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Abstract

This paper presents a hybrid approach that aims at solving the
Capacitated Vehicle Routing Problem (CVRP) by means of combining
Constraint Programming (CP) with Lagrangian Relaxation (LR) and
Probabilistic Algorithms. After introducing the CVRP and reviewing
the main literature in this area, the paper proposes the use of a multi-
start hybrid Variable Neighbourhood Search (VNS) algorithm. This
algorithm uses a randomised version of the classical Clarke and Wright
savings heuristic to generate a starting solution to a given CVRP. This
starting solution is then improved through a local search process which
combines: (a) LR to optimise each individual route, and (b) CP to
quickly verify the feasibility of new proposed solutions. Some results
on well-known CVRP benchmarks are analysed and discussed.

1 Introduction

Road transportation is nowadays the predominant way of transporting goods
in many parts of the world. Direct costs associated with this type of trans-
portation have experienced a significant increase since 2000.

There is a need for developing efficient models and methods that support
decision-making processes in the road transportation arena so that optimal
(or quasi-optimal) strategies can be chosen. This necessity for optimising
road transportation, which affects both the public and private sectors, con-
stitutes a major challenge for most industrialised regions.

The class of logistic problems dealing with the issues presented in the pre-
vious paragraph are usually known as the Vehicle Routing Problem (VRP).
This is among the most popular research areas in combinatorial optimisa-
tion. It was first defined by Dantzig and Ramser in 1959 [6], and several
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variants of the basic problem have been proposed and studied later. The
most basic VRP is the CVRP, which assumes a fleet of vehicles of homo-
geneous capacity housed in a single depot. It is a generalisation of the
Travelling Salesman Problem (TSP) and is therefore NP-hard [21]. For such
problems, even finding an initial solution is NP-hard and often requires a
high computational effort.

For this paper, the CVRP has been chosen. It is mainly because there
are a huge amount of models, techniques, benchmarks and research — in
general — done before (See Section 3). Hence, results given by the presented
methodology can be compared with a number of previous ones.

The paper presents a general VNS structure whose local search pro-
cess is supported by Constraint Programming (CP) and lagrangian Relax-
ation (LR). A probabilistic Clarke and Wright Savings (CWS) constructive
method is used to generate initial solutions.

The remainder of this article is structured as follows. Next sections pro-
vide a general overview of CVRP formulation and a few words on previous
work.An introduction to the CVRP mathematical model and the technolo-
gies used in this research are presented in sections 4 and 5 respectively.
Section 6 is devoted to the proposed method, based on the VNS meta-
heuristic; the general algorithm, moves used within its structure and the
adapted LR-method are introduced in this section. Next, computational
results are presented and discussed. Finally, some conclusions, remarks and
future research topics are outlined in the last section.

2 The Capacitated Vehicle Routing Problem

The CVRP is defined over a complete graph G{I, E} connecting the vertex
set I = {1, 2, . . . , n} — clients to be served and the depot — through a set
of edges E = {(i, j)|i, j ∈ I} — roads, streets, etc. Edges eij ∈ E have an
associated a travel cost cij , which is supposed to be the lowest cost route
connecting node i to node j. Usually, to simplify it (not the complexity but
the problem definition), edges cost is assumed as symmetric (cij = cji). Each
vertex i ∈ I\{1} has a nonnegative demand qi, while, vertex 1 corresponds
to the depot, which does not have an associated demand.

A fixed fleet of m identical vehicles, each one with capacity Q, is available
at the depot to accomplish the required tasks. Solving the CVRP consists
of determining a set of m routes whose total travel cost is minimised and
such that (a) each customer is visited exactly once by a single vehicle, (b)
each route starts and ends at the depot, and (c) the total demand of the
customers assigned to a route does not exceed the vehicle capacity Q.

Therefore, a solution to the CVRP is a set of m cycles sharing a common
starting and finishing vertex (i.e. the depot).
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3 Previous work on the Capacitated Vehicle Rout-
ing Problem

CWS constructive algorithm [4] is probably the most cited heuristic to solve
the CVRP. The CWS is an iterative method that starts out by considering
an initial dummy solution in which each customer is served by a dedicated
vehicle. Next, the algorithm initiates an iterative process for merging some
of the routes in the initial solution.

The CWS algorithm usually provides relatively good solutions, especially
for small and medium-size problems. Many variants and improvements of
the CWS have been proposed in the literature [15].

Using constructive heuristics as a basis, metaheuristics became popular
for the VRP during the nineties. Some early examples are the Tabu Route
method by Gendreau et al. [11] or the Boneroute method of Tarantilis and
Kiranoudis [23]. Tabu search algorithms, like the one proposed by Toth and
Vigo [24] is among the most cited metaheuristics. Genetic algorithms have
also played a major role in the development of effective approaches for the
VRP (e.g. [18]). Another important approach to the VRP is given by the
Greedy Randomised Adaptive Search Procedure (GRASP) [8].

Monte Carlo Simulation (MCS) can be defined as a set of techniques that
make use of random numbers and statistical distributions to solve certain
stochastic and deterministic problems [16]. MCS has proved to be extremely
useful for obtaining numerical solutions to complex problems that cannot be
efficiently solved by analytical approaches. Buxey [3], in 1979, was probably
the first author to combine MCS with the CWS algorithm to develop a
procedure for the CVRP. This method was revisited by Faulin and Juan [7],
who introduced an entropy function to guide the random selection of nodes.

Another way to face the VRP has been the use of complete methods,
which ensure not only to find the solution but also, to prove its optimality.
The main drawback of these techniques is that they may only deal with
small instances, up to 100 customers [5]. Numerous heuristics and meta-
heuristics (like those presented above) have also been studied for different
VRP variants. In most cases, these methods may solve larger instances but
loosing optimality guarantees. Among metaheuristics, Variable Neighbour-
hood Search (VNS), introduced for the first time by Mladenovic and Hansen
[17], is a quite a recent method with far less application examples in VRP
research. However, interesting results have been obtained even applying
the simplest VNS algorithm (e.g. [13]). For this reason, VNS has been se-
lected as the general framework where to embed CP and LR approaches to
the CVRP. By using these two well-known paradigms within the VNS local
search process, calculation time may be reduced with respect to classical
VNS schemes.
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4 Mathematical Model of the CVRP

In the proposed model, the CVRP has been divided into two subproblems,
concerning customers’ allocation and routing optimisation separately. The
first is aimed to assign customers to the minimum number of required vehi-
cles fulfilling capacity limitations. The latter is used to solve each indepen-
dent route to optimality, giving the best solution for a particular allocation.

4.1 Capacity problem

The proposed customers’ allocation subproblem uses two lists of variables.
A list R of size n, with integer domains Ri ∈ [1..m]|i = 1, ..., n, indicates
which vehicle is serving the ith customer. Given a vehicle v, Qv is a list
of m variables with real domain Qv ∈ [0..Q] used to trace the cumulative
capacity at each one of the m routes. Therefore, capacity constraints are
enforced through domains definition since Qv cannot get higher values than
the maximum capacity Q.

A set of m× n binary variables B has been introduced to relate R and
Qv values. For each vehicle v ∈ V , a list of n binary variables Bvi | i ∈ I is
defined, taking value 1 whenever customer i is assigned to vehicle v and 0
otherwise. Since each customer i is visited by a single vehicle, for all values
of v the binary variable Bvi can take value 1 only once.

The binary set B and allocation variables R are related through the
following statement:

Ri = ri → Brii = 1 ∀i ∈ I (1)

Cumulative capacities can be traced simply by using Eq.2.

Qv =
∑

i∈I

Bviqi ∀v ∈ V (2)

4.2 Routing Problem

The routing problem, tackled for each vehicle separately, can be viewed as
a TSP instance. For each vehicle v, the related TSP can be considered as
a complete undirected graph G = (Iv, Ev), connecting assigned customers
Iv = {i ∈ I|Ri = v} through a set of undirected edges Ev = {(i, j) ∈ E|i, j ∈
Iv}. The solution is a path connected by edges belonging to Ev that starts
and ends at the depot (i = 1) and visits all assigned customers.

The proposed mathematical formulation requires defining the binary
variable xe to denote that the edge eij ∈ Ev is used in the path. That
is xe = 1 if customer j is visited immediately after i; otherwise xe = 0.
Thus, the formulation for the TSP problem is as follows:
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min
∑

e∈Ev

cexe (3)

subject to
∑

e∈δ(i)

xe = 2 , ∀i ∈ Iv (4)

∑

e∈Ev(S)

xe ≤| S | −1 , ∀S ⊂ Iv , | S |≤ 1
2
| Iv | (5)

where δ(i) = {e ∈ Ev : ∃j ∈ Iv, e = (i, j) or (j, i)} represents the set of arcs
whose starting or ending node is i; Ev(S) = {eij ∈ Ev : i, j ∈ S} represents
the set of arcs whose nodes is in the subset S of vertices; nv = |Iv|; and ce

is the associated cost to the undirected edge eij(eji).
Constraint (4) states that every node i ∈ Iv must be visited once, that

is, every customer must have two incident edges. Subtour elimination con-
straint (5) states that the tour must be a Hamiltonian path, so it cannot
have any subcycle. Then a feasible solution of the TSP should, by definition,
also satisfy constraints (a) and (b) of the CVRP, minimising the total travel
cost of the route.

5 Technologies Used

5.1 Probabilistic Clarke and Wright Savings Algorithm

CWS is an iterative method that starts out by considering an initial dummy
solution in which each customer is served by a dedicated vehicle. Next, the
algorithm initiates an iterative process for merging some of the routes in the
initial solution. Merging routes can improve the expensive initial solution
so that a unique vehicle serves the nodes of the merged route. The merging
criterion is based upon the concept of savings. Roughly speaking, given
a pair of nodes to be served, a savings value can be assigned to the edge
connecting these two nodes. This savings value is given by the reduction
in the total cost function due to serving both nodes with the same vehicle
instead of using a dedicated vehicle to serve each node.This way, the algo-
rithm constructs a list of savings, one for each possible edge connecting two
demanding nodes. At each iteration of the merging process, the edge with
the largest possible savings is selected from the list as far as the following
conditions are satisfied: (a) the nodes defining the edge are adjacent to the
depot, and (b) the two corresponding routes can be feasibly merged — i.e.
the vehicle capacity is not exceeded.

The selection process should be done without introducing too many pa-
rameters in the algorithm. To do it, different geometric statistical distri-
butions during the randomised CWS solution-construction process are em-
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ployed: every time a new edge is selected from the list of available edges,
a value α is randomly selected from a uniform distribution in (a, b), where
0 < a ≤ b < 1. This parameter α defines the specific geometric distribution
that will be used to assign exponentially diminishing probabilities to each el-
igible edge according to its position inside the sorted savings list. That way,
edges with higher savings values are always more likely to be selected from
the list, but the exact probabilities assigned are variable and they depend
upon the concrete distribution selected at each step.

5.2 Constraint Programming

CP is a powerful paradigm for representing and solving a wide range of
combinatorial problems. Problems are expressed in terms of three entities:
variables, their corresponding domains and constraints relating them. The
problems can then be solved using complete techniques such as depth-first
search for satisfaction and branch and bound for optimisation, or even tai-
lored search methods for specific problems. Rossi et al. present a complete
overview of CP modelling techniques, algorithms, tools and applications [10].

5.3 Lagrangian Relaxation

LR is a well-known method to solve large-scale combinatorial optimisation
problems. It works by moving hard-to-satisfy constraints into the objective
function associating a penalty in case they are not satisfied. An excellent
introduction to the whole topic of LR can be found in [9].

LR exploits the structure of the problem, so it reduces considerably
problem’s complexity. However, it is often a major issue to find optimal La-
grangian multipliers. The most commonly used algorithm is the Subgradient
Optimisation (SO). The main difficulty of this algorithm lays on choosing a
correct step-size λk in order to ensure algorithm’s convergence [19].

Therefore, the proposed method combines the SO algorithm with a
heuristic to obtain a feasible solution from a dual solution. It can get a
better upper bound UB, so it improves the convergence on the optimal
solution departing from an initial UB obtained with a Nearest Neighbour
Heuristic. If the optimal solution is not reached at a reasonable number of
iterations, the proposed method is able to provide a feasible solution with a
tight gap between the primal and the optimal cost.

5.4 Variable Neighbourhood search

A general VNS, as explained in [12], is a recent metaheuristic which exploits
systematically the idea of neighborhood change, both in descent to local
minima and in escape from the valleys which contain them. A diversifica-
tion process (shaking) ensures that different regions of the search space are
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explored. Every time the shaking process generates a new solution, it is
improved by means of a Variable Neighbourhood Descent (VND) method.

The VNS starts from an initial solution x. A new point is generated
at random from the kth neighbourhood Nk(x) of x in order to diversify
the search. If the valley surrounding the solution x is large, a thorough
diversification should be done aiming to avoid getting trapped in a local
optimum. For this reason, the shaking process is repeated.

The local search process for each neighbourhood Nl(x′) performs an ex-
haustive exploration with a best-accept strategy. Finally, the best neighbour
x′′ is chosen in terms of its solution value f(x′′) =

∑
v∈V UBv. If its value is

lower than the original f(x′), the solution is updated and neighbourhoods
exploration is restarted.

When the VND process reaches a local optimum, no solution improve-
ment may be found according to defined neighbourhoods. If this local op-
timum is better than the incumbent, it is accepted as the current solution
x ← x′′ and the search is restarted from the first shaking neighbourhood.
Otherwise, the algorithm keeps x as the best solution found so far and contin-
ues exploring the next neighbourhood. If there are no remaining neighbour-
hoods to be explored, the process is restarted until the stopping condition
is met.

6 The Proposed Methodology

The described problem has been tackled using a hybrid approach. The pro-
posed methodology combines CP and LR within a metaheuristics framework
in order to improve algorithm’s performance. As mentioned, even the most
basic VNS algorithm, known as VND, has provided promising results when
solving different VRP variants. In the proposed approach, a general VNS
framework has been chosen to embed selected paradigms. Within the VNS
general framework, CP and LR are used in different processes. During al-
gorithm’s initialisation, a Probabilistic CWS method has been used to find
an initial feasible solution [14].

CP is used to check solutions feasibility within diversification and lo-
cal search processes. In turn, a tailored LR method is applied to calculate
routes every time a partial solution is generated either during initialisation,
diversification or local search processes. Using LR allows reducing the com-
putation time when compared to other routing post-optimisation methods,
such as a VND with single-route classical moves. So, the proposed LR ap-
proach provides optimal routes in very low times and, at the same time,
allows reducing algorithm’s definition and complexity.
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6.1 Lagrangian Relaxation Method Applied

The LR-based method is used within the local search process to solve the
routing problem to optimality. It can be considered a specification of the
Lagrangian Metaheuristic presented on Boschetti and Maniezzo [2]. It uses
the SO algorithm combined with a heuristic. Aiming to improve algorithm’s
convergence to the optimum, a heuristic is introduced in order to obtain a
feasible solution from the dual variable. This method tries to improve the
UB with the values of these feasible solutions, so a better convergence is
obtained. Eventually, this solution may be provided as the best solution if
the method is stopped. The stopping criterion is based on the maximum
number of iterations (k < maxiterations) and also on a floating-point excep-
tion (γk < 10−15). The proposed LR-based method algorithm is shown in
Table 1.

0 Initialisation
1 Initialise parameters u0 = 0; δ0 = 2; ρ = 0.95;αL = 1/3
2 Obtain an UB applying Nearest Neighbour Heuristic
3 Initialise L = L(u0) + αL(UB − L(u0))
4 Iteration k
5 Solve the Lagrangian function L(uk)
6 Check the subgradient γk

i = 2−∑
e∈δ(i) xe

7 if ‖ γk ‖2= 0 then Optimal solution is found ⇒ EXIT
8 if ‖ γk ‖2< ξ then apply a heuristic to improve the UB

9 Check the parameter L

10 Calculate the step-size λk = δk
L−L(uk)
‖γk‖2

11 Update the multiplier uk+1 = uk + λkγ
k

12 k ← k + 1

Table 1: The Proposed LR-based Method Algorithm

The proposed heuristic to improve the UB is applied when the solution
is nearly a route. That is, if it satisfies ‖ γ ‖2< ξ (step 8). As any solution
is a 1-tree, this criterion means that the solution has few vertices without
two incident edges. This heuristic replaces an edge e = (i, j) where j has
some extra edges for an edge e = (i, l) where l has one single edge. Before
applying the exchange, the heuristic checks if the new solution is a 1-tree.
Otherwise, the heuristic can divide it into more trees having some subtours.
The chosen vertices i, j, l minimise the cost of the exchange:

{i, j, l} = argmin
{

cil − cij | γj < 0, γl > 0, (i, j) ∈ T, (i, l) ∈ E r T
}

(6)

The parameter ξ depends on the number of variables. A good estimation
of ξ value would avoid increasing the computation time excessively. First,
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its value may be large, for instance nv/2, but it should be updated whenever
a feasible solution is found according to ξ =‖ γk ‖2 . If this parameter is not
correctly updated, the heuristic becomes time consuming. Eventually, the
heuristic could find the optimal solution without detecting it, so the method
would continue iterating until LB = UB.

As mentioned, algorithm’s convergence is critically influenced by the
step-size λk . This value relies on either the LB or the UB, which are
normally unknown or bad estimated. Therefore, convergence may not be
assured for all cases. In order to overcome this limitations, the use of a
parameter L, such that LB ≤ L ≤ UB , is proposed. By definition, this
parameter corresponds to a better estimation of L∗ than those obtained for
LB and UB. The calculation of the step-size turns into:

λk = δk
L− L(uk)
‖ γk ‖2

Convergence is guaranteed if the term L−L(uk) tends to zero. In turn,
convergence efficiency can be improved as long as the new L parameter gets
closer to the (unknown) optimal solution. The main idea is very simple:
as the algorithm converges to the solution, new better lower bounds are
known and new better upper bounds estimations can be obtained by using
the heuristic designed to get feasible solutions. Therefore, the parameter
L is updated according to the following conditions: It is initialised L =
L(u0) + αL(UB − L(u0)) with 0 < αL < 1; if L(uk) > L, it is updated
L = L(uk) + αL(UB − L(uk)), and if L > UB, then L = UB.

Finally, the parameter δk is initialised to the value 2 and is updated as
Zamani and Lau [25] suggest. If the lower bound is not improved, δk is
decreased, using the formula δk+1 = δkρ with 0 < ρ < 1. On the other
hand, if the lower bound is improved, then its value is increased according
to the formula δk+1 = δk

3−ρ
2 .

6.2 Inter-route Moves

VNS metaheuristic is based on exploring alternatively different neighbour-
hoods around a known feasible solution. In order to establish these neigh-
bourhoods, different moves are to be defined. In the presented approach,
four different inter-routes classic moves [22] have been defined so they can
be used within diversification and local search processes: (a) Relocate moves
a customer from one route to a different one, (b) Swapping exchanges two
customers belonging to two different routes, (c) Chain is a specialisation
of 3-opt that swaps sections of two contiguous customers from two differ-
ent routes, and (d) Ejection chain swaps the end portions of two different
routes. In the implemented approach, the relative percentage of customers
modified has been arbitrarily set to 40%.
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As mentioned, using LR for solving the routing subproblems allows
avoiding the definition of intra-route moves. Since results provided by the
LR method are optimal, no routing optimisation process is needed. Usu-
ally, a post-optimisation method based on intra-route moves is applied to
improve each single route quality [20].

6.3 Variable Neighbourhood Search Framework

A general VNS framework, as explained in Hansen and Mladenovic [12], has
been implemented embedding the described methods. A simplified scheme
of the method is presented in Table 2. At each iteration, a local minimum is
reached departing from an initial solution. A diversification process (shak-
ing) ensures that different regions from the search space are explored by
changing the initial solution at each iteration.

0 Initialisation. Select the set of neighbourhood structures
Nk, for k = 1, . . . , kmax, that will be used in the shaking phase,
and the set of neighbourhood structures Nl for l = 1, . . . , lmax

that will be used in the local search; find an initial solution x;
choose a stopping condition;

1 Repeat the following sequence until the stopping condition is met:
2 Set k ← 1;
3 Repeat the following steps until k = kmax :
4 (a) Shaking. Generate a point x′ at random from the kth

neighbourhood Nk(x) of x;
5 (b) Local search by VND.
6 (b1) Set l ← 1 ;
7 (b2) Repeat the following steps until l = lmax ;
8 - Exploration of neighbourhood. Find the best

neighbour x′′ of x′ in Nl(x′);
9 - Move or not. If f(x′′) < f(x′) set x′ ← x′′ and l ← 1;

otherwise set l ← l + 1;
10 (c) Move or not. If this local optimum is better than the

incumbent, move there (x ← x′′), and continue the search
with N1(k ← 1); otherwise, set k ← k + 1;

Table 2: Variable Neighbourhood Search Algorithm

In step 0, neighbourhood structures to be used within shaking (Nk) and
local search (Nl) processes are selected. In this case, all four described
moves have been selected to be used in both neighbourhoods. Furthermore,
a randomised CWS algorithm is used in order to find a good initial solution
for the search.

In step 4, a new point is generated at random from the kth neighbourhood
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Nk(x) of x in order to diversify the search. Its feasibility is immediately
checked using CP. Solutions’ values are ignored until the last iteration, when
routes are recalculated using LR to provide a complete solution.

Steps 5 to 9 contain the VND algorithm used to perform the local search.
Within the VND algorithm, an exhaustive exploration of the lth neigh-

bourhood Nl(x′) of x′ is performed in step 8. Departing from the solution
x′, the lth move is applied and new solution’s feasibility is checked using
CP. Whenever it is proved feasible, LR is used to recalculate only modified
routes. This approach permits to consider only two routes per solution, re-
ducing the computation time. Finally, the best neighbour x′′ is chosen in
terms of its solution value f(x′′) =

∑m
v=1 UBv.

7 Results

The methodology described in the present paper has been implemented in
Java and linked to the open-source CP software system ECLiPSe 6.0 [1].
All tests have been performed on a non-dedicated server with an Intel i5
processor at 2.66GHz and 16GB RAM. In general, five to seven processes
were launched in parallel to solve different problems.

A total of 93 CVRP benchmark instances from www.branchandcut.org
have been used to test the efficiency of the proposed approach. Only those
instances whose distance is defined as Euclidean or Geographic have been
selected, in order to ensure triangular inequality’s fulfilment. Table 3 shows
the total number of problems chosen from each class, as well as for how
many the best known solution has been reached. This table also shows the
average gap (% Aver. Gap) from best published values for those problems
where the best known solution could not be reached after 40 iterations. A
low deviation, under 1 %, is observed for most problem sets, comparable to
results obtained by means of other metaheuristics.

Class Problems Opt. No opt. % Aver.Gap
A 27 15 (55.6 %) 12 (44.4 %) 0.74
B 23 12 (52.2 %) 11 (47.8 %) 0.61
E 11 4 (36.4 %) 7 (63.6 %) 0.93
F 3 1 (33.3 %) 2 (66.7 %) 1.02
G 1 1 (100.0 %) 0 (0.0 %) 0.00
M 5 1 (20.0 %) 4 (80.0 %) 2.14
P 21 11 (52.4 %) 10 (47.6 %) 0.28
TSPLib 2 1 (50.0 %) 1 (50.0 %) 1.33

93 46 (49.5 %) 47 (50.5 %) 0.72

Table 3: Summary of results obtained with the proposed methodology.

The use of LR ensures the partial optimality of all solutions from the
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routing perspective. The reason is that the proposed approach can optimally
solve all TSP instances, due to the number of associated customers is always
low. LB and UB converge rapidly, keeping their gap between 0 and 10−10

and guaranteeing so the solution optimality. In addition, LR solves all routes
in negligible times. Thus, LR has demonstrated to be an efficient alternative
for intra-route optimisation processes.

The initial solution may be obtained by means of different methods.
Table 4 presents a comparative of results for some problems of class A using
different techniques to get an initial solution. First, it may be obtained
by solving separately capacity and routing problems, using the proposed
problem’s decomposition in a CP/LR scheme (2). This approach is able to
provide a low-quality quick solution, since both subproblems are easily solved
but variables are unlinked. This solution may be highly improved applying
a VND method, providing an initial solution whose value is usually close to
the final result (1). The initial solution may also be obtained by means of
the presented RCWS algorithm (3). This algorithm provides a good initial
solution in negligible times, but the maximum number of available vehicles
might not be always respected. For this reason, it may be forced to execute
iteratively until a solution fulfilling this requirement is reached (4).

It can be stated from results presented in Table 4 that RCWS is clearly
faster than the other methods to get a good initial solution. Even when
it is forced to iterate to reach a given number of vehicles, it may provide
a solution quickly. It is remarkable that this algorithm eventually finds
a better initial solution than the CP/LR + VND in a much lower time,
becoming so a better alternative. For small problems, the RCWS + VNS
scheme outperforms the CP/LR + VNS method, reaching best known values
in lower times. On the other hand, times are comparable for larger problems.
The reason might be found in the use of exhaustive local search for all
defined moves. This fact also justifies the time spent on calculating the initial
solution when the CP/LR + VND method is used. For small problems,
feasible points around a given solution may be usually low, while the solution
space may grow dramatically as the problem size increase, and so it does the
time needed to explore it. Probably, the use of heuristics within local search
processes would reduce the total time needed to solve problems significantly.

Using RCWS to get an initial solution allows solving to the best known
value 15 of 27 problems from class A. The same number of problems are
solved departing from an initial solution obtained by means of the CP/LR
scheme without VND. Instead, CP/LR + VND allows solving only 13 prob-
lems. This method uses all four defined moves to reach a minimum. As they
are also used in the VNS algorithm, the initial solution is a local optimum
for all moves defined in its local search processes. Thus, a more thorough
shaking would be mandatory to get a better algorithm’s performance and
avoid getting trapped in local minima. Moreover, the algorithm fails to suc-
cessfully solve the same problems, regardless which method is used to get
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the initial solution. Again, a poor shaking might be the main reason for this
behaviour. Table 4 also shows the gap between the final solution and the
best known value, when it is not reached. It can be observed it is usually
lower when a good initial solution is provided.

RCWS has been used to get the initial solution for all tested instances
due to its performance. Table 5 shows results obtained using RCWS com-
bined with VNS for some representative instances of different sizes.

This methodology performs similarly both for small and large instances.
It is remarkable that the algorithm eventually reaches the optimal solution
for smaller problems (50 customers or less), but it stops near the optimum for
larger instances. Thus, its applicability is not restricted. Nevertheless, the
time required to solve all instances is prohibitive when compared to state-
of-art methodologies. For this reason, some research needs to be addressed
to improving local search processes in order to get competitive results.

Notice that results for the largest selected test instance G-n262-k25 is
1.95% lower than its best value published in [13]. This reduces the gap for
this problem from 10.92% to 9.15%. The solution found for the test instance
P-n55-k8 becomes an alternative to its best known value. since a solution
with cost 583 using only 7 vehicles has been found, instead of the original
of 588 with 8 vehicles.

8 Conclusions and Future Work

Use of multiple agents or algorithm’s instances — each of them initiated
with a different random-generator seed or a different value for the statistical
distribution parameter — can significantly diminish computational times to
obtain pseudo-optimal solutions. Larger problems might need either more
computation resources or larger computational times to be solved.

In such scenarios, one possible approach to allow for real-time decision-
making could be to employ modern GPUs. This is one of the most promising
research lines we are currently exploring. However, use of GPUs requires ad-
vanced algorithmic and programming skills, since developing efficient code
in CUDA is not a trivial task and, in the case of our algorithm, some prob-
lems related to memory management must be addressed yet before obtaining
competitive results. An alternative approach is to use a distributed problem-
solving approach. This way, pseudo-optimal solutions for large and complex
real-life problems might be obtained in nearly real time at an inexpensive
monetary cost.

In effect, a standard small and medium enterprises (SMEs) use a large
number of commodity computers distributed among their different depart-
ments and/or facilities. Most of these personal computers offer more com-
puting capabilities than required to complete their daily activities (i.e. text
processors, spreadsheets, e-mail, etc.). Moreover, they happen to be un-
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derutilized during nightly hours. Our proposal gathers the spare resources
from each computer and aggregates them into a computational environment
where hundreds or even thousands of instances of our algorithm can be run
simultaneously. These cloned agents can either use a global collaborative
memory or several local collaborative memories, depending on the charac-
teristics of the distributed system.
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Problem BKS Init.Sol. CPU (s)
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 989 1243 865 849 1.75 0.06 0.01 0.01
A-n33-k5 661 734 1185 741 693 1.71 0.01 0.00 0.01
A-n33-k6 742 792 1289 768 809 1.84 0.01 0.01 0.01
A-n45-k6 944 1006 1826 1018 988 6.15 0.02 0.00 0.02
A-n46-k7 914 986 1711 959 990 7.61 0.02 0.00 0.00
A-n54-k7 1167 1178 1883 1191 1187 20.17 0.03 0.00 0.00
A-n55-k9 1073 1084 2074 1112 1150 19.62 0.03 0.00 0.00
A-n65-k9 1174 1315 2331 1296 1263 26.77 0.04 0.01 0.01
A-n69-k9 1159 1194 2463 1258 1200 71.32 0.04 0.01 0.00
A-n80-k10 1763 1963 3165 1854 1888 89.32 0.05 0.01 0.01

Problem BKS Fin. Sol. CPU (s)
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 784 784 784 784 13.12 24.50 33.05 58.10
A-n33-k5 661 661 661 661 661 24.52 16.24 5.89 18.76
A-n33-k6 742 742 742 742 743 160.10 161.32 45.58 19.94
A-n45-k6 944 963 976 949 948 169.23 376.49 282.60 24.21
A-n46-k7 914 914 914 914 914 372.14 93.30 63.98 78.47
A-n54-k7 1167 1172 1174 1167 1167 93.31 140.43 84.13 1130.79
A-n55-k9 1073 1073 1073 1073 1073 731.67 262.96 105.03 351.51
A-n65-k9 1174 1178 1182 1178 1184 924.21 1761.44 1606.04 1824.30
A-n69-k9 1159 1167 1167 1173 1164 798.56 1064.37 3394.83 2351.63
A-n80-k10 1763 1783 1787 1778 1779 3032.76 6458.92 3429.04 5878.78

Problem BKS Gap BKS-FS (%) # it
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 - - - - 1 2 3 5
A-n33-k5 661 - - - - 1 1 1 1
A-n33-k6 742 - - - 0.13 26 26 7 -1
A-n45-k6 944 2.01 3.39 0.53 0.42 -1 -1 -1 -1
A-n46-k7 914 - - - - 13 1 2 4
A-n54-k7 1167 0.43 0.60 - - -1 -1 2 31
A-n55-k9 1073 - - - - 20 6 2 10
A-n65-k9 1174 0.34 0.68 0.34 0.85 -1 -1 -1 -1
A-n69-k9 1159 0.69 0.69 1.21 0.43 -1 -1 -1 -1
A-n80-k10 1763 1.13 1.36 0.85 0.91 -1 -1 -1 -1

Table 4: Results obtained for some class A benchmark instances comparing
different methods to get an initial solution: (1) CP/LR scheme + VND, (2)
CP/LR scheme without VND, (3) RCWS and (4) RCWS forced to use the
minimum number of required vehicles.
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Problem BKS Init.Sol. CPU (s) Fin. Sol. CPU (s) Gap BKS-FS (%) # it

B-n44-k7 909 1000 0.01 909 98.85 - 3
B-n45-k5 751 768 0.06 751 56.59 - 2
B-n50-k7 741 778 0.00 741 47.18 - 1
E-n51-k5 521 597 0.01 521 903.22 - 28
E-n76-k8 735 792 0.04 736 1339.49 0.14 -1
E-n101-k8 817 890 0.04 829 2508.08 1.47 -1
F-n45-k4 724 777 0.00 724 264.81 - 2
F-n135-k7 1162 1299 0.07 1166 205415.08 0.34 -1
G-n262-k25 5685 5839 0.56 5574 175593.98 -1.95 1
M-n101-k10 820 857 0.03 820 2843.71 - 4
M-n151-k12 1015 1124 0.05 1025 18218.83 0.99 -1
P-n40-k5 458 513 0.00 458 22.53 - 1
P-n50-k7 554 581 0.00 554 67.50 - 2
P-n55-k8 588 (8) 606 0.01 583 (7) 101.71 -0.85 1
P-n65-k10 792 853 0.01 792 1420.63 - 24
P-n70-k10 827 881 0.01 830 1829.44 0.36 -

Table 5: Results obtained for some benchmark instances (improved results
in bold)
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