join2 algorithm ensures that the intermediate result size remains bounded,
(at most to (n * size of the original BitMat), where n is the number of triple
patterns in the query), across any number of join operations (provided there are
no Cartesian joins).

0 0 0

Query: (?m :similar_plot ?n . ?m :is_a :movie . ?n :is_a :movie)
:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0 0 0

1 0 0

0 0 1

0 0 1

0 0 0

Fig. 2. Result BitMat of a sample query

A conventional SPARQL join query engine produces zero or more match-
ing subgraphs (each resulting row with variable bindings identifies a matching
subgraph). BitMat join processing returns a set of distinct triples in the result
BitMat that together form all the matching subgraphs. Currently we are work-
ing on an algorithm to enumerate all the matching subgraphs – which is not
presented here. But even without this last phase of result generation, current
query processing algorithms can be used for:

– ‘EXISTS’ or ‘ASK’ queries as very large multi-joins can be performed in
memory using BitMat (existence of one or more 1 bits in the resulting BitMat
indicates that the query will produce at least one matching subgraph).

– As a precursor to an in-memory query processing engine (e.g. Jena-ARQ [2])
to identify the result triples from a large triple set.

BitMat is designed specifically to process conjunctive triple pattern queries and
presently the query processing interface does not support full SPARQL syntax
or other SPARQL constructs.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the related work. Section 3 describes the BitMat structure and its composition
in greater details. Sections 4 and 5 describe the basic algorithm of single join
procedure and an algorithm for multi-join based on the single-join algorithm
respectively. Section 6 gives our evaluation of the system, and Section 7 concludes
the paper with strengths and weaknesses of the present structure of the BitMat
and query processing system.

2 Related Work

The structure of a BitMat is somewhat similar to the idea of bitmap indexes,
which are used in relational database systems and more recently by the Virtuoso
RDF store [8] to efficiently process queries over low cardinality data. The key

2 Multi-join is a conjunctive triple pattern with two or more triple patterns having
two or more join variables and a single join has two triple patterns with only one
join variable.

35

difference is that BitMat’s query processor always operates on the compressed
BitMat without uncompressing it anytime. This is not possible with a traditional
SQL based query processor employing bitmap indexes over multi-joins.

In addition to these, there are various systems being developed for processing
RDF data. Some notable ones are – Hexastore [23], RDF-3X [13, 14], BRAHMS
[10], GRIN [21], SwiftOWLIM [20], Jena-TDB [1] etc.

Out of these, Hexastore and RDF-3X exploit the nature of RDF data by
creating 6-way indexes (SPO, SOP, PSO, POS, OSP, OPS) on it. RDF-3X goes
one step further by compressing these indexes and organizing them as clus-
tered B+-trees. BRAHMS and GRIN mainly use their system for path-based
queries on RDF graph. But they have not published results on very large RDF
graphs, putting the scalability of their system under question. BRAHMS have
used LUBM data of only 6 million triples and GRIN has published results for
only upto 17,000 triples3.

The notable difference between these systems and BitMat is that – BitMat’s
conjunctive triple pattern query processing algorithm which controls the inter-
mediate memory utilization in a large multi-join query.

The structure that comes closest to BitMat is RDFCube [12], which also
builds a 3D cube of subject, predicate, and object dimensions. However, RD-
FCube’s design approximates the mapping of a triple to a cell by treating each
cell as a hash bucket containing multiple triples. It is primarily used to reduce the
network traffic for processing join queries over a distributed RDF store (RDF-
Peers [5]) by narrowing down the candidate triples. In contrast, BitMat structure
maintains unique mapping of a triple to a single bit element and further com-
presses the BitMat. Our goal here is to represent large RDF triple-sets with
a compact in-memory representation and support a scalable multi-join query
execution completely in-memory.

SPARQL query language, which is structurally quite similar to the SQL query
language [6], is being studied specifically with respect to the join processing [9,
19] and query benchmarking [18]. In contrast to the conventional SPARQL query
processing scheme, we employ a different approach for multi-joins as elaborated
in Section 5.

3 BitMat Concepts

A bit-cube of RDF triples is a 3-dimensional structure with subject (S), predicate
(P), and object (O) dimensions. Individual cell is a single bit, and 1 or 0 value
of the bit represents presence or absence of the triple. This conceptual bit-cube
can be represented as a concatenation of (S,O) or (O,S) matrices for all the
distinct predicates thereby forming a mat of bits, BitMat. Concatenation done
along the subject dimension is referred to as a subject BitMat and concatenation
done along the object dimension is referred to as an object BitMat. Altogether,
there are 6 ways of flattening a bit-cube into a BitMat (as is the case of six-way

3 GRIN focuses on path-like queries which are not even expressible in current SPARQL
query language.

36

indexes on the RDF data). For the current set of experiments, we have used
subject BitMats. Exploring other structures of BitMat is a part of future work.

3.1 BitMat Structure

BitMat is constructed from a set of RDF triples as follows: Let Vs, Vp, and Vo

represent the sets of distinct subject, predicate, and object values occurring in
a RDF triple set. Let Vso represent the Vs ∩ Vo set. These four sets are mapped
to the integer sequence based identifiers as shown below:

– Common subjects and objects: Set Vso is mapped to a sequence of integers:
1 to |Vso| in that order.

– Subjects: Set Vs − Vso is mapped to a sequence of integers: |Vso| + 1 to |Vs|.
– Predicates: Set Vp is mapped to a sequence of integers: 1 to |Vp|.
– Objects: Set Vo − Vso is mapped to a sequence of integers: |Vso| + 1 to |Vo|.

Basically, each ID-space is treated independently with the exception that URIs
which appear as subjects as well as objects are assigned the same sequence
identifiers. This is done to facilitate the subject-object (S-O) cross dimensional
join as discussed in Section 4. Cross-dimension joins over subject-predicate (S-
P) or predicate-object (P-O) dimensions are rare in the context of assertional
RDF data. Since the large scale RDF data available on the web is predominantly
assertional, presently we do not handle S-P or P-O cross dimensional joins.

The above mapping is a direct representation of the position of those triples in
the BitMat structure. For the example given in Section 1, :the matrix as a subject
is mapped to 1, :the matrix as an object is also mapped to 1, :the thirteenth- floor
is mapped to 2, :similar plot as is mapped to 2 etc. Hence triple (:the thirteenth floor
:similar plot as :the matrix) is represented as (2 2 1) indicating to set the first
bit (O-position) in the second row (S-position) of the second (S,O) matrix (P-
position) (see Figure 1). A complete BitMat is built this way by setting the
bit corresponding to each encoded RDF triple. Although this is the conceptual
structure of a BitMat, we build the compressed BitMat directly from the encoded
triple set as explained further in Section 6.

3.2 BitMat Operations

The process of evaluating conjunctive triple pattern (join) queries is carried out
with three primitive operations on a BitMat. They are as follows:

(1) Filter: Filter operation is represented as ‘filter(BitMat, TriplePattern)
returns BitMat’. It takes an input BitMat and returns a new BitMat which
contains only triples that satisfy the TriplePattern.

Effectively, filter operation on a BitMat involves clearing the bits of the triples
that are filtered out. For example, a triple pattern with only bound subject value
like filter(BitMat, ‘:s1 ?p ?o’), clears all the bits in all the rows other than the
row corresponding to the bound subject value :s1 etc.

37

(2) Fold: Fold function represented as ‘fold(BitMat, RetainDimension) re-
turns bitarray’ folds the input BitMat along the two dimensions other than the
RetainDimension.

For example, if RetainDimension is set to ‘object’, then BitMat is folded along
the subject and predicate dimensions resulting into a single bitarray. Intuitively,
bits set to 1 in this bitarray indicate the presence of at least one triple with
the object corresponding to that position in the given BitMat. Typically fold
is called on the BitMat returned by filter. E.g. fold(filter(BitMat, ‘:s1 ?p ?o’),
‘object’).

(3) Unfold: Specified as ‘unfold(BitMat, MaskBitArray, RetainDimension)
returns BitMat’ takes a BitMat, a bitarray, and unfolds the bitarray on the
BitMat.

Intuitively, in the unfold operation, for every bit set to 0 in the MaskBitAr-
ray all the bits corresponding to that position of the RetainDimension in a
BitMat are cleared. Typically MaskBitArray is generated by a bitwise AND of
the bitarrays returned by fold operations before. E.g. unfold(BitMat, ‘101001’,
‘predicate’) would result in clearing all the bits in second, fourth, and fifth (S,O)
matrices which correspond to predicates mapped to {2, 4, 5}.

Filter, fold, and unfold operations are implemented to operate on a com-
pressed BitMat without uncompressing it.

4 Single Join Processing

A conventional SPARQL join query processing engine produces zero or more
matching subgraphs (each resulting row with the variable bindings identifies a
matching subgraph) (see Figure 3). The query being evaluated is (:s1 ?p ?x .
:s3 ?p ?y). Intuitively, every resulting matching subgraph is a proper subgraph
of the original RDF graph G, which satisfies the SPARQL query graph pattern
(provided there are no Cartesian joins).

BitMat based join algorithm is given in Algorithm 1 and is elaborated as
follows.

Algorithm 1 BitMat SingleJoin(BM, tp1, tp2) returns BitMat

1: Let BM be the BitMat of the original triple-set
2: Let tp1 and tp2 be the two triple patterns in the join
3: /* filter and fold */
4: BMtp1 = filter(BM , tp1)
5: BMtp2 = filter(BM , tp2)
6: BitArr1 = fold(BMtp1, RetainDimensiontp1)
7: BitArr2 = fold(BMtp2, RetainDimensiontp2)
8: BitArrres = BitArr1 AND BitArr2

9: BMtp1 = unfold(BMtp1, BitArrres, RetainDimensiontp1)
10: BMtp2 = unfold(BMtp2, BitArrres, RetainDimensiontp2)
11: /* Produce the final result BitMat */
12: Let BMres be an empty BitMat
13: BMres = BMtp1OR BMtp2

On lines 4, 5 filter operation is used to get two BitMats containing only
triples satisfying the first and second triple pattern respectively. This resembles
the selection operator used in SQL style queries. Fold is used on these two Bit-
Mats to get BitArr1 and BitArr2. Fold is analogous to the projection operator

38

11 11 1

:p2
1 1 1
:p1 :p3

1 1

11 11 1

1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:s1 :p1 :o1
:s1 :p1 :o2
:s1 :p2 :o2

:s2 :p3 :o3
:s3 :p1 :o1
:s3 :p1 :o4

:s3 :p3 :o3
:s3 :p3 :o4

:s2 :p2 :o3

:s2 :p2 :o2
:s2 :p1 :o1
:s1 :p3 :o3
:s1 :p2 :o4

Join over
:s1 ?p ?x
:s3 ?p ?y 11 1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

1

1

1

1 1

1 1

1

1

1

1

1

:s1

:s2

:s3

:p1 :p2 :p3
:o1 :o1:o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5

:s1

:s3

:s1

:s3

AND

:s3:s1 1 1

:p1 :p2 :p3 :p1 :p2 :p3

:o5:o1

1 1 1

1 1 1 1 1

:s1

:s3

:s2

1

:p1 :p2 :p3

Result

:p1 :p2 :p3

1

Result BitMat

Result triples (with BitMat)
:s1 :p1 :o1
:s1 :p1 :o2
:s1 :p3 :o3

fold(retainDIM = predicate)

Unfold(with retainDIM = predicate) Unfold(with retainDIM = predicate)

Bits cleared

Similar to the operation shown as a bit array

simplicity of the figure.

filter
above, is shown on a bit array for theunfold

(variable bindings)
Matching subgraphs (as would be produced by a query engine)

:s3 :p1 :o5

Map triples to a BitMat fold(retainDIM = predicate)

corresponding to (:s1 ?p ?x) and (:s3 ?p ?y).
For the simplicity of the figure they are shown
as 2 bit arrays of :s1 and :s3 (as internally
bits in other rows are set to 0 as per the

semantics)filter

Filter operation produces 2 BitMats

:p1 :p2 :p3

:s3 :p1 :o1
:s3 :p1 :o4
:s3 :p1 :o5
:s3 :p3 :o3
:s3 :p3 :o4

1

1

 :s1 :p1 :o1 :s3 :p1 :o1
 :s1 :p1 :o1 :s3 :p1 :o4
 :s1 :p1 :o1 :s3 :p1 :o5
 :s1 :p1 :o2 :s3 :p1 :o1
 :s1 :p1 :o2 :s3 :p1 :o4
 :s1 :p1 :o2 :s3 :p1 :o5

T1.S T1.P T1.O T2.S T2.P T2.O

 :s1 :p3 :o3 :s3 :p3 :o3
 :s1 :p3 :o3 :s3 :p3 :o4

?p ?x ?p ?y

transformtripleT

Fig. 3. Single Join on a BitMat

of SQL queries. If RDF triples are presented in a 3-column table (S, P, O), then
these bitarrays correspond to a single column in the table and bit positions set to
1 indicate presence of the S, P, or O values corresponding to those bit positions.
Bitwise AND is performed on these bitarrays which is same as a relational join
on the column represented by RetainDimension. The result of the bitwise AND
is unfolded back on the filtered BitMats BMtp1 and BMtp2. Finally the two Bit-
Mats obtained after unfold are combined using bitwise OR on the corresponding
rows of them. This procedure is depicted in Figure 3.

It can be shown and proved step-by-step that filter, fold, and unfold operators
can be mapped to equivalent SQL operations and the correctness of the algorithm
can be proved. For the scope of this paper, we have omitted these details, but
they can be referred in our technical report [3].

For simplicity of presentation of the algorithm, we have shown it only for
a single join with two triple patterns, but the same algorithm can be extended
to ‘n’ triple patterns joining over a single join variable occurring in the same
dimension by performing filter and fold on each triple pattern, ANDing all the
bitarrays generated by the fold operation, unfolding the AND results on each of
the filtered BitMats, and finally combining all these BitMats with bitwise OR
on the corresponding rows to get the result BitMat. The procedure for subject-
object cross dimensional join (as shown by an example in Section 3.1) is slightly
different and is elaborated in Section 4.1.

4.1 Cross Dimensional Joins

Bitwise AND operation can be performed on two bitarrays only if the corre-
sponding bit positions have the same URI or literal values mapped to them.
This is the case for the same dimension joins.

Cross-dimensional joins need special handling. (?s :p1 ?x . ?y :p2 ?s) is an
example of subject-object (S-O) cross-dimensional join, for which we need to
perform bitwise AND on the subject and object bitarrays. As elaborated in

39

Section 3.1 and Section 3.2, every bit position in the folded bitarray corresponds
to a unique identifier assigned to a URI or literal in the respective subject,
predicate, object ID space. Since URIs which appear as subjects as well as objects
are allocated the same IDs sequentially from 1 to |Vso|, for a S-O join, bitwise
AND is performed only on the first |Vso| bit positions of the respective subject
and object bitarrays and rest all bits are cleared.

As mentioned earlier in Section 3.1, other cross-dimensional joins (S-P and
P-O) are not that common in the Semantic Web instance (assertional) data and
hence are not supported at present.

5 Multi Join Processing

In a multi-join two or more triple patterns join over two or more join variables,
e.g. (:s1 ?p ?o . :s2 ?p ?y . ?z :p3 ?o). In a conventional relational join processing,
multi-join evaluation can be presented as an operator tree where each internal
node is a self-contained representation of the materialized results of the join
subtree below it. BitMat single join procedure, as elaborated in Section 4, does
not materialize the query results (i.e. does not produce matching subgraphs), but
represents the candidate result triples with the result BitMat. Thus, if we simply
extend the single-join BitMat algorithm to multi-joins, evaluation of a later join
can change the variable bindings produced by an earlier join. Specifically, if
the dependency between different join variables is not captured and resolved
then a BitMat join can produce false positives. Hence is the need for a different
algorithm for multi-join queries.

5.1 BitMat Multi-Join Algorithm

e
?s ?y ?p ?x

:s1 ?p ?x
:s2 ?p ?y

?s ?m :o6 ?n :p3 ?x

ij

?s :p4 ?y

Fig. 4. Multi-join graph G

For the present considerations, we do not handle joins with Cartesian prod-
ucts. For better understanding of the algorithm, we develop the theory by con-
structing a bipartite graph G which captures the conjunctive triple pattern and
join variable dependencies (see Figure 4).

– Each join variable in the multi-join is a node (denoted as jvar-node).
– Each triple pattern is a node (denoted as tp-node).

40

– There is an edge between a jvar-node and a tp-node if the join variable
represented by the jvar-node appears in the triple pattern represented by
the tp-node.

Algorithm 2 BitMat MultiJoin(BM, G) returns BitMat

1: /* BM is the BitMat of the original triple-set */
2: /* Initialize graph G */
3: for all vk in graph G
4: if vk is jvar-node then
5: Set BitArrk to a bitarray with all bits set to 1.
6: else
7: BitMatk = filter(BM , getTriplePattern(vk))
8: end if
9: end for

10: repeat
11: Set changed = false
12: for each vi as jvar-node in G do
13: Let PrevBitArri = BitArri

14: /* TP is a set of all triple patterns
15: * having join-var vi */
16: Let TP = {vj | ∃eij}
17: for each vj in TP do
18: Let dim = getDimension (vi, getTriplePattern(vj))
19: Let TempBitArr = fold(BitMatj , dim)
20: BitArri = (BitArri) AND (TempBitArr)
21: end for
22: if PrevBitArri not equal BitArri then
23: Set changed = true
24: end if
25: /* Now unfold the result */
26: for each vj in TP do
27: Let dim = getDimension (vi, getTriplePattern(vj))
28: BitMatj = unfold(BitMatj , BitArri, dim)
29: end for
30: end for
31: until (changed == true and there are more than one join var)
32: Let Bres be an empty BitMat
33: for each vj as tp-node in G do
34: Bres = Bres OR BitMatj

35: end for

Although for graph G shown in Figure 4 there are exactly two edges per
jvar-node corresponding to a join variable, one could have more than two edges
per join variable.

The algorithm to evaluate a multi-join using graph G is given in Algorithm
2. For simplicity, we assume the existence of certain methods without describ-
ing them in the algorithm, viz. method getTriplePattern(vj) returns the triple
pattern associated with the tp-node node vj , and getDimension(vi, tp) returns
the position (dimension) of the join variable vi in triple pattern tp, e.g. getDi-
mension(?s, (?s :p1 ?x)) returns subject, getDimension(?s, (?y :p2 ?s)) returns
object, and getDimension(?s, (?s :p2 ?s)) returns subject and object (this is a
special form of S-O cross dimensional join and is captured by the implemen-
tation of the BitMat multi-join algorithm, but not shown in Algorithm 2 for
simplicity).

41

Associated with each jvar-node is a bitarray of the most recent result of a join
evaluated over that join variable. Initially all the bits in these bitarrays are set to
1 (as explained in the Algorithm 2). Each tp-node has a BitMat associated with
it, which is initially set to the result of the filter(BM, getTriplePattern(vj)) where
vj is the tp-node. The repeat-until loop (between lines 10 and 31) in Algorithm 2
iterates over all the join variables in the query, processing those joins until none
of the BitArri change. For each join variable, it folds the BitMats associated
with all the triple patterns which have that join variable (lines 16, 19) and
performs a bitwise AND on the generated BitArrays (line 20). At the end of the
loop (17-21) the final AND result (BitArri) is unfolded back on all the BitMats
in the set TP (line 28). Lastly, after the repeat-until loop ends, result BitMat
is generated by a bitwise OR of all the BitMats associated with all the triple
patterns (line 34) in the query.

Although the multi-join algorithm is constructed as a continuous loop, it can
be proved that this loop will converge in a finite number of iterations. In each
iteration of the loop, we are performing a bitwise AND on the previous BitArri

and the new TempBitArr folded from the BitMat of the triple pattern having
that join variable. After each bitwise AND, the resulting BitArri is unfolded
on the BitMats associated with all the triple patterns having that join variable.
Since we are doing a bitwise AND operation and unfold which expands the
BitArri on the BitMats, only a bit set to 1 can be flipped to 0. Hence the
number of set bits (and hence the triples in the BitMats) reduce monotonically
per iteration of the loop and the loop ends at a point when none of the BitArri

change after an AND (lines 20, 22) (in the worst case when all the bits in all the
BitArrays are set to 0, in which case the final join result is null).

We provide experimental results in Section 6 for the typical number of iter-
ations taken by the loop. It can be seen that for each join variable, we employ
the same basic operations as used for a single join operation.

6 Experiments

This section describes our experiments and evaluation of the BitMat structure
and join queries.

6.1 Programming Environment

The BitMat structure and join algorithms have been developed as a C program
meant to be run on a Linux distribution. All the experiments were carried out
on Gentoo Linux distribution on a Dual Core AMD Opteron Processor 870
with 8GB of RAM. The BitMat program was run as a normal user process
with the default priority as set by the Linux system. Gcc ver. 4.1.1 compiler
is used to compile the code with compiler optimization flag set to -O6. The
RDF N-triple file is first preprocessed using a Perl script to generate a raw
RDF triple file by encoding all the triples using the sequence based identifiers
allocated to URIs and literals (refer to Section 3.1). Simple bash sort command

42

is used to sort these encoded triples on subject-ID, predicate-ID, object-ID. This
preprocessing is needed to be carried out only once per dataset, and the time
taken by it varies linearly with respect to the size of the triple-set (e.g. it takes
around 30 minutes for Wikipedia 47 million triple-set). BitMat’s load function
expects either a raw RDF triple file or a disk image of the previously generated
BitMat. Given a conjunctive triple pattern (join query), another small script is
used to transform the conjunctive triple pattern by encoding all the fixed URIs
and literals present in the query using the corresponding identifiers, so that the
BitMat join processing can operate on the ID-based values.

6.2 Loading a BitMat

We used different RDF triple sets of varying sizes for testing BitMat structure’s
memory utilization. UniProt-0.2million and UniProt-22million triple sets were
extracted from a larger UniProt dataset [22] (∼730 million triples). Uniprot-
0.2million and 22 million datasets were selected from first 50 million triples in
the Uniprot 730million triple file. LUBM 1 million and 6 million triple sets were
generated using LUBM’s [11] RDF data generator program. LUBM 1 million was
generated by generating data of 10 universities and LUBM 6 million was gener-
ated by generating data of 50 universities. Wikipedia 47 million [24] was used
as is available on the web without any modifications in it. The characteristics of
these datasets are given in Table 1.

Table 1. Dataset characteristics

Dataset #Triples #Subjects #Predicates #Objects
Uniprot 0.2million 199,912 30,007 55 45,754
LUBM 1million 1,272,953 207,615 18 155,837
LUBM 6million 6,656,560 1,083,817 18 806,980

Uniprot 22million 22,619,826 5,328,843 91 4,516,903
Wiki 47million 47,054,407 2,162,189 9 8,268,864

Table 2 lists size of the BitMats of respective datasets plus the size of forward
and reverse mapping dictionaries to map each literal or URI to an integer ID. A
compressed BitMat and these dictionary mappings represent the original RDF
data completely. The results given in Table 2 show that this representation is
much smaller than the original raw RDF data presented in N-triples format.

The small size of the compressed BitMat is due to two reasons: i) since the
actual RDF triple set covers only a small set of the total Vs×Vp×Vo space (refer
to Section 3.1), BitMat makes a very sparse structure, ii) D-gap compression
scheme achieves superior results on sparse bit-vectors.

The raw RDF triple file read by the BitMat load procedure is sorted on
(subject, predicate, object) IDs. Hence although conceptually we use the D-gap
compression scheme, internally our algorithm exploits the sorted triple list to
build a compressed BitMat directly instead of building uncompressed bitarrays

43

Table 2. BitMat Size and Load Time

Dataset (#triples in
millions)

Size of compressed BitMat + mapping
dictionary / Size of raw RDF data (MB)

Time to load (sec) from Raw
file / from Disk Image

UniProt (0.2) 1.5 + 6.5 / 23 0.34 / 0.04

LUBM (1) 11.6 + 47 / 222 1.54 / 0.36

LUBM (6) 60.8 + 248 / 1193 8.35 / 1.95

UniProt (22) 213.5 + 1367 / 4037 17.11 / 8.4

Wikipedia (47) 371.1 + 932 / 7054 34.4 / 4.5

and then compressing them. This results into smaller load times to construct a
BitMat from a raw RDF file. The memory-image of a compressed BitMat can
be written out to the disk as a binary file. Loading from a disk-image just reads
this binary file into a BitMat structure in memory, hence loading from a disk
image takes even lesser time than loading the BitMat from sorted triple-ID file.

Note that each conjunctive triple pattern query is converted into an inter-
nal representation where all the fixed values in the query are replaced by their
corresponding integer mapping IDs (refer Section 3.1). Although the mapping
dictionary consumes larger space than the primary BitMat structure, it does not
need to be kept in memory while processing the queries.

6.3 Join Query Performance

To test our implementation of the join algorithm, we executed a list of single join
queries on a smaller dataset (UniProt 0.2 million) and also measured the response
times (for the list of queries, see Table 3). Typically, the subject join query
times varied from 0.019sec to 0.04sec, for predicate joins the variation was from
0.0041sec to 0.062sec, for object dimension join it was from 0.0094sec to 0.128sec,
and for S-O cross dimensional joins it was from 0.08sec to 0.28sec. Variation
in the time depended on different factors such as the selectivity4 of the triple
pattern and join condition, number of total variables in the query, dimension of
the variables in the query, etc. as explained further below. For multi-joins, we
used a mix of queries taken from UniProt queries [17], LUBM queries available
on OpenRDF [15], and some constructed by us for the Wikipedia dataset. Table
4 lists some of these queries (due to space limitations we cannot enlist all the
queries). We noted several parameters that characterize these queries as given
in the columns of Table 4.

Memory requirements: The “Sum of BitMat sizes” is the maximum mem-
ory size of all the BitMats associated with the triple patterns including the result
BitMat at any point during the query execution. Note that BitMat size for a
single pattern is the size obtained after applying the filter, which usually is much
smaller than the original BitMat since a majority of the triple patterns have a
fixed value in at least one of the S, P, O positions. But we have successfully tried
queries having all variable positions in one or more triple patterns as well (e.g.

4 A lower selective triple pattern has more triples associated with it and vice versa.

44

Table 3. Single Join Queries on UniProt-0.2million

Query #Result Triples Time (sec)

Subject Joins

(?s :author ?x)(?s rdf:type ?y) 31,044 0.019

(?s ?p :taxonomy:5875)(?s rdf:type ?y) 2 0.04

(?s ?p ?o)(?s rdf:type ?y) 199,912 0.042

(?s ?p ?o)(?s :author ?y) 43,408 0.02

Predicate Joins

(?x ?p :P15711) (?y ?p :Q43495) 10 0.062

(:UniProt.rdf# F ?p ?o) (?y ?p :Q43495) 6 0.034

(:UniProt.rdf# A ?p ?x) (:UniProt.rdf# F ?p ?y) 10 0.0041

(?s ?p ?x) (:UniProt.rdf# F ?p ?y) 75,572 0.062

Object Joins

(?x :created ?o)(?y :modified ?o) 2056 0.016

(:P15711 ?p ?o)(?y :modified ?o) 33 0.010

(?x ?p ?o)(?y :modified ?o) 2056 0.128

(?x :created ?o)(:P28335 :modified ?o) 19 0.0094

S-O Joins

(?o :begin ?x)(?y :range ?o) 11,830 0.28

(?x ?p ?o)(?o rdf:type ?y) 51,232 0.08

(?x ?n ?o)(?o ?m ?y) 135,325 0.081

a Wikipedia query in Table 4). The sizes of these BitMats are highest at the
beginning of the query, and they go on reducing monotonically as the multi-join
algorithm executes. This is due to the fact that filter, fold, and unfold oper-
ate on a compressed BitMat, and in every iteration of the multi-join algorithm,
triples get eliminated monotonically, hence the BitMat size shrinks. Also we do
not materialize the intermediate join results, but represent them as candidate
triples in the result BitMat. The size variation also depended on the selectivity
of the triple patterns. The higher the selectivity, the lower the BitMat size (due
to D-gap compression).

The variation of the query execution times can be attributed to three key
factors: i) join-dimension (e.g. whether it is a subject, predicate, object, or S-O
cross dimension join), ii) selectivity of the triple patterns, and iii) the order of
the join evaluation.

Join dimension: Since we are using a subject BitMat for joins on all the
dimensions, subject-dimension joins inherently benefited, as folding and unfold-
ing of a compressed BitMat by retaining the subject dimension involves only
updating the relevant subject rows without accessing the compressed content.
Since the number of distinct predicates is usually low in the datasets, predicate
joins performed well too. However, accessing object dimension in a compressed
subject BitMat needed special handling, and hence we observe that the struc-
ture of the subject BitMat is unsuited for the object joins since unfold requires
accessing every O-bit position within each subject row, and for each predicate in

45

Table 4. Multi-join Queries

Query Dataset
(million
triples)

Sum
Bit-
Mat
sizes

#Result-
ing
triples

Time
(sec) /
#multi-
join
loop-
itera-
tions

#Join
var /
#all
vars /
#triple
pat-
terns

(?protein rdf:type :Protein) (?protein :annotation
?annotation) (?annotation rdf:type :Transmem-
brane Annotation) (?annotation :range ?range)
(?range :begin ?begin) (?range :end ?end)

UniProt
(0.2)

355KB 3712 0.066 /
3

3 / 5 / 6

(?p1 rdf:type :Protein)(?p1 :enzyme :en-
zymes:2.7.1.105) (?p2 rdf:type :Protein) (?p2
:enzyme :enzymes:3.1.3.-) (?interaction rdf:type
rdf:Statement) (?interaction rdf:subject ?p1)
(?interaction rdf:subject ?p2)

UniProt
(0.2)

434KB 0 0.068 /
3

3 / 3 / 7

(?X rdf:type ub:GraduateStudent) (?Y rdf:type
ub:University) (?Z rdf:type ub:Department) (?X
ub:memberOf ?Z) (?Z ub:subOrganizationOf ?Y)
(?X ub:undergraduateDegreeFrom ?Y)

LUBM (1) 2.1MB 994 0.39 / 3 3 / 3 / 6

LUBM (6) 10.4MB 20,808 3.24 / 3 3 / 3 / 6

(?X rdf:type ub:UndergraduateStudent)
(?Y rdf:type ub:FullProfessor) (?Z rdf:type
ub:Course) (?X ub:advisor ?Y) (?Y ub:teacherOf
?Z) (?X ub:takesCourse ?Z)

LUBM (1) 4.6MB 10,113 2.17 /
15

3 / 3 / 6

LUBM (6) 23.1MB 52,029 55.53 /
18

3 / 3 / 6

(?s :title “Dilbert Bit Characters”) (?s ?p ?x)(?s2
?p ?y) (?s2 rdf:type wiki:Article) (?s2 ?n ?z) (?s2
wiki:internalLink ?m)

Wikipedia
(47)

1.9GB 1 5.04 / 2 3 / 9 / 6

(?s :title “Dilbert Bit Characters”) (?s ?p
:Bully)(:Johnny the Homicidal Maniac ?p ?o)
(?o rdf:type wiki:Article)

Wikipedia
(47)

26.5MB 128 3.34 / 2 3 / 3 / 4

turn. Also for the queries with a triple pattern having variable predicate dimen-
sion and a fixed object dimension, e.g. (?s ?p :o1), fold operation will require
to access a single bit position within all the subject rows, for all the predicates.
This effect was observed specifically on very large datasets when the selectivity
of the triple pattern was low. This further brought our attention to the aspect
of using all or some of the six possible BitMats that can be flattened from a
3D bit-cube, as we explained in Section 3. Usage of different BitMat structures
requires changes in the present multi-join algorithm, as fold and unfold opera-
tions have to interoperate between multiple types of BitMats. We are currently
exploring this aspect.

Selectivity: Initial selectivity of the triple pattern as well as the selectivity
of join played a role in the faster convergence of the multi-join loop. Selectivity
of the triple pattern or join result also plays key role in the memory utilization.
Higher selectivity of the triple patterns and join results reduces the BitMats’
size faster.

Join order: Although in our experiments the multi-join algorithm’s loop
typically converged in 3 or 4 iterations, as it can be noted from Table 4, the

46

second LUBM query took many more iterations (15-18) for 1 million as well as 6
million dataset. As join ordering affects the query execution time and size of the
intermediate results in a relational scheme, it affects the number of iterations
of the BitMat multi-join algorithm as well. In case of a BitMat join, due to
the use of compressed BitMats and the fact that we are not materializing the
intermediate results, memory utilization was not affected though. For the second
LUBM query, we observe that evaluating join over ?Y first brought down the
multi-join algorithm iterations from 15 to 12. We plan to use an augmented
version of the multi-join bipartite graph G (not shown in Figure 4) that can be
used to capture the cyclic or acyclic dependency, so that we can minimize the
number of iterations needed to complete the multi-join processing.

7 Conclusions and Future Work

As shown by our experiments, one of the main advantages of the BitMat struc-
ture and joins is that the memory requirement of the system is very low. Since
the intermediate or final results in a multi-join are not completely materialized,
the result size is always bounded by the size of the original BitMat. If the size
of the original BitMat is SizeBM and n is the number of triple patterns in a
multi-join query, then the instantaneous memory utilization while performing a
join is always bounded by O(n ∗ SizeBM) and the final join result size is always
bounded by O(SizeBM).

We are presently developing an efficient algorithm to enumerate all the
matching subgraphs from a result BitMat (i.e. final variable bindings). With this
the BitMat main-memory triple store can be used as an independent SPARQL
join query engine. Also as pointed out in the experimental section, we are ex-
ploring the usage of BitMats created by flattening the 3D bit-cube on different
dimensions for further improving the performance of the multi-join queries. De-
velopment of this algorithm for a fair comparison of query performance and
memory utilization with any other state-of-the-art RDF triplestore, is a part of
our ongoing work.

The present BitMat query processing algorithm only performs the step of
pruning the candidate RDF triples but does not produce final matching sub-
graphs. Hence in this paper, we have just presented empirical results of query
performance and memory utilization.

The key aspect of BitMat’s algorithms is that they always work on com-
pressed data without uncompressing it at any point.

Due to the ability to create a disk image of a BitMat in memory (as explained
in Section 3.1), the BitMat system can be used as a persistent data-store as well,
by exploiting the benefits of performing all the operations in main-memory once
the BitMat is reloaded from the disk image.

Finally, we conjecture that by creating clusters of machines, each deploying
BitMats, extremely large RDF stores can be created and processed in memory.
Our future work includes exploring how this can be realized on server-farm like
clusters as well as shared memory supercomputers for very large RDF datasets.

47

Acknowledgements

We would like to thank Dr. Jagannathan Srinivasan of Oracle Corp. for his
invaluable inputs during the early development of this work.

References

1. TDB - A SPARQL Database for Jena. http://jena.sourceforge.net/TDB/.
2. ARQ - A SPARQL Processor for Jena. http://jena.sourceforge.net/ARQ/.
3. M. Atre, J. Srinivasan, and J. Hendler. BitMat: A Main Memory RDF store.

Technical Report, TW-2009-02, January 2009.
4. D. Beckette and B. McBride. RDF/XML Syntax Specification. W3C Recommen-

dation, February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.
5. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based

on a Structured Peer-to-Peer Network. In Proceedings of WWW, May 2004.
6. R. Cyganiak. A Relational Algebra for SPARQL. Technical Report, HP Laborato-

ries Bristol, September 2005.
7. D-gap Compression Scheme. http://bmagic.sourceforge.net/dGap.html.
8. O. Erling. Advances in Virtuoso RDF Triple Storage (Bitmap Indexing), October

2006. http://virtuoso.openlinksw.com/-wiki/main/Main/VOSBitmapIndexing.
9. O. Hartig and R. Heese. The SPARQL Query Graph Model for Query Optimiza-

tion. In Proceedings of ESWC, 2007.
10. M. Janik and K. Kochut. BRAHMS: A WorkBench RDF Store and High Per-

formance Memory System for Semantic Association Discovery. In Proceedings of
ISWC, 2005.

11. Lehigh University Benchmark (LUBM). http://swat.cse.lehigh.edu/projects/lubm/.
12. A. Matono, S. M. Pahlevi, and I. Kojima. RDFCube: A P2P-based Three-

dimensional Index for Structural Joins on Distributed Triple Stores. In DBISP2P
in Conjunction with VLDB 2006, September 2006.

13. T. Neumann and G. Weikum. RDF-3X: A RISC-style Engine for RDF. In VLDB,
2008.

14. T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF Graphs.
In SIGMOD, 2009.

15. OpenRDF LUBM SPARQL Queries. http://repo.aduna-
software.org/viewvc/org.openrdf/?pathrev=6875.

16. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, January 2008. http://www.w3.org/TR/rdf-sparql-query/.

17. Queries on UniProt RDF dataset. http://dev.isb-sib.ch/projects/expasy4j-
webng/query.html#examples.

18. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-
formance Benchmark. CoRR, abs/0806.4627, 2008.

19. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL
Basic Graph Pattern Optimization Using Selectivity Estimation. In Proceedings of
WWW, April 2008.

20. SwiftOWLIM Semantic Repository. http://www.ontotext.com/owlim/index.html.
21. O. Udrea, A. Pugliese, and V. Subrahmanian. GRIN: A Graph Based RDF Index.

In AAAI, 2007.
22. UniProt RDF. http://dev.isb-sib.ch/projects/uniprot-rdf/.
23. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic

Web Data Management. In Proceedings of VLDB, 2008.
24. Wikipedia RDF Dataset. http://labs.systemone.at/wikipedia3.

48

