
Scalable RDF query processing on clusters and
supercomputers

Jesse Weaver and Gregory Todd Williams

Rensselaer Polytechnic Institute, Troy, NY, USA
{weavej3,willig4}@cs.rpi.edu

Abstract. The proliferation of RDF data on the web has increased the
need for systems that can query these data while scaling with their grow-
ing size and number. We present an application of parallel hash-joins for
basic graph pattern matching over large amounts of RDF designed for
shared nothing architectures including high-performance clusters and the
Blue Gene/L. Our approach does not require any pre-processing of the
RDF data or costly index building. Rather, we rely on a cluster’s high
bandwidth and fast memory to load and query data in parallel and in
near-real time. We present an initial evaluation of our algorithm showing
competitive results on clusters of up to 1,024 processors.

1 Introduction

The web has recently seen a proliferation of structured data. RDF data is now
available from many sources across the web relating to a huge variety of topics.
Examples of these RDF datasets include the Billion Triples Challenge1 dataset
(collected by a webcrawler from RDF documents available on the web), the
Linking Open Data project2 (in which a number of independent datasets are
linked together using common URIs), and the recent conversion3 of the data.gov4

dataset to RDF.
With such a large and growing availability of RDF data, new and more

efficient ways of querying these data are needed. While most existing systems
rely on common database indexing techniques to allow fast retrieval of RDF data,
the time required to load and index the data can be prohibitive. In this paper,
we present a system for RDF query answering on clusters that does not require
any pre-processing, global indexing, or particular assignment of RDF triples to
processors. Our system is designed for use on shared-nothing clusters that can
range from simple Beowulf clusters to the IBM Blue Gene/L supercomputer.

By utilizing a cluster’s parallelism, our system is able to load and query
a large dataset much more quickly than traditional approaches. After data is
loaded, our system makes use of a parallel hash-join to answer basic graph
1 http://challenge.semanticweb.org/
2 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
3 http://data-gov.tw.rpi.edu/
4 http://www.data.gov/

81

2

pattern queries. Hash-join is a join algorithm that derives its efficiency from
partitioning data based on a hash value. We base our work on an existing par-
allelization of the hash-join algorithm [1]. Our join implementation utilizes an
on-the-fly conversion between RDF node values and locally-unique node identi-
fiers to allow efficient join processing without requiring global node identifiers.
We differ from most previous work with parallel hash-joins by assuming the
presence of a high performance cluster with enough system memory (between
all processors) to keep the entire RDF dataset and all intermediate results in
memory.

The architecture of our system allows for very fast querying of a dataset.
Since our system never pre-processes input RDF data, this speed enables ad-
hoc querying with the ability to add and remove arbitrary amounts of data in
subsequent queries with little to no cost. We evaluate our system with several
existing datasets on a Linux-based AMD Opteron cluster ranging from 2 to 128
processors, and on a Blue Gene/L from 32 to 1,024 processors.

The rest of this paper is organized as follows. Section 2 reviews related work
on parallel hash-join algorithms and other approaches to processing RDF data
in distributed and parallel environments. Section 3 presents specific details of
our parallel hash-join implementation including parallel loading and indexing of
RDF data, hash-based distribution and joining of intermediate results. Section
4 presents an evaluation of our system using several existing RDF datasets and
queries. Finally, Section 5 concludes the paper and discusses possible future work
in extending our system for reasoning and support for more complex queries.

2 Related Work

Other works on parallel and/or distributed RDF query processing include RDF-
Peers [2], Continuous RDF Query Processing over DHTs [3], YARS2 [4], Vir-
tuoso5 [5, 6], GridVine [7], Clustered TDB [8], and 4store6. While works like
Marvin [9, 10], parallel OWL inferencing [11], and parallel RDFS inferencing
[12] use parallelism for semantic web reasoning, they are not directly compara-
ble to the system we present in this paper since we focus on RDF query and not
inferencing.

RDFPeers creates a distributed RDF repository over a multi-attribute ad-
dressable network (MAAN) [13]. Triples are stored as three attribute-value pairs
(subject=. . ., predicate=. . ., object=. . .) on three nodes based on hash values
generated from the subject, predicate, and object. RDFPeers provides a query
language which maps to MAAN’s multi-attribute range queries allowing for dis-
tributed querying. [3] focuses on “continuous evaluation of conjunctive triple
pattern queries over RDF data stored in distributed hash tables,” and GridVine
is also a DHT approach. These approaches do not address parallelism and thus
differ from our work.
5 http://virtuoso.openlinksw.com/
6 http://4store.org/

82

3

YARS2, Clustered TDB, Virtuoso (cluster edition), and 4store provide sup-
port for RDF stores on clusters. The Clustered TDB work discusses several forms
of parallelism: inter-query (running more than one query in parallel), intra-query
(running subqueries in parallel and pipelining operators), and intra-operation
(distributing single operations for concurrent execution). YARS2 provides fine-
grained intra-operation parallelism in triple-pattern matching. The details of
Virtuoso and 4store are less certain to us since the finer details of these stores’
query evaluation techniques are not published to our knowledge. We differ from
these approaches in that we address parallel query processing as a process in-
volving both the loading and computation over RDF data rather than a process
occurring over a persistent storage system. For clarity, the system presented
herein is not interactive. Queries are queued for evaluation, and our system ex-
ecutes once in its entirety for each query.

Finally, in [1], DeWitt and Gerber show an extension of the hash-join to a
multiprocessor environment, and demonstrate its effectiveness in parallel join
execution. Our work is based heavily on this extension with two notable excep-
tions. We restrict our work to all in-memory environments, avoiding the need
for variants of the hash-join such as Grace and Hybrid hash-joins that address
optimizations in the presence of limited memory. Moreover, every node in our
system acts as both a partitioning processor and a joining processor, allowing a
join to utilize all available processing power.

3 Methodology

We implement our system in C using the Message Passing Interface7 (MPI) for
interprocessor communication. Each processor maintains an in-memory triple
store consisting of three indexes that can directly answer any triple pattern.

In this section we assume the reader is familiar with the following notation
from SPARQL8. A solution mapping µ is a partial function from variables to
RDF terms, and a set of results from a query is a multiset, Ω, of solution map-
pings. An example solution mapping with two variable bindings might look like
{name=“Alice”, email=<mailto:alice@work.example>}.

3.1 Parallel Hash-Join

In our parallel hash-join implementation, two subqueries are executed indepen-
dently on each processor i, regardless of the dataset held locally on each proces-
sor. The results of these subqueries (Ω1,i and Ω2,i) are then redistributed among
the processors in such a way as to ensure that the appropriate results for the
join are colocated. This is done by hashing on the values of the variables shared
between the two result sets. For example, if the results of the two subqueries
join on variables ?a and ?b, then for each solution mapping µ in the results,
7 http://www.mpi-forum.org
8 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#initDefinitions

83

4

we hash on the values of ?a and ?b in µ, and based on that hash value, µ is
sent to the appropriate processor. Therefore, solution mappings with the same
terms bound to ?a and ?b will have the same hash value and will get sent to the
same processor. After distributing the results, each processor performs the join
locally on the received results (Ω′

1,i and Ω′
2,i). The redistribution is illustrated in

Algorithm 1, while the overall parallel hash-join is illustrated in Algorithm 2 (as-
suming Ω1,i and Ω2,i are available as input after executing the two subqueries).
In Algorithm 2, we use “pardo” to mean “do in parallel.” (For clarity, note that
it is allowed for a processor to “send” a solution mapping to itself on line 5 of
Algorithm 1. This is a logical description of the algorithm; the implementation
of this algorithm may handle such sends as a special case.)

For the query evaluation of a basic graph pattern containing n triple patterns,
the parallel hash-join algorithm is run n − 1 times, joining the triple patterns
in a so-called left-deep query execution plan. The union on line 6 of Algorithm
2 represents the logical, complete results of the join. During basic graph pat-
tern evaluation, however, instead of performing this union, each Ω′

1!"2,i simply
becomes the input Ω1,i for the subsequent join with the results from the next
triple pattern in the query execution plan.

Algorithm 1: Distribute Solution Mappings (distmu)
Input: A (local) multiset of solution mappings Ωi, a set of join variables V , and

a number of processors p.
Output: A multiset of solution mappings Ω′

i from redistribution.
Ω′

i = ∅1

foreach µ ∈ Ωi do2

µ′ = project(V, µ)3

recvr = hash(µ′) % p4

// Send µ to recvr.
send(recvr, µ)5

// Receive solution mappings from any processor.
while recv(∗, µr) do6

add µr to Ω′
i7

end8

end9

return Ω′
i10

3.2 Parallel RDF I/O

We utilize the same approach to loading RDF data in parallel as in [12]. Our
only requirement on the input data is that it be in syntax similar to N-Triples9.
We say similar to the N-Triples syntax because we do not require the data to
9 http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples

84

5

Algorithm 2: Parallel Hash Join
Input: Two multisets of solution mappings Ω1 =

Sp−1
i=0 Ω1,i and

Ω2 =
Sp−1

i=0 Ω2,i, the set of join variables V , and a number of processors
p.

Output: A multiset of solution mappings Ω1!"2 = join(Ω1, Ω2).

// Loop indicates parallelism where i is the rank of the processor.
for i = 0 to p− 1 pardo1

// Ensure solution mappings that can join meet on same processor.
Ω′

1,i = distmu(Ω1,i, V, p)2

Ω′
2,i = distmu(Ω2,i, V, p)3

// Join local solution mappings.
Ω′

1!"2,i = join(Ω′
1,i, Ω′

2,i)4

end5

return
Sp−1

i=0 Ω′
1!"2,i6

be encoded in 7-bit US-ASCII. The simple format of these N-Triples-like files
make parallel reading of the data trivial. Each processor is assigned—in rank-
order—a chunk of the input file to read; that is, the ith processor reads the ith

consecutive chunk of data. The chunk of data may begin and/or end in the middle
of a triple. To handle this, each processor of rank i simply sends the fragment at
the beginning of its chunk to processor with rank i−1. Processor i then receives
such a fragment from processor i + 1 and concatenates the triple fragment to
the end of its chunk of data. Then, every processor has a set of complete triples
which it loads locally into an indexed, in-memory store, converting the serialized
RDF nodes into 64-bit identifiers and holding in memory a map for converting
between the two (which we will refer to as the nodemap). Unlike most traditional
databases and much like many RDF stores, the indexes themselves are the data;
there are no data tables holding additional information. Note that while we index
the local data on each processor, there is no global index for the entirety of the
data (that is, an index over all the data distributed across all processors). This
is discussed in the following subsection.

At the end of the query, each processor writes out its local set of solutions
(the last Ω1!"2,i) to its own file using RDF node values (as opposed to the local
identifiers). Therefore, our entire query process starts with N-Triples-like files
and ends with results containing full RDF node values.

3.3 Communicating Solution Mappings

As mentioned in the previous section, no global indexes are created at any point
of the query evaluation. Each processor holds its local triples as 64-bit identifiers
and a nodemap. From lines 6 and 7 of Algorithm 1, the solution mappings must
be communicated in a way that is meaningful to all processors. This is done by
converting the 64-bit identifiers back into string representations before sending
the solution mapping to another processor. This allows the receiving processor

85

6

to assign its own local identifier to the RDF node. While this may incur a higher
communication cost, it saves greatly on loading time. Generating, distributing,
managing, and performing lookups on global 64-bit identifiers is an extremely
time-consuming process, one which we found to be prohibitive.

We note that this approach makes loading data inexpensive enough that we
can afford to load data for every query evaluation. This allows our system to take
advantage of the up-to-date state of the data without costly index maintenance.

While assigning local identifiers, we take advantage of a simple optimization.
During line 2 of Algorithm 2, as results are received from the left-hand side of the
join (from Ω1,i of the sending processors into Ω′

1,i of the receiving processors),
a processor assigns new local identifiers to RDF nodes from received solution
mappings, placing the new identifiers in a new nodemap. Then, during line 3, as
results are received from the right-hand side of the join (from Ω2,i of the sending
processors into Ω′

2,i of the receiving processors), the RDF terms bound to the join
variables in the solution mappings are checked for local identifiers in the nodemap
generated from the left-hand side of the query. For each solution mapping, if there
is no local identifier assigned to one of its join variables’ RDF terms, then we
can be certain that there are no results from the left-hand side to which the
solution mapping can join. In this case, we can eliminate the solution mapping
immediately. Otherwise, if local identifiers exist for all the RDF terms bound
to join variables, then the remaining (non-join) variables’ RDF terms in the
solution mappings are also added to the nodemap. In essence, this simply allows
us to eliminate results from the right-hand side without actually attempting the
join. This is similar to the effect of the use of bit vector filtering in [1].

4 Evaluation

We evaluated our system on a high performance cluster and a Blue Gene/L
supercomputer at Rensselaer Polytechnic Institute’s Computational Center for
Nanotechnology Innovations10 (CCNI). Each node of the CCNI high perfor-
mance Opteron cluster is an IBM LS21 blade server running RedHat Worksta-
tion 4 Update 5 with two dual-core 2.6 GHz AMD Opteron processors with
gigabit ethernet and InfiniBand interconnects. We ran tests on up to 128 proces-
sors on medium-memory nodes, each of which has 12GB of system memory. Our
testing on the CCNI Blue Gene/L was performed on up to 1,024 nodes, each
of which has two 700-MHz PowerPC 440 processors and 512–1024MB of system
memory. We utilize three of the Blue Gene/L’s specialized hardware networks:
a 175MBps 3-dimensional torus for point-to-point communication, a 350MBps
global-collective network, and a global barrier network.

We read and write files to/from the large General Parallel File System11

(GPFS) which has a block size of 1024 KB, scatter block allocation policy, and
256 KB RAID device segment size using a RAID5 storage system.

10 http://www.rpi.edu/research/ccni/
11 http://www-03.ibm.com/systems/clusters/software/gpfs/index.html

86

7

We evaluate query performance using the Lehigh University Benchmark [14]
20-university dataset (LUBM(20,0)) and on the Barton dataset12 using queries
introduced in [15]. LUBM datasets are synthetically generated datasets con-
taining information about universities. Since LUBM is well-known and widely
evaluated against, we provide an evaluation on a LUBM dataset to allow for com-
parisons with other systems. After generating LUBM(20,0), we used the work
from [12] to produce the RDFS closure so as to make the standard LUBM queries
meaningful. (For example, for LUBM query 6, no results will be returned unless
inferencing is performed to derive that, e.g., all graduate students are students.)
The RDFS closure of LUBM(20,0) has 5,159,292 triples. The Barton dataset is
an RDF formatted version of the MIT Libraries Barton catalog, and contains
51,598,374 triples.

Much performance tuning can be done by tweaking parameters that affect
how Algorithm 1 sends and receives solution mappings. Such parameters include
the ratio of transient send messages to transient receive messages and also the
frequency at which the processors collaborate to determine whether they have
finished distributing solution mappings (a costly operation). The Blue Gene/L
has a more sensitive network in that a high number of transient messages can
cause the system to effectively fail (ultimately due to memory limitations), and
so we set the number of allowable transient messages on the Blue Gene/L lower
than on the Opteron cluster. The Blue Gene/L also has an optimized collective
network allowing for processors to collaborate to determine termination of Al-
gorithm 1 at a lower cost, and thus we allow the Blue Gene/L to check more
frequently for termination than on the Opteron cluster. In our experience, these
tuning parameters greatly affect performance and scaling characteristics, and for
this evaluation we have tuned them according to personal experience. However,
we have yet to optimize these parameters, and so better performance may be
possible.

All figures discussed below use logarithmic axes for both time and number
of processors.

Figures 1 through 4 show performance of four of the LUBM queries on the
Opteron cluster scaling from 2 to 16 processors, and in general, they show scaling
of loading time and total time with respect to the number of processors. Only
query two in Figure 1 shows an increase in query time from 8 to 16 processors.
This is likely because query two is the only query of the four that requires a high
number of joins and does not restrict results to data from a specific university.
Queries three and four have a bound term that—by the nature of LUBM data—
restricts results to data from “University0”, and query six has only a single triple
pattern (no joins).

The Barton dataset is roughly ten times the size of the LUBM(20,0) RDFS
closure, and so more memory is needed to perform the evaluation. Figure 5 shows
the query execution of Barton query 7 on 32 to 128 processors. The loading time
decreases greatly as the number of processors increases, but the query time
increases after 64 processors.

12 http://simile.mit.edu/rdf-test-data/barton/

87

8

!"

!#"

!##"

!"

!#"

!##"

$" %" &" !'"

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

()*+,-."

/0123,-."

4)5*6"

Fig. 1. LUBM(20,0) Query 2 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

!"#$

#$

#!$

#!!$

%$ &$ '$ #($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./$

01234-./$

5*6+7$

Fig. 2. LUBM(20,0) Query 3 evaluation on Opteron cluster

In Figure 6, we also show query execution of LUBM query 3 on the LUBM(20,0)
RDFS closure using the Blue Gene/L ranging from 32 to 1024 processors. Clearly,
loading time scales linearly, but the query time increases after 128 processors.

We notice from Figures 1, 4, and 6 that there seems to be a “sweet spot”
for query time only (excluding loading time). Further tweaking of the afore-
mentioned parameters have shown that we can adjust the characteristics of the
“sweet spot,” but often at a cost. We believe that tuning the parameters based
on the number of processors will provide better scaling, and such is left as future
work.

Our system competes well with state-of-the-art RDF query systems in load-
ing and query times. Anecdotal evidence indicates that Virtuoso provides the
fastest RDF loading time of any RDF store at 110,532 triples-per-second on
eight processors13. We report in Figure 3 a loading rate of 820,117 triples per
second on eight processors, and we achieve a maximum loading rate of 3,088,172

13 http://www.openlinksw.com/weblog/oerling/index.vspx?page=&id=1562

88

9

!"

!#"

!##"

!"

!#"

!##"

$" %" &" !'"

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

()*+,-."

/0123,-."

4)5*6"

Fig. 3. LUBM(20,0) Query 4 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

!"#$

#$

#!$

#!!$

%$ &$ '$ #($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./$

01234-./$

5*6+7$

Fig. 4. LUBM(20,0) Query 6 evaluation on Opteron cluster

triples per second on 1024 processors on the Blue Gene/L. RDF-3X [16] seems
to be the state-of-the-art in query times. It is difficult to compare our query
times to theirs since most of the Barton queries that they use for evaluation use
non-standard SPARQL features (e.g., aggregation, “duplicates” keyword, “in”
operator) and filters, features which we do not currently support. Therefore, we
compare only Barton query 7, the single query that we both support. RDF-3X
evaluates Barton query 7 in 32.61 seconds with cold caches (dropping to 1.26
seconds after five runs), whereas we perform the same query in 23.75 seconds on
64 processors. We emphasize, though, that RDF-3X requires 13 minutes to load
the Barton dataset after an unreported amount of pre-processing time, whereas
our total time (loading and querying) is at lowest 49.92 seconds on 64 processors
and 47.37 seconds on 128 processors.

Our system is capable of loading roughly 1.25 million triples from the tested
datasets per 1GB of RAM. This total includes storing the full nodemap as well
as the three covering indexes. We note that we have spent no time attempting to
improve this storage density, but our system should be able to take advantage of

89

10

!"#

!""#

!"#

!""#

$%# &'# !%(#

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./#

01234-./#

5*6+7#

Fig. 5. Barton Query 7 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

%&$ '($ #&)$ &*'$ *#&$ #!&($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

+,-./01$

23456/01$

7,8-9$

Fig. 6. LUBM(20,0) Query 3 evaluation on Blue Gene/L

compression techniques such as those discussed in [16], significantly improving
storage density. While storage density is obviously a concern for an in-memory
system like ours, we also note that the primary limitation we faced was not
available memory but job queuing time on both the Opteron cluster and Blue
Gene/L (both heavily used systems).

5 Conclusion and Future Work

In this paper we have presented a system for answering basic graph pattern
queries over large RDF datasets on clusters. Our evaluation has shown our sys-
tem to be competitive with more traditional indexed, persistent triple stores
without the need for expensive pre-processing, loading, or global indexing of the
data. Our results show that some datasets and queries exhibit a “sweet spot” for
optimal execution dependent on the number of processors and tuning parame-
ters while others show total time of loading data and query evaluation speed can
scale with a constant factor as the number of processors increases.

90

11

There are many areas where our system can be improved. Beyond further
evaluation and tuning on both the Opteron cluster and Blue Gene/L, we hope
to pursue some of the following areas in future work. Currently our system only
handles basic graph patterns, but a natural extension would include optional
patterns, named graphs, and filters. In addition, the ability to distribute results
in our system is ideally suited to answering aggregate queries, a feature we hope
to implement.

Our current hash-join implementation seems to perform well on selective
queries, but can have trouble with unselective queries or triple patterns. We are
currently investigating a second parallel join algorithm to address queries with
unselective triple patterns. We are also pursuing evaluation on larger datasets
such as the RDFS closure of LUBM(10000,0) (containing roughly 2.4 billion
triples) and the Billion Triples Challenge 2009 dataset. Finally, we hope to in-
tegrate the work presented in [12] with our system to allow parallel inferencing
to occur during query evaluation.

Acknowledgements. We thank Gunnar AAstrand Grimnes for his insight-
ful comments on this work.

References

1. DeWitt, D.J., Gerber, R.H.: Multiprocessor Hash-Based Join Algorithms. In:
Proceedings of the 11th International Conference on Very Large Data Bases. (1985)
151–164

2. Cai, M., Frank, M.R.: RDFPeers: a scalable distributed RDF repository based on
a structured peer-to-peer network. In: Proceedings of the 13th International World
Wide Web Conference. (2004) 650–657

3. Liarou, E., Idreos, S., Koubarakis, M.: Continuous RDF Query Processing over
DHTs. In: Proceedings of the 6th International Semantic Web Conference and the
2nd Asian Semantic Web Conference. (2007) 324–339

4. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for
Querying Graph Structured Data from the Web. In: Proceedings of the 6th Inter-
national Semantic Web Conference and the 2nd Asian Semantic Web Conference.
(2007) 211–224

5. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In Auer, S., Bizer,
C., Müller, C., Zhdanova, A.V., eds.: Proceedings of the 1st Conference on Social
Semantic Web. Volume 113 of LNI., GI (2007) 59–68

6. Erling, O.: Toward web scale RDF. In: Proceedings of the 4th International
Workshop on Scalable Semantic Web Knowledge Base Systems. (2008)

7. Cudré-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An Infrastructure for Peer
Information Management. IEEE Internet Computing 11(5) (2007) 36–44

8. Owens, A., Seaborne, A., Gibbins, N., mc schrae-
fel: Clustered TDB: A Clustered Triple Store for Jena.
http://eprints.ecs.soton.ac.uk/16974/1/www2009fixedref.pdf (2008)

9. Anadiotis, G., Kotoulas, S., Oren, E., Siebes, R., van Harmelen, F., Drost, N.,
Kemp, R., Maassen, J., Seinstra, F.J., Bal, H.E.: MaRVIN: a distributed platform
for massive RDF inference. http://www.larkc.eu/marvin/btc2008.pdf (2008)

91

12

10. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
MaRVIN: A platform for large-scale analysis of Semantic Web data. In: Proceeding
of the WebSci’09: Society On-Line. (March 2009)

11. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
ICPP ’08: Proceedings of the 2008 37th International Conference on Parallel Pro-
cessing, Washington DC, USA, IEEE Computer Society (2008) 75–82

12. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for
Hundreds of Millions of Triples. In: Proceedings of the 8th International Semantic
Web Conference. (2009)

13. Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: MAAN: A Multi-Attribute Ad-
dressable Network for Grid Information Services. Journal of Grid Computing 2(1)
(2004) 3–14

14. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3(2-3) (2005) 158–182

15. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB Endowment (2007) 411–422

16. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proceedings
of the VLDB Endowment 1(1) (2008) 647–659

Appendix

Below we list the four LUBM queries and one Barton query (defined in [14]
and [15], respectively) used in our evaluation. We chose these four LUBM
queries as representative and ranging from a single triple pattern (query 6) to a
six-way join (query 2). Out of seven original Barton queries, only two can be
represented in SPARQL (the others cannot due to their use of aggregates). Of
the remaining two queries, we chose query 7 because it is the only query for
which we can directly compare results with RDF-3X.

LUBM Query 2

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?z a :Department .
?z :subOrganizationOf ?y .
?y a :University .
?x :undergraduateDegreeFrom ?y .
?x a :GraduateStudent .
?x :memberOf ?z .

}

LUBM Query 3

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {

92

13

?x a :Publication .
?x :publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0> .

}

LUBM Query 4

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?x a :Professor .
?x :worksFor <http://www.Department0.University0.edu> .
?x :name ?y1 .
?x :emailAddress ?y2 .
?x :telephone ?y3 .

}

LUBM Query 6

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?x a :Student .

}

Barton Query 7

PREFIX : <http://simile.mit.edu/2006/01/ontologies/mods3#>
SELECT ?s ?bo ?co
WHERE {
?s :point "end" .
?s :encoding ?bo .
?s a ?co .

}

93

