
Simplified Access Control Policies for XML
Databases

Loreto Bravo and Ricardo Segovia
Universidad de Concepcin, Chile
{lbravo,risegovia}@udec.cl

Abstract. When defining Access Control Policies for XML Databases
administrators need to make sure that they are not inconsistent, this
is, that it is not possible to perform a forbidden operation through a
sequence of allowed operations. This problem has been studied before
for policies defined using authorizations based in insert, delete, replace
and replaceVal types to control updates in documents that conform to
structured DTDs and chain DTDs. For those policies, consistency can
be checked in polynomial time, but the problem of minimally restoring
consistency is np-hard. In this article we show how the administration
of authorization can be simplified by considering only insert and delete
permissions, while still being able to control access of replace updates, in
such a way that they can be checked for consistency and repaired if they
are not in polynomial time. Also, this simplified policies allow to control
a more general class of updates than the ones previously studied.

1 Introduction

XML documents are increasingly being used not only to share data but also
to store it in that format, i.e. XML Databases. For this reason, it has become
important to provide ways to control the way in which different users read and
modify this data. There’s been work on access control techniques for both read
[1, 5–8, 10] and write [2–4] queries over XML data.

For write queries, a special type of vulnerability has been studied: the possibility
that a policy specification enables a user to simulate a forbidden update through
a sequence of allowed updates in the same policy. These “inconsistent” policies
open up security problems and as such, need to be properly detected and repaired
before being enforced.

Example 1. The US National Library of Medicine developed Journal Publishing
Tags to describe the content and metadata of journal articles. A fragment of its
schema is shown in Fig. 11 and a sample document in Fig. 2. 2

1 Each element is defined using regular expressions. We assume that all the elements
that are not defined correspond to text(#PCDATA).

20

article → (front + front-stub), body?, (sub-article + response)∗

front → journal-meta, article-meta, notes?
front-stub → journal-meta?, article-meta?, notes?
body → (address + fig + p + list)∗, sec∗

sub-article → (front + front-stub), body?
response → (front + front-stub), body?
journal-meta → journal-id+, issn+, isbn∗, publisher?, notes?
article-meta → article-id∗,author+,pub-date+, volume?, issue?
sec → title?, (fig + p + list + tex-math)∗, sub-sec∗

fig→ object-id∗, label?, caption?, graphic, (attrib + permissions)∗

list → label?, title?, list-item+

sub-sec → title?, (address + fig + p + list + tex-math)∗

Fig. 1. Journal Publishing Schema

<article>

<front>

<journal-meta>

<journal-id>BMJ</journal-id>

<issn>0959-8138</issn>

<publisher>BMJ</publisher>

</journal-meta>

<article-meta>

<article-id>jBMJ</article-id>

<article-id>1508</article-id>

<author>Freeman,George</author>

<pub-date>13-4-2002</pub-date>

<volume>324</volume>

<issue>7342</issue>

</article-meta>

</front>

<sub-article>

<front-stub>

<journal-meta>

<journal-id>SMN</journal-id>

<issn>7225-4139</issn>

<publisher>SMN</publisher>

</journal-meta>

</front-stub>

</sub-article>

</article>

Fig. 2. Journal Publishing XML Document D0

Consider, for example, a policy that allows a user to insert and remove elements
of type sub-article but does not allow him/her to insert new journal-id elements.
This policy has an inconsistency, since it is possible to add a journal-id by first
removing the element sub-article, and then inserting a new one that includes the

21

extra journal-id. For example, it shouldn’t be possible to obtain document D2 (in
Figure 5) from document D0 (in Figure 2) since inserting journal-id elements is
forbidden. However, this can be achieved by first removing from D0 the sub-article

element, which results in document D1 in Figure 3, and then inserting the new
sub-article element shown in Figure 4 below the front element of document D1.
Thus, through two allowed updates such as deleting an inserting a sub-article

element, it is possible obtain a document D2 that is also the result of applying
a forbidden update.

<article>

<front>

<journal-meta>

<journal-id>BMJ</journal-id>

<issn>0959-8138</issn>

<publisher>BMJ</publisher>

</journal-meta>

<article-meta>

<article-id>jBMJ</article-id>

<article-id>1508</article-id>

<author>Freeman,George</author>

<pub-date>13-4-2002</pub-date>

<volume>324</volume>

<issue>7342</issue>

</article-meta>

</front>

Fig. 3. Document D1 obtained from
D0 by deleting the sub-article element

<sub-article>

<front-stub>

<journal-meta>

<journal-id>SMN</journal-id>

<journal-id>DKE</journal-id>

<issn>7225-4139</issn>

<publisher>SMN</publisher>

</journal-meta>

</front-stub>

</sub-article>

Fig. 4. Tree with root sub-article to in-
sert to document D1

<article>

<front>

<journal-meta>

<journal-id>BMJ</journal-id>

<issn>0959-8138</issn>

<publisher>BMJ</publisher>

</journal-meta>

<article-meta>

<article-id>jBMJ</article-id>

<article-id>1508</article-id>

<author>Freeman,George</author>

<pub-date>13-4-2002</pub-date>

<volume>324</volume>

<issue>7342</issue>

</article-meta>

</front>

<sub-article>

<front-stub>

<journal-meta>

<journal-id>SMN</journal-id>

<journal-id>DKE</journal-id>

<issn>7225-4139</issn>

<publisher>SMN</publisher>

</journal-meta>

</front-stub>

</sub-article>

Fig. 5. Document D2 obtained from D0

after inserting a new journal-ID element.

In [2] the authors defined inconsistencies in XML access control policies for write
operations, studied the problem of identifying such policies for structured DTDs,
showed that finding repairs to those policies is np-complete and provided approx-
imation algorithms to compute them. Later, in [4], authors extended those results
to deal with a general kind of DTD called Chain Extended DTDs (CEDTDs for

22

short), like the one in Fig. 1, imposing some restriction over the type of updates
that were considered. For instance, it only considered updates that replaced el-
ement types belonging to a disjunction without +, ∗ or ?. Thus, in the Journal
Publishing example, the only valid replace updates would be between element
types front and front-stub. In this setting, the problem of repairing inconsistent
policies was shown to be np-complete.

In this article, we show how an access control policy can be defined for XML
databases that conform to CEDTDs in such a way that: (i) it deals with insert,
delete and replace updates between any two distinct element types, (ii) policy
consistency can be checked in polynomial time, (iii) repairs to inconsistent poli-
cies can be found in polynomial time. The cost to achieve this is that it cannot
express some policies that can be defined in [4]. However, the type of policies
that cannot be expressed are not common in practice.

This document is structured as follows. The definitions of XML documents,
schemas and updates are provided in Section 2. Section 3 defines access control
policies for CEDTDs. Next, in Section 4 the consistency of those policies in
analyzed and for the cases in which they are inconsistent, the repair problem is
studied in Section 5. Finally, the conclusions are provided in Section 6.

2 Preliminaries

An extended DTD (EDTD) is an abstraction of the two main schema definition
languages for XML [9], namely DTDs and XSDs, and represented by a quintuple
(Ele,Types, Rg, rt, µ) where i) Ele is a finite set of element names ii) Types is
a finite set of element types iii) rt is a distinguished element name in Ele and in
Types called the root iv) µ is a mapping from Types to Ele such that µ(rt) = rt,
and v) Rg defines the element types: that is, Rg : Types → RegTypes , where
RegTypes is a set of regular expressions r over Types, considering concatenation,
disjunction, element repetition and optionality, empty and string elements. Given
a type A we will refer to Rg(A) as its production rule. An element type Bi that
appears in the production rule of an element type A is called a subelement type
of A. Given an EDTD D, we write A ≤D B for the transitive, reflexive closure
of the subelement relation.

A structured EDTD is an EDTD such that its regular expressions are defined
using the grammar: str | ε | B1, . . . ,Bn | B1 + · · · + Bn | B∗, where “,”, “+”
and “∗” stand for concatenation, disjunction and Kleene star respectively, ε for
the EMPTY element content, str for text values and B ∈ Types.

A Chain EDTDs consists of an EDTD whose regular expressions are: (i) a se-
quence of terms (A1+ · · ·+An)q, where q is an optional qualifier of the form +, ∗,
or ?; (ii) a string str; or (iii) empty ε [11]. Every structured EDTD is a Chain
EDTD.

23

Example 2. The Journal Publishing Schema in Fig. 1 is a chain EDTD but it
is not a structured EDTD. For example, element article contains either a front

or front-stub element, optionally a body element and zero or more repetitions of
sub-articles or response elements. 2

We will model an XML document as rooted unordered trees which conforms to
a schema if it validates against its regular expressions. The XML document in
Fig. 1 conforms to the chain EDTD in Fig. 2.

Example 3. Let t0 be the XML document shown in Figure 6(b), also represented
by the tree in Figure 6(c). LetD0 be the chain EDTD rooted in A shown in Figure
6(a). Document t0 conforms to schema D0. 2

A→(B+C)+,D∗,(E+F+G)
B → H,I
C → str
D → str
E → str

F → str
G → str
H → str
I → ε

(a) CEDTD D0

<A>

<H>Hello</H>

<I></I>

<C>World</C>

<E>!!</E>

(b) Document t0

A

B

H

“Hello”

I

C

“World”

E

“!!”

(c) Tree representation of t0

Fig. 6. CEDTD D0 with a document t0 that conforms to it

We consider the following updates: op ::= delete(n) | insert(n, t) | replace(n, t) |
replaceVal(n, s). A delete(n) will remove node n and all its descendants. An
insert(n, t) operation will add a tree t as a child node below n. A replace(n, t)
operation will replace the subtree with root n by the tree t. A replaceVal(n, s)
operation will replace the text value of node n with string s. An update oper-
ation is said to be valid for t and D if the result of applying it over t results
in a document that conforms to D. For example, the update delete(E) would
not be valid over t0, because the resulting document would not conform to D.
In what follows we consider only valid updates. We denote by [[op]](t,D) the
resulting XML document obtained by applying update operation op on tree t
that conforms to schema D.

3 Access Control Policies

We use the notion of update access type to specify the access authorizations.

Definition 1. Given a CEDTD D, a base update access type (base UAT) is an
expression of the form (A, ut) where ut ::= insert(B) | delete(B) | replaceVal and A

and B are types from D. 2

24

Intuitively, each of these UATs controls the operations that insert or delete an
element of type B or operations that replace a string. The relation uat valid in D,
which indicates that a base update access type uat is valid for the EDTD D, is
constrained by the following inference rules:

replaceVal valid in str

U valid in t
U valid in t∗

U valid in t

U valid in t+
U valid in t
U valid in t?

insert(Bi) valid in (B1 + · · ·+ Bn) delete(Bi) valid in (B1 + · · ·+ Bn)

U valid in fi

U valid in f1, . . . , fn

U valid in Rg(A)

(A, U) valid in D

The set of valid base UATs for a given EDTD D is denoted by valid(D) = {uat |
uat valid in D}.

Example 4. (example 3 cont.) Given schema D0, valid(D0) = {(A, insert(B)), (A,
delete(B)), (A, insert(C)), (A, delete(C)), (A, insert(D)), (A, delete(D)), (A, insert(E)),
(A, delete(E)), (A, insert(F)), (A, delete(F)), (A, insert(G)), (A, delete(G)),(C, replaceVal),
(D, replaceVal), (E, replaceVal), (F, replaceVal), (G, replaceVal), (H, replaceVal)} 2

Definition 2. A policy P defined over an EDTD D, is represented by the set
of allowed update access types defined over D such that P ⊆ valid(D). The set
of forbidden UAT of a policy P defined over D are F(P,D) = valid(D) r P . 2

Example 5. (example 4 cont.)A policy for D0 is PD0={(A,insert(B)),(A,delete(B)),
(A, insert(C)), (A, delete(C)), (A, insert(E)), (A, delete(E)),(A, insert(F)),(A, delete(F)),
(A, insert(G)), (A, delete(G)), (C, replaceVal), (E, replaceVal), (G, replaceVal)}. The set
of UATs that are forbidden by PD0

are F(PD0
, D0) = (A, delete(D)), (A, insert(D)),

(D, replaceVal), (F, replaceVal), (H, replaceVal)}. 2

We want to enforce restriction over the applications of insert, delete and replace
update operations, but the policies, as we have defined so far, allow or forbid
only insertions and deletions. Thus, we need to deduce from our policies update
access types to control replacements.

Definition 3. Given a CEDTD D, an update access type (UAT) defined over
D is a base UAT or an expression of the form (A, replace(B,C)) and A, B, C are
types from D. 2

In order to enforce a policy P on updates, an expanded version P ↑ is in-
ferred from P , adding certain replace operations that are allowed. For instance,
replace(Bi,Bj) is considered an inferred update access type, for which the per-
missions are obtained from the allowed and forbidden base UATs such as insert,
delete and replaceVal.

25

Since we can apply over a document only updates that result in a new document
that conforms to the DTD, we need to define replace UATs only in the cases
where the replace could take place.

Example 6. For the production rule A → (B+C)+,D∗,(E+F+G) of the ongoing
example, elements E, F and G can only be replaced between them, since a re-
placement of an element E by an B, for example, would result in a document
that does not conform to the DTD. On the other hand, elements B, C and D can
only be replaced between them. 2

As the previous example shows, factor of the form (B1 + · · ·+ Bn) impose re-
strictions over the type of elements that can be replaced.

Definition 4. An XOR factor in A is a factor of the form (B1 + · · ·+ Bn) in the
production rule of A. Let XOR(A) = {{B1, · · · ,Bn}|(B1 + · · · + Bn) is an XOR
factor in A}. Types Bi and Bj are alternates in A if both Bi and Bj belong to
the same XOR factor in A. A types Bi is independent in A if it does not belong
to any XOR factor in A. 2

In the policies defined in [4] updates that replaced an independent element by
another were not considered.

Example 7. The production rule A → (B+C)+,D∗,(E+F+G) has one XOR fac-
tor, namely (E+F+G). The alternates in A are {E,F}, {E, G} and {F, G}. The
independent types in A are B, C and D. 2

Definition 5. Given a set of UATs U , the expanded version U↑ is obtained from
U using the following inference rules:

(A, delete(Bi)) ∈ U , (A, insert(Bj)) ∈ U , i 6= j, and Bi,Bj are independent in A

(A, replace(Bi,Bj)) ∈ U↑

(A, delete(Bi)) ∈ U , (A, insert(Bj)) ∈ U , i 6= j, and Bi,Bj are alternates in A

(A, replace(Bi,Bj)) ∈ U↑

(A, insert(B)) ∈ U , and B is independent in A

(A, insert(B)) ∈ U↑

(A, delete(B)) ∈ U , and B is independent in A

(A, delete(B)) ∈ U↑
(A, replaceVal) ∈ U
(A, replaceVal) ∈ U↑

Given a schema D and a policy P , the set of extended valid UATs corresponds
to valid(D)↑ and the expanded policy to P ↑. 2

This expanded policy can be used to check if an update is allowed or forbidden
by a policy.

26

Example 8. (example 4 cont.) The set of extended valid UATs valid(D)↑ =
{(A,insert(B)), (A,insert(C)), (A,insert(D)), (A,delete(B)), (A,delete(C)), (A,delete(D)),
(A, replace(E, F)),(A,replace(E,G)), (A, replace(F,E)), (A,replace(F,G)),(A,replace(G,E)),
(A,replace(G, F)),(A,replace(B,C)),(A,replace(C,B)),(A,replace(C,D)),(A,replace(D,C)), (A,
replace(B,D)), (A, replace(D,B)), (C, replaceVal), (D, replaceVal), (E, replaceVal), (F,
replaceVal), (G, replaceVal), (H, replaceVal)}. It differs from valid(D) since it adds
all the replace UATs and removes some insert and delete. The set of extended valid
UATs represent the types of updates that could result in a document that con-
forms to schema D0. The extended policy P ↑D0

= {(A, insert(B)), (A, insert(C)),
(A, delete(C)), (A, replace(C,B)), (A, delete(B)), (A, replace(B,C)), (A,replace(E,F)),
(A,replace(F,E)),(A,replace(G,E)), (A,replace(E,G)), (A,replace(F,G)), (A,replace(G,F)),(C,
replaceVal),(E,replaceVal),(G,replaceVal)}. The UATs that are forbidden by the pol-

icy correspond to valid(D)↑ r P ↑D. 2

Intuitively, an UAT in P ↑ represents a set of atomic update operations. More
specifically, for t an instance of CEDTD D, op an atomic update and uat an
update access type we say that op matches uat on t (op matchest uat) if one of
the following inference rules applies:

η(n) = A t′ ∈ ID(B)

insert(n, t′) matchest (A, insert(B))

η(n) = B η(parentt(n)) = A

delete(n) matchest (A, delete(B))

η(n) = B t′ ∈ ID(B′) η(parentt(n)) = A

replace(n, t′) matchest (A, replace(B,B′))

η(n) = str η(parentt(n)) = A

replaceVal(n, s) matchest(A, replaceVal)

Function η corresponds to the unique mapping from each node in t to the element
type associated to it. This uniqueness follows from the assumption that D is
unambiguous.

As we said before, we will restrict only to valid update operation which given
a document t and a CEDTD D the result of applying it over t results in a
document that conforms with D. Since the problem of validity and authorization
are orthogonal, we assume that all the operations to checked by the policy are
valid.

The set of operations that are allowed by a policy P on an XML tree t in an
CEDTD D, denoted by [[P]](t,D), is the union of the atomic valid update opera-
tions matching each UAT in P ↑. More formally, [[P]](t,D)={op | op matchest uat
and uat ∈ P ↑}. Analogously, the forbidden operations are [[F]](t,D) = {op | op
matchest uat, and uat ∈ (valid(D) \ P ↑)}. A safe run t0

op1−−→ t1 . . .
opn−−→ tn is

allowed w.r.t. P and D if for every i we have opi ∈ [[P]](ti−1, D).

4 Consistency of Policies

A policy is said to be consistent if it is not possible to simulate a forbidden
update through a sequence of allowed updates. More formally:

27

Definition 6. [2] Consider a policy P defined over schema D. An inconsis-

tency in P for D consists of an allowed run t0
op1−−→ t1 . . .

opn−−→ tn and an update
op0 ∈ [[F]](t0, D) such that tn = [[op0]](t0, D). A policy P is consistent for D if
there are no inconsistencies. 2

We say that nothing is forbidden below an element type A in a policy P defined
over D if for every Bi such that A ≤D Bi and every (Bi, x) ∈ valid(D), (Bi, x) ∈ P .
If A has any replace operations in valid(D), then we define the replace graph
GPA = (VA, EA) where i) VA is the set of subelements of A and ii) (Bi,Bj) ∈ EA
if there exists (A, replace(Bi,Bj)) ∈ P ↑.

Theorem 1. A policy P defined over a CEDTD D is consistent if and only if
for every production rule:

1. If (A,insert(B))∈P ↑ and (A,delete(B))∈P ↑, then nothing is forbidden below B

2. If for every i ∈ [1, . . . n], if Bi is contained in a cycle in GPA then nothing is
forbidden below Bi.

Proof Sketch: Policy P and schema D can be transformed into a new policy
Pstruct defined over a new structured schema Dstruct in such a way that P is
consistent over D if and only if Pstruct is consistent over Dstruct. In [2] the au-
thors identify three cases in which a policy defined over a structured schema
is consistent: insert/delete, negative-cycle and forbidden-transitivity. Because of
the characteristics of Pstruct only the first two can occur. By reversing the trans-
formations, we get the conditions for CEDTDs that correspond to insert/delete
and negative cycle inconsistencies. 2

The conditions in Theorem 1 are defined over the expanded policy P ↑. In order to
simplify the consistency checking problem, it is better to see how these conditions
can be checked in P instead of P ↑.

Proposition 1. A policy P defined over a CEDTD D is consistent if and only
if for every element types A, B and C in D:
1. If B is independent in A and {(A, insert(B)), (A, delete(B))} ⊆ P then nothing

is forbidden below B.
2. If B and C are alternates in A and {(A, insert(B)), (A, delete(B)), (A, insert(C)),

(A, delete(C))} ⊆ P then nothing is forbidden below B and C. 2

It is possible to check if conditions in Proposition 1 hold for a policy using
standard polynomial-time graph algorithms over the DTD. Thus, the problem
of deciding policy consistency with respect to CEDTDs is in ptime.

Example 9. (example 8 cont) Policy PD0
has several inconsistencies. First, by

having both (A, insert(B)) and (A, delete(B)) allowed for an independent element

28

type B under A, but forbidding (H, replaceVal). Another one is given by having
(A, insert(E)), (A, delete(E)), (A, insert(F)) and (A, delete(F)) as allowed operations
under alternate types E and F, but forbidding (F, replaceVal). Finally, given by
having (A, insert(F)), (A, delete(F)), (A, insert(G)) and (A, delete(G)) as allowed op-
erations under alternate types F and G, but forbidding (F, replaceVal).

5 Repairing Inconsistent Policies

If a policy is inconsistent, we would like to suggest possible minimal ways of
modifying it in order to restore consistency. In other words, we would like to
find repairs that are as close as possible to the inconsistent policy. We would
like this repairs to be more restrictive than the original, this is, a repair should
provide less access to the user.

Definition 7. [2] A policy P ′ is a repair of a policy P defined over a DTD
D if and only if: i) P ′ is defined over D, ii) P ′ is consistent, and iii) P ′ ⊆ P .
Furthermore a repair P ′ of P is a minimum-repair if there is no repair P ′′ such
that |P ′| < |P ′′|.2 2

In other words a repair is a new policy over the same schema, which is consistent
and contains a subset of the allowed UAT in P . For this repair to be minimal, we
require that it contains the maximum number of allowed UATs or, equivalently,
that a minimal number of UATs has been removed from P .

The problem of computing a minimum-repair can be solved in ptime. In what
follows we describe an algorithm to do so. By Proposition 1 we have that we
need to solve two types of inconsistencies:

Type 1: if B is independent in A, {(A, insert(B)), (A, delete(B))} ⊆ P and
something is forbidden below B.
Type 2: if B and C are alternates in A,{(A,insert(B)),(A,delete(B)),(A,insert(C)),
(A, delete(C))} ⊆ P and something is forbidden below B or below C.

Because of minimality of repairs, repairs of inconsistencies of Type 1 can be
solved independently by removing either (A, insert(B)) or (A, delete(B)). This is
not the case for inconsistencies of Type 2, since there might be more than one
such inconsistency involving shared types.

Example 10. (example 9 continued) There is an inconsistency of Type 2 between
E and F since (F, replaceVal) 6∈ P . To solve this inconsistency, we need to forbid
either (A, insert(E)),(A, delete(E)),(A, insert(F)) or (A, delete(F)). However, choos-
ing to forbid (A, insert(E)) or (A, delete(E)) will not result in a minimal repair
since element F is involved in another inconsistency of Type 2 with G since
(F, replaceVal) 6∈ P . Thus, when there are several inconsistencies of Type 2 it

2 |P ′| denotes the cardinality of set P ′

29

Algorithm 1: PolicyRepair

Input : CEDTD D = (Ele,Types, Rg, rt, µ), Policy P
Output : set toRemove of UATs to remove to restore consistency of P

1 (T1, T2)← DetectInconsistencies(D,P)
2 toRemove← ∅
3 for A ∈ Types do
4 for B ∈ T1(A) do
5 U ← either (A, insert(B)) or (A, delete(B)) (choose randomly)
6 toRemove← toRemove ∪ {U}
7 for S ∈ T2(A) do
8 if ∇ ∈ S then
9 S ← S r {∇}

10 else
11 Let E be a randomly chosen element in S
12 S ← S r {E}
13 for C ∈ S do
14 U ← either (A, insert(B)) or (A, delete(B)) (choose randomly)
15 toRemove← toRemove ∪ {U}
16 S ← S r {C}

17 return toRemove

is necessary to choose carefully to ensure that a minimal repair is found. In
this case, either (A, insert(F)) or (A, delete(F)) need to be forbidden. The pol-
icy also has a inconsistency of Type 1 that can be solved by forbidding either
(A, insert(B)) or (A, delete(B)) from our policy. Thus, a minimum-repair for P is
P ′ = P \ {(A, insert(B)), (A, delete(F))}. 2

Algorithm PolicyRepair, takes a policy P defined over a CEDTDD and returns
a set of UATs to remove from P to restore consistency. The algorithm first calls
Algorithm DetectInconsistencies that computes with the recursive Algorithm
NodeInconsistency the inconsistencies of Type 1 and Type 2 and stores them
in two functions T1 and T2 using depth-first search over schema D. Function
T1 : Types → 2Types , returns for every type A the set of Types B such that
{(A, insert(B)), (A, delete(B))} ⊆ P and something is forbidden below B. These
inconsistencies are solved by either deleting (A, insert(B)) or (A, delete(B)) (lines 4-

6 of Algorithm PolicyRepair). Function T2 : Types → 22
Types

, returns for every
type A, a set of subsets of Types in such a way that if S ∈ T2(A), then every B ∈ S
belongs to the same XOR factor below A and {(A, insert(B)), (A, delete(B))} ⊆ P
and something is forbidden below B. Also, if ∇ ∈ S it means there is a type C in
the same XOR factor such that {(A, insert(C)), (A, delete(C))} ⊆ P but everything
is allowed below C. It is easy to check that in order to solve the inconsistencies of
Type 2, for every S ∈ T2(A) we need to delete either (A, insert(B)) or (A, delete(B))

30

Algorithm 2: DetectInconsistencies

Input : CEDTD D = (Ele,Types, Rg, rt, µ), Policy P
Output : A tuple (T1, T2) where T1 and T2 are functions that given a type they

return the inconsistencies of Type 1 and Type 2 below it
1 for A ∈ Types do
2 visited(A)← −1
3 if there exists (A, op) ∈ F(P,D) then
4 ν(A) = 0

5 else
6 ν(A)← −1

7 T1(A)← ∅
8 T2(A)← ∅
9 NodeInconsistency(D, rt, visited, ν, T1, T2)

10 return (T1, T2)

for every B ∈ S except for ∇ if it belongs to F or any type if it does not (see
lines 7-15 of Algorithm PolicyRepair).

31

Algorithm 3: NodeInconsistency

Input : CEDTD D, Node A, functions:visited, ν, T1 and T2

Result: T1(A) and T2(A) contain inconsistencies of Type 1 and Type 2 below A
1 if visited(A) < 0 then
2 for B independent in A do
3 nodeInconsistency(MGD, visited,B)
4 if ν(B) = 0 then
5 ν(A)← 0
6 if (A, insert(B)) ∈ P and (A, delete(B)) ∈ P then
7 T1(A) = T1(A) ∪ {B}

8 for F ∈ XOR(A) do
9 S ← ∅

10 for B ∈ F do
11 nodeInconsistency(MGD, visited,B)
12 if ν(B) = 0 then
13 ν(A)← 0

14 if (A, insert(B)) ∈ P and (A, delete(B)) ∈ P then
15 if ν(B) = 0 then
16 S = S ∪ {B}
17 else
18 S = S ∪ {∇}

19 if |S| > 1 then
20 T2(A)← T2(A) ∪ {S}

21 if ν(A) = −1 then
22 ν(A)← 1

23 visited(A)← 1

Example 11. (example 5 continued) Algorithm DetectInconsistencies returns
T1 and T2 such that:

T1(E) =

{
{B} for E=A

∅ for E 6=A
T2(E) =

{
{{F,∇}} for E=A

∅ for E 6=A

To solve the only inconsistency of Type 1, it chooses from either (A, insert(B)) or
(A, delete(B)) and adds it to the toRemove set. Next, for sets in T2(A), it loads
them into a variable S and checks if ∇ ∈ S. If such element is in the set, it
means that there are cycles inside the XOR factor involving elements that do
not have something forbidden below them. In this case, the algorithm erases ∇
from S. Then the algorithm proposes to add either (A, insert(F)) or (A, delete(F))
to the toRemove set. So, by choosing one UAT from each combination shown,
and changing them from allowed to forbidden, consistency is restored. 2

32

Even though finding a single minimum-repair can be done in polynomial time,
there might an exponential number of them.

Proposition 2. Given a policy P over a CEDTD D, a minimum-repair of it
can be computed with Algorithm 1 in O(n+m) where n is the number of types
in D and m is the number edges in the tree that represents D. All the repairs
can be computed in O(n× 2n). 2

In most of the cases m is O(n) and thus a minimum repair can be found in linear
time on the number of types in the DTD. In the worst case m is O(n2). Even
thought computing all the repairs requires exponential time, it is also possible
to show in linear time all the inconsistencies to the designer of the policy so that
he can choose how to solve each of them.

6 Conclusions

We have provided an access control policy definition language based in basic
update access types, that simplifies the administration of authorization, since
it only requires that the policy manager defines whether the user should be
able to insert or delete elements of the DTD, and automatically deduct replace
authorizations from such permissions. For these type of policies, consistency
checking and repair computation problems can be solved in polynomial time. We
also provided efficient algorithms that, given an inconsistent policy, computes a
consistent one that is as close as possible to the inconsistent one in terms of
forbidden UATs.

These policies are an improvement over the ones defined in [4], since the re-
pair computation problem for those is np-hard. This is achieved by instead of
defining policies in terms of insert, delete and replace UATs, we here define poli-
cies using only insert and delete UATs and deducing from them the replace per-
missions. In terms of expressive power they are not comparable since we can
define policies that they cannot and vice-versa. For example, consider a DTD
with the production rule A → B∗,C∗ and B and C containing text. A policy
P = {insert(C), delete(B)} with P ↑ = {insert(C), delete(B), replace(B,C)} cannot
be expressed in policies defined in [4] since they do not consider replace between el-
ements that do not belong to an XOR factor. On the other hand, we cannot write
a policy P for which P ↑ = {(A, replace(B,C)), (B, replaceVal), (C, replaceVal)}
even though P ↑ is a consistent policy in [4]. We believe that the gain in ex-
pressive power outweighs the loss since being able to provide permissions for
replacements outside of XOR factors is a useful feature and the policies that
cannot be expressed do not seem useful in practice. Thus, the policies here in-
troduced can be used as a simple, but powerful, way to provide consistent access
control to XML databases.

33

Acknowledgements: This work is funded by FONDECYT grant 11080260 and
CONICYT grant PSD-57. We would like to thank Irini Fundulaki and James
Cheney for useful discussions.

References

1. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents.
ACM TISSEC 5(3), 290–331 (2002)

2. Bravo, L., Cheney, J., Fundulaki, I.: Repairing Inconsistent XML Write-Access
Control Policies. In: DBPL. pp. 97–111 (2007)

3. Bravo, L., Cheney, J., Fundulaki, I.: ACCOn: Checking Consistency of XML Write-
Access Control Policies. In: EDBT’08 (Demo) (2008)

4. Bravo, L., Cheney, J., Fundulaki, I., Segovia, R.: Consistency and Repair for XML
Write-Access Control Policies, VLDB Journal. Accepted (2012)

5. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Fine-grained
Access Control System for XML Documents. ACM TISSEC 5(2), 169–202 (2002)

6. Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML Querying with Security Views.
In: ACM SIGMOD. pp. 587–598 (2004)

7. Fundulaki, I., Marx, M.: Specifying Access Control Policies for XML Documents
with XPath. In: SACMAT. pp. 61–69 (2004)

8. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML Security Views. In: SAC-
MAT. pp. 77–84 (2005)

9. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and Complexity
of XML Schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

10. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control Using Static
Analysis. ACM TISSEC 9(3), 290–331 (2006)

11. Van den Bussche, J., Neven, F., Bex, G.J.: DTDs versus XML Schema: A Practical
Study. In: WebDB’04. Paris, France (2004)

34

