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Abstract—In this work we directly evaluate five candi-
date programming models for future exascale applications
(MPI, MPI+OpenMP, MPI+OpenACC, MPI+CUDA and
CAF) using a recently developed Lagrangian-Eulerian
explicit hydrodynamics mini-application. The aim of this
work is to better inform the exacsale planning at large
HPC centres such as AWE. Such organisations invest
significant resources maintaining and updating existing
scientific codebases, many of which were not designed
to run at the scale required to reach exascale levels of
computation on future system architectures. We present
our results and experiences of scaling these different
approaches to high node counts on existing large-scale
Cray systems (Titan and HECToR). We also examine the
effect that improving the mapping between process layout
and the underlying machine interconnect topology can have
on performance and scalability, as well as highlighting
several communication-focused optimisations.
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I. INTRODUCTION

HPC systems continue to evolve through massive in-
creases in hardware concurrency rather than CPU clock
speeds. This presents a significant challenge to large
HPC centres such as the Atomic Weapons Establish-
ment (AWE), as in order to reach exascale levels of
performance on future HPC platforms, many of their
applications require significant scalability improvements.
It is also recognised that a key feature of future exascale
system architectures will be significantly increased intra-
node parallelism, relative to current HPC system node
architectures [1]. This increase in parallelism is likely
to come from two sources: (i) increased CPU core
counts; and (ii) the use of massively-parallel hardware
accelerators, such as discrete general-purpose graphics
processing units (GPGPUs).

It is argued that existing programming approaches,
mainly based on the dominant MPI (Message Passing
Interface) library, are starting to reach their scalability
limits and it is also the case that developing and main-
taining “flat” MPI applications is becoming increasingly
problematic [2]. Additionally, MPI provides no mech-
anism for codes to make use of attached accelerator
devices.

Unlike the MPI model, PGAS (Partitioned Global Ad-
dress Space) based approaches such as CAF (Co-array
Fortran) rely on a lightweight one sided communication
model and a global memory address space. Together with
hybrid programming approaches such as combining MPI
with OpenMP or OpenACC, PGAS-based approaches
represent promising areas of research for improving
the performance and scalability of applications as well
as programmer productivity. To date, insufficient work
has been conducted to directly evaluate each of these
approaches at scale on current high-end HPC platforms,
particularly within the sphere of explicit Lagrangian-
Eulerian hydrodynamics, which is a key focus of this
work.

Large HPC sites such as AWE are required to make sig-
nificant investments maintaining their existing scientific
codebases. These organisations are also challenged with
the task of deciding how best to develop their existing ap-
plications to take advantage of future HPC system archi-
tectures, in order to effectively harness future exascale-
levels of computing power. Evaluating the strengths of
each of these approaches using production codes is
difficult, applications are often complex and consist of
hundreds of thousands of lines of code. Together with
limited developer and financial resources, this complexity
means that it is not possible to explore every software
development option for each HPC application. We report
on how this programming model exploration, architecturec©British Crown Owned Copyright[2013] / AWE



evaluation and general decision making can be improved
through the use of mini-applications. Mini-applications
are small, self contained programs that embody essential
performance characteristics of larger applications, and
thus provide a viable way to conduct this analysis [3].

In this work we seek to directly evaluate five candidate
programming models for future exascale applications
(MPI, MPI+OpenMP, MPI+OpenACC, MPI+CUDA and
CAF) and two candidate system architectures, using
a recently developed Lagrangian-Eulerian explicit hy-
drodynamics mini-application (CloverLeaf). We evaluate
each of these approaches in terms of their performance
and scalability and present our results and experiences of
scaling them to high node counts on existing large-scale
Cray systems (Titan and HECToR). We also examine
the effect that improving the mapping between process
layout and the underlying machine interconnect topology
can have on performance and scalability, as well as
highlighting the effects of several other communication-
focused optimisations.

Specifically, we make the following key contributions:

• We present a detailed description of CloverLeaf’s
implementation in each of the aforementioned
programming models, as well as information on
its hydrodynamics scheme;

• We present a direct performance comparison of
these five approaches, at considerable scale, on
two alternative Cray system architectures;

• Finally, we discuss in detail a number of key op-
timisations and their effects on the performance
of CloverLeaf at scale.

The remainder of this paper is organised as follows:
Section II discusses related work in this field. In Sec-
tion III we present background information on the hy-
drodynamics scheme employed by CloverLeaf and the
programming models which this work examines. Section
IV describes the implementation of CloverLeaf in each of
these programming models and also provides details of
the optimisations which we have examined. The results
of our study are presented and analysed in Section V,
together with a description of our experimental setup.
Finally, Section VI concludes the paper and outlines
future work.

II. RELATED WORK

A considerable body of work exists which has exam-
ined the advantages and disadvantages of the hybrid

(MPI+OpenMP) programming model compared to the
purely “flat” MPI model. To our knowledge, these studies
have generally focused on different scientific domains
to the one we examine here, and on applications which
implement different algorithms or exhibit different per-
formance characteristics. Similarly, although CAF has
only relatively recently been incorporated into the official
Fortran standard, earlier versions of the technology have
existed for some time. Consequently, a number of studies
have already examined the technology; again, these have
generally focused on different classes of applications, or
different hardware platforms, to those employed here.

The results from these studies have also varied signifi-
cantly, with some authors achieving significant speedups
by employing the CAF and hybrid constructs and others
presenting performance degradations. Substantially less
work exists which directly evaluates the MPI, hybrid and
CAF programming models when applied to the same
application. We are also unaware of any work which
has sought to directly compare the previous technolo-
gies to approaches based on OpenACC and CUDA for
implementing the hybrid programming model on systems
incorporating accelerator devices. Our work is motivated
by the need to further examine each of these program-
ming models, particularly when applied to Lagrangian-
Eulerian explicit hydrodynamics applications.

In previous work we reported on our experiences of
porting CloverLeaf to GPU-based architectures using
CUDA and OpenACC [4], [5]. Although we are not
aware of any existing work which has examined using
these technologies to scale this class of application to the
levels we examine here, Levesque et al. examine using
OpenACC at extreme scale for the S3D application [6].

One study that does directly evaluate the hybrid and CAF
based programming models at considerable scale is from
Preissl et al. [7]. They present work which demonstrates
a CAF-based implementation significantly outperforming
an equivalent MPI-based implementation on up to 131
thousand processor cores. However, their study exam-
ines a significantly different class of application, a 3D
Particle-In-Cell code simulating a Gyrokinetic Tokamak
system.

Additionally, Stone et al. were unable to improve the
performance of the MPI application on which their work
focused by using the CAF constructs, instead experi-
encing a significant performance degradation [8]. Their
work, however, focused on the CGPOP mini-application,
which represents the Parallel Ocean Program [9] from



Los Alamos National Laboratory.

Whilst the application examined by Lavallée et al. has
similarities to CloverLeaf, and their work compares
several hybrid approaches against a purely MPI based
approach [10], they focus on a different hardware plat-
form and do not examine either CAF- or OpenACC-
based approaches.

Studies such as [11]–[13] report performance degra-
dations when employing hybrid (MPI+OpenMP) based
approaches, whilst others experience improvements [14]–
[16]. In particular, Környei presents details on the hy-
bridisation of a combustion chamber simulation which
employs similar methods to CloverLeaf. However, the
application domain and the scales of the experiments are
significantly different to those in our study.

Drosinos et al. also present a comparison of several
hybrid parallelisation models (coarse- and fine-grained)
against the “flat” MPI approach [17]. Again, their work
focuses on a different class of application, at significantly
lower scales and on a different experimental platform to
our work.

Nakajima compares the hybrid programming model to
“flat” MPI for preconditioned iterative solver applications
within the linear elasticity problem space [18]. Whilst
the application domain; the scales of the experiments
(<512 PEs) and platform choice (T2K HPC architecture)
are again significantly different to ours, he does, as
we do, explore several techniques for improving the
performance of these applications.

Additionally, Adhianto et al. discuss their work on per-
formance modelling hybrid MPI+OpenMP applications
and its potential for optimising applications [19]. Li et
al. employ the hybrid approach in their work which
examines how to achieve more power-efficient imple-
mentations of particular benchmarks [20]. Henty also
provides a comparison between MPI and CAF using
several micro-benchmarks [21]. Various approaches and
optimisations for executing large-scale jobs on Cray
platforms are also examined by Yun et al. in [22].
Minimising communication operations within applica-
tions has also been recognised as a key approach for
improving the scalability and performance of scientific
applications [23].

III. BACKGROUND

In this section we provide details on the hydrodynamics
scheme employed in CloverLeaf, and an overview of the
programming models examined in this study.

node-centred
quantities

(e.g. velocity)

cell-centred
quantities

(e.g. pressure)

Fig. 1: The staggered grid used by CloverLeaf

A. Hydrodynamics Scheme

CloverLeaf uses a Lagrangian-Eulerian scheme to solve
Euler’s equations of compressible fluid dynamics in two
spatial dimensions. These are a system of three partial
differential equations which are mathematical statements
of the conservations of mass, energy and momentum. A
fourth auxiliary equation of state is used to close the
system; CloverLeaf uses the ideal gas equation of state.

The equations are solved on a staggered grid (see Figure
1) in which each cell centre stores the three quantities:
energy, density, and pressure; and each node stores a
velocity vector. An explicit finite-volume method is used
to solve the equations with second-order accuracy. The
system is hyperbolic meaning that the equations can be
solved using explicit numerical methods, without the
need to invert a matrix. Currently only single material
cells are simulated by CloverLeaf.

The solution is advanced forward in time repeatedly until
the desired end time is reached. Unlike the computational
grid, the solution in time is not staggered, with both the
vertex and cell data remaining at the same time level
by the end of each computational step. One iteration,
or timestep, of CloverLeaf proceeds as follows: (i) a
Lagrangian step advances the solution in time using
a predictor-corrector scheme, with the cells becoming
distorted as the nodes move due to the fluid flow; (ii) an
advection step restores the cells to their original positions
by moving the nodes back, and calculating the amount
of material that has passed through each cell. This is
accomplished using two sweeps, one in the horizontal
dimension and the other in the vertical.

The computational mesh is spatially decomposed and
distributed across processes within the application, in a
manner which attempts to minimise the communication
surface area between processes. Data that is required
for the various computational steps and is non-local to
a particular process is stored in outer layers of “halo”



cells within each process. Data exchanges occur mainly
between immediate neighbouring processes (vertically
and horizontally), within the decomposition. A global
reduction operation is required by the algorithm during
the calculation of the timestep value, which is calculated
once per iteration.

B. Programming Models

1) MPI: As cluster-based designs have become the pre-
dominant architecture for HPC systems, the Message
Passing Interface (MPI) has become the standard for de-
veloping parallel applications for these platforms. Stan-
dardised by the MPI Forum, the interface is implemented
as a parallel library alongside existing sequential pro-
gramming languages [24].

The technology is able to express both intra- and inter-
node parallelism. Current implementations generally use
optimised shared memory constructs for communication
within a node and explicit message passing for commu-
nication between nodes. Communications are generally
two-sided meaning that all ranks involved in the com-
munication need to collaborate in order to complete it.

2) CAF: Several CAF extensions have been incorporated
into the Fortran 2008 standard. The additions aim to
make parallelism a first class feature of the Fortran
language [25].

CAF continues to follow the SPMD language paradigm
with a program being split into a number of commu-
nicating processes known as images. Communications
are one-sided, with each process able to use a global
address space to access memory regions on other pro-
cesses, without involving the remote processes in the
communications. The “=” operator is overloaded for
local assignments and also for remote loads and stores.
Increasingly, off-image loads and stores are being viewed
as yet another level of the memory hierarchy [26].

Two forms of synchronisation are available within CAF.
The “sync all” construct provides a global synchroni-
sation capability. Whilst the “sync images” construct
provides functionality to locally synchronise a subset of
images. Collective operators have not yet been standard-
ised, although Cray have implemented their own versions
of several commonly used collectives.

3) OpenMP: OpenMP is an Application Program Inter-
face (API) and has become the de facto standard in
shared memory programming [27]. The technology is
supported by all the major compiler vendors and is based

on the use of a set of pragmas that can be added to source
code to express parallelism. The technology is based on
a fork-join model of concurrency. An OpenMP-enabled
compiler is able to use this additional information to
parallelise sections of the code.

Programs produced from this technology require a shared
memory-space to be addressable by all threads. Thus,
this technology is aimed primarily at implementing intra-
node parallelism. At present the technology only supports
CPU-based devices although proposals exist for the in-
clusion of additional directives to target accelerator based
devices such as GPUs [28].

4) CUDA: NVIDIA’s CUDA [29] is currently a well
established technology for enabling applications to utilise
NVIDIA GPU devices. CUDA employs an offload-based
programming model in which control code, executing on
a host CPU, launches parallel portions of an application
(kernels) on an attached GPU device.

CUDA kernels are functions written in a subset of the
C programming language, and are comprised of an array
of lightweight threads. Subsets of threads can cooperate
via shared memory which is local to a particular multi-
processor, however, there is no support for global syn-
chronisation between threads. This explicit programming
model requires applications to be restructured in order to
make the most efficient use of the GPU architecture and
thus take advantage of the massive parallelism inherent
in them. Constructing applications in this manner also
enables kernels to scale up or down to arbitrary sized
GPU devices.

CUDA is currently a proprietary standard controlled by
NVIDIA. Whilst this allows NVIDIA to enhance CUDA
quickly and thus enables programmers to harness new
hardware developments in NVIDIA’s latest GPU devices,
it does have application portability implications.

5) OpenACC: The OpenACC [30] Application Program
Interface is a high-level programming model based on the
use of pragmas. Driven by the Center for Application
Acceleration Readiness (CAAR) team at Oak Ridge
National Laboratory (ORNL) [31] and supported by
an initial group of three compiler vendors [32]–[34].
The aim of the technology is to enable developers to
add directives into their source code to specify how
portions of their applications should be parallelised and
off-loaded onto attached accelerator devices. Thus min-
imising the modifications required to existing codes and
easing programmability whilst also providing a portable,
open standards-based solution.



!$OMP PARALLEL
!$OMP DO PRIVATE ( v , p r e s s u r e b y e n e r g y , &

p r e s s u r e b y v o l u m e , s o u n d s p e e d s q u a r e d )
DO k = y min , y max

DO j = x min , x max

p ( j , k ) = (1 .4 −1 .0 )∗ d ( j , k )∗ e ( j , k )
pe = (1 .4 −1 .0 )∗ d ( j , k )
pv = −d ( j , k )∗ p ( j , k )
v = 1 . 0 / d ( j , k )
s s 2 = v∗v ∗ ( p ( j , k )∗ pe−pv )
s s ( j , k )=SQRT( s s 2 )

END DO
END DO

!$OMP END DO
!$OMP END PARALLEL

Fig. 2: CloverLeaf’s ideal_gas kernel

IV. IMPLEMENTATION

The two main steps of CloverLeaf are implemented
via fourteen individual kernels. In this instance, we use
kernel to refer to a small function which carries out one
specific aspect of the overall hydrodynamics algorithm.
Each kernel iterates over the staggered grid, updating
the appropriate quantities using the required stencil op-
eration. Figure 2 shows the Fortran code for one of
these kernels. The kernels contain no subroutine calls and
avoid using complex features like Fortran’s derived types,
making them ideal candidates for evaluating alternative
approaches such as OpenMP, CUDA or OpenACC.

Not all the kernels used by CloverLeaf are as simple
as the example in Figure 2. However, during the initial
development of the code, we engineered the algorithm
to ensure that all loop-level dependencies within the
kernels were eliminated. Most of the dependencies were
removed via small code rewrites: large loops were broken
into smaller parts, extra temporary storage was employed
where necessary, and branches inside loops were also
removed.

Each CloverLeaf kernel can have multiple implementa-
tions; both C and Fortran kernels have previously been
developed for the entire hydrodynamics scheme. The
design of CloverLeaf also enables the desired kernel to be
selected at runtime. This is managed by a driver routine
(see Figure 3), which also handles data communication
and I/O.

A. MPI, CAF & Hybrid Implementations

The MPI implementation is based on a block-structured
decomposition in which each process is responsible for
a rectangular region of the overall computational mesh.
These processes each maintain a halo of ghost cells

IF ( u s e f o r t r a n k e r n e l s ) THEN
CALL i d e a l g a s k e r n e l

ELSEIF ( u s e c k e r n e l s ) THEN
CALL i d e a l g a s k e r n e l c

ELSEIF ( u s e c u d a k e r n e l ) THEN
CALL i d e a l g a s k e r n e l c u d a

ENDIF

Fig. 3: Runtime selection for the ideal_gas kernel

around their particular region of the mesh, in which they
store data which is non-local to the particular process.
As in any block-structured, distributed MPI application,
there is a requirement for halo data to be exchanged
between MPI tasks.

Thirteen of CloverLeaf’s kernels perform only compu-
tational operations; communication operations reside in
the overall control code and a fourteenth kernel (up-
date halo). This kernel is called repeatedly throughout
each iteration of the application, and is responsible for
exchanging the halo data associated with one (or more)
data fields, as required by the hydrodynamics algorithm.

The decomposition employed by CloverLeaf attempts
to minimise communications by minimising the surface
area between MPI processes, whilst also assigning the
same number of cells to each process, ensuring good
computational load balancing. The depth of the halo
exchanges also varies during the course of each iteration
to further minimise data exchanges. Currently one MPI
message is used per data field in exchanges involving
multiple fields.

To reduce synchronisation, data is only exchanged when
required by the subsequent phase of the algorithm.
Consequently no MPI Barrier functions exist in the
hydrodynamics timestep. All halo exchange communi-
cations are performed by processes using MPI ISend
and MPI IRecv operations with their immediate neigh-
bours, first in the horizontal dimension and then in the
vertical dimension. MPI WaitAll operations are used to
provide local synchronisation between these data ex-
change phases. To provide global reduction functional-
ity between the MPI processes, the MPI Reduce and
MPI AllReduce operations are employed. These are used
for the calculation of the timestep value during each
iteration and for periodic intermediary results. The MPI
implementation therefore uses MPI constructs for both
intra- and inter-node communication between processes.

The CAF versions of CloverLeaf largely mirror the
implementation of the MPI version, except that the MPI



communication constructs are replaced with CAF equiv-
alents. The two-sided MPI communications are replaced
with one-sided asynchronous CAF “put” operations, in
which the CAF process responsible for the particular data
items writes them into the appropriate memory regions
of its neighbouring processes; no equivalent receive
operations are therefore required. One existing version
uses CAF constructs to exchange the communication
buffers which were previously used by the MPI im-
plementation. An alternative version, however, performs
the data exchanges directly between the data fields (2D-
arrays) stored within each process, using strided memory
operations were necessary. In both versions the top-level
Fortran type structure which contains all the data fields
and communication buffers, is declared as a Co-array.

CAF synchronisation constructs are employed to prevent
race conditions between the processes. To evaluate the
two synchronisation constructs available within CAF,
each version can be configured to use either the global
“sync all” construct or the more local “sync images”
construct between immediate neighbouring processes.
The selection between these constructs is controlled by
compile-time pre-processor directives.

The CAF versions examined here employ the proprietary
Cray collective operations to implement the global reduc-
tion operations. Although we have also developed hybrid
(CAF+MPI) alternatives which utilise MPI collectives,
in order to make these versions portable to other CAF
implementations. In this study, however, we only report
on the performance of the purely CAF-based versions
as we have not observed any noticeable performance
differences between the CAF and MPI collectives on the
Cray architecture.

The hybrid version of CloverLeaf combines both the MPI
and OpenMP programming models. This is effectively
an evolution of the MPI version of the code in which
the intra-node parallelism is provided by OpenMP, and
inter-node communication provided by MPI. The number
of MPI processes per node and the number of OpenMP
threads per MPI process can be varied to achieve this and
to suite different machine architectures. This approach
reduces the amount of halo-cell data stored per node as
this is only required for communications between the
“top-level” MPI processes, not the OpenMP threads.

To implement this version, OpenMP parallel constructs
were added around the loop blocks within CloverLeaf’s
fourteen kernels to parallelise them over the available
OpenMP threads. The data-parallel structure of the loop

blocks within the CloverLeaf kernels is very amenable
to this style of parallelism. Figure 2 shows how this was
achieved for the ideal gas kernel. Private constructs were
specified where necessary to create temporary variables
that are unique to each thread. OpenMP reduction prim-
itives were used to implement the intra-node reduction
operations required by CloverLeaf.

B. OpenACC & CUDA Implementations

The OpenACC and CUDA versions of CloverLeaf are
both based on the MPI version of the code, and use
MPI for distributed parallelism. Although both versions
execute on the CPUs within each node, only the GPU
devices are used for computational work. The host CPUs
are employed to coordinate the computation, launching
kernels onto the attached GPU device, and for controlling
MPI communications between nodes. Data transfers be-
tween the host processors and the accelerators are kept to
a minimum and both the OpenACC and CUDA versions
are fully resident on the GPU device.

In order to convert each kernel to OpenACC, loop-level
pragmas were added to specify how the loops should
be executed on the GPU, and to describe their data
dependencies. Fully residency was achieved by applying
OpenACC data “copy” clauses at the start of the pro-
gram, which results in a one-off initial data transfer to
the device. The computational kernels exist at the lowest
level within the application’s call-tree and we employ
the OpenACC “present” clause to indicate that all input
data is already available on the device. Immediately
before halo communications, data is transferred from
the accelerator to the host using the OpenACC “update
host” clause. Following the MPI communication the
updated data is transferred back from the host to its local
accelerator using the OpenACC “update device” clause.
The explicit data packing (for sending) and unpacking
(for receiving) of the communication buffers is carried
out on the GPU for maximum performance.

Integrating CloverLeaf’s Fortran codebase directly with
CUDA’s C bindings is difficult. A global class was
written to handle interoperability between the Fortran
and CUDA codebases and to coordinate the data transfers
with, and computation on, the GPU devices. Full device
residency is achieved by creating and initialising all data
items on the device, and allowing these to reside on the
GPU throughout the execution of the program. Data is
only copied back to the host when required for MPI
communications and in order to write out visualisation
files.



In order to create the CUDA implementation, we wrote
a new CUDA version of each of CloverLeaf’s kernels.
The implementation of each was split into two parts:
(i) a C-based routine which executes on the host CPU
and sets up the actual CUDA kernel(s); and (ii) a
CUDA kernel that performs the required mathematical
operations on the GPUs. Each loop block within the
original C kernels was converted to an individual CUDA
kernel, which typical resulted in numerous device-side
kernels being developed to implement one original host-
side kernel. This approach enabled us to keep the vast
majority of the control code within the host-side C based
routines and thus ensure that branching operations are
always performed on the host instead of the attached
GPU. This ensures that the device-side kernels avoid
stalls and maintain a high level of performance. Intra-
node reduction operations were implemented using the
Thrust library in CUDA, and using the built-in reduction
primitive in OpenACC.

C. Optimisations

This section outlines the techniques we examined to
improve the communication behaviour of CloverLeaf,
our focus was therefore on the halo-exchange routine.
This is executed several times during each iteration of the
application and performs halo-exchanges of processes’
boundary cells with neighbouring processes. At each
halo-exchange the boundary cells of multiple fields (2D-
arrays each representing a particular physical property
e.g. density) can be exchanged, at varying halo depths
(1, 2. . . etc cells), depending on the requirements of the
algorithm at that stage of its computation.

In the reference version of CloverLeaf the halo-exchange
routine employs an approach which exchanges the
boundary cells from the required fields, one field at a
time. The algorithm first conducts an exchange between
processes in the horizontal dimension, then after this
is completed it repeats the exchange in the vertical
dimension. After the vertical exchange is completed the
algorithm repeats the entire process for the next field
which requires boundary cells to be exchanged. Figure 4
documents this process in pseudo code.

We initially, were possible, used each of the techniques
listed below in isolation to implement alternative versions
of CloverLeaf, additionally we also combined several of
these techniques to produce further versions of the appli-
cation. The alternative versions which we implemented
are presented in Section V where their performance is

DO f o r a l l f i e l d s r e q u i r i n g boundary exchange

IF ( p r o c e s s has a l e f t n e i g h b o u r )
Pack l e f t MPI send b u f f e r
CALL MPI ISEND / MPI IRECV t o t h e l e f t

ENDIF
IF ( p r o c e s s has a r i g h t n e i g h b o u r )

Pack r i g h t MPI send b u f f e r
CALL MPI ISEND / MPI IRECV t o t h e r i g h t

ENDIF

CALL MPI WAITALL
Unpack l e f t & r i g h t r e c e i v e b u f f e r s

IF ( p r o c e s s has a bot tom n e i g h b o u r )
Pack bot tom MPI send b u f f e r
CALL MPI ISEND / MPI IRECV downwards

ENDIF
IF ( p r o c e s s has a t o p n e i g h b o u r )

Pack t o p MPI send b u f f e r
CALL MPI ISEND / MPI IRECV upwards

ENDIF

CALL MPI WAITALL
Unpack bot tom & t o p r e c e i v e b u f f e r s

ENDDO

Fig. 4: CloverLeaf’s halo exchange routine

analysed using a standard benchmark problem from the
CloverLeaf suite.

1) MPI rank reordering: By default on Cray systems
(Mpich Rank Reorder Method=1) cores within a job
allocation are numbered consecutively within a node
and this numbering continues on subsequent nodes, the
number of a core corresponds to the MPI rank which will
ultimately be executed on it. Within CloverLeaf chunks
of the 2D-computational mesh are assigned to MPI ranks
by traversing the mesh first in the x-dimension starting
in the lower left corner of the mesh. Once one row
of chunks has been completely assigned the allocation
process restarts from the chunk on the left-hand side
of the mesh which is one row up in the y-dimension
from the previous row, and again proceeds along the
x-dimension. The allocation process continues until all
chunks of the mesh have been completely assigned.

This results in a chunk-to-node mapping with does not
reflect the 2D nature of the overall problem and therefore
is unable to take full advantage of the physical locality
inherent in it. For jobs of above 16 processes, for
example, communications in the y-dimension are all off-
node and each process has a maximum of 2 neighbouring
processes on its local node. A disproportional number
of chunks are therefore co-located on nodes which are
not physically close within the computational mesh. To
improve this situation we implemented an alternative
mapping strategy which better reflects the 2D communi-



(a) Original strategy (b) Improved strategy

MPI ranks on node 0

Node boundaries

Problem chunk boundaries

Fig. 5: MPI rank reordering strategy.

cation pattern inherent in the problem and attempts to
increase on-node communications whilst reducing off-
node communications. Our re-ordering approach assigns
blocks of 4×4 chunks to each node, again starting in the
lower left corner of the mesh.

We selected this blocking size as we generally use
the nodes of Cray systems (which contain the AMD
Interlagos processor) in a half-packed manner which
results in 16 processes per node. Figure 5 shows chunk-
to-node mappings for a 256 process allocation using the
original and modified mapping strategies. This results
in each 4×4 block (i.e. 1 node) having a maximum
of 16 off-node neighbours compared to a maximum of
34 neighbours when the original mapping approach was
employed.

2) One synchronisation per direction: The approach
employed in the reference implementation of the halo-
exchange routine results in two MPI Waitall statements
being executed for each field whose boundary cells need
to be exchanged. This results in multiple synchronisa-
tions occurring between the communicating processes
(two for each field) when boundary cells from multiple
fields need to be exchanged during one invocation of the
halo-exchange routine. These additional synchronisations
are unnecessary as the boundary exchanges for each field
are independent within each dimension (horizontal and
vertical). It is therefore possible to restructure the halo-
exchange routine to perform the horizontal boundary
exchanges for all fields simultaneously, followed by
only one synchronisation and then repeat this in the
vertical dimension. This approach results in no more
than two synchronisation operations per invocation of
the halo-exchange routine whilst retaining the one MPI
call/message per field approach.

3) Message Aggregation: The reference implementation
of the halo-exchange routine utilises shared communica-

tion buffers, one for each direction within the 2D-space.
This approach works as the boundary cells of only one
field are exchanged simultaneously and therefore the MPI
buffers can subsequently be reused by multiple fields.
Buffer sharing is not possible when fields are exchanged
simultaneously and each therefore requires its own MPI
communication buffers one for each direction.

Message aggregation aims to reduce the number of
MPI send/receive calls and also the number of MPI
communication buffers by aggregating messages which
would previously have used separate buffers into fewer
but larger buffers. We applied this technique to the
versions of CloverLeaf which send multiple messages
simultaneously in each direction by aggregating all the
messages into larger buffers (one for each communica-
tion direction). This has the effect of reducing the number
of MPI send and receive calls to one per direction.

4) Pre-posting MPI receives: Previous studies have
shown performance benefits from pre-posting MPI re-
ceive calls before the corresponding send calls [35]. In
the reference halo-exchange implementation routine all
MPI send calls are executed before their corresponding
receive calls. We therefore applied this technique to
CloverLeaf and created several versions which pre-post
their MPI receive calls as early as possible. For most
versions it was possible to completely remove the MPI
receive calls from the halo-exchange routine and execute
them before the computation kernel which immediately
precedes the call to halo-exchange. Thus ensuring that a
sufficient amount of computation occurs between each
pre-posted MPI receive call and the execution of its
corresponding send call.

5) Diagonal Communications: CloverLeaf’s reference
halo-exchange routine requires the horizontal commu-
nications between processes to be completed before the
vertical communications in order to achieve an implicit



diagonal communication between processes which are
diagonal neighbours. It therefore enforces an explicit
synchronisation between the horizontal and vertical com-
munications. The requirement for this synchronisation
could be removed if explicit diagonal communications
were implemented between processes. This approach
requires additional MPI buffers for the diagonal commu-
nications and additional MPI communication operations
(sends and receives) to be initiated between processes.
However, it removes the requirement for the explicit
synchronisation between the horizontal and vertical com-
munication phases and thus enables all communications
to occur simultaneously in all directions, with only one
synchronisation at the end of the halo-exchange routine.

6) CAF One-sided Gets: The existing CAF based im-
plementations of CloverLeaf each utilise CAF one-
sided “put” operations within the halo-exchange routine
to communicate data items from the host process to
its neighbouring processes. Other studies have shown
that CAF one-sided “get” operations can actually de-
liver a performance improvement over their push-based
equivalents. We therefore reimplemented the CAF-based
buffer exchange version of CloverLeaf to utilise one-
sided “get” operations whilst retaining the same overall
approaches described in Section IV-A.

7) Sequential Memory plus MPI Datatypes: To evalu-
ate the utility of: i) MPI’s Derived Datatypes and ii)
the technique of removing MPI communication buffers
when data items are already stored contiguously; for
improving the performance of the communication op-
erations within CloverLeaf, we evaluated these optimi-
sations within several versions of the mini-application.
We removed all communication buffers which were
used for communicating data items which were already
stored contiguously in memory and instead employed
MPI communication operations directly on the 2D-arrays
within CloverLeaf. In situations in which data items were
stored non-contiguously (i.e. with a stride) we utilised
MPI Type vector Datatypes to communicate these val-
ues. These techniques enabled us to avoid having to
explicitly allocate and pack MPI communication buffers
within the code.

8) Actively checking for message arrivals: In the original
implementation of CloverLeaf MPI WaitAll operations
are employed to provide synchronisation and thus prevent
the computation from proceeding until all preceding
communication operations are complete. In theory this
may result in processes stalling whilst they wait for

Cells required
for communication.

Fig. 6: Cell calculation order for comms/comp overlap

messages to be received or sent, when in fact they
could be operating on (e.g. unpacking) messages which
have already been received. This problem becomes more
pronounced in subsequent versions of CloverLeaf which
communicate large numbers of messages simultaneously.
To address this issue we utilised MPI TestAny operations
to replace the previous MPI WaitAll operations. This
enables the mini-application to continuously check for
the arrival of messages and upon receipt of a message
immediately call the corresponding unpack routine to
deal with the message. It was only possible to apply this
optimisation to versions of the mini-application which do
not utilise the “sequential memory plus MPI Datatypes”
techniques identified in Section IV-C7.

9) Overlapping Communication and Computation: The
reference implementation of CloverLeaf employs the
Bulk Synchronous Parallel (BSP) model in which com-
putation and communication phases are separated. In
CloverLeaf the communication phase of the BSP model
is implemented by the halo-exchange routine. Existing
studies have shown that overlapping communication and
computation can deliver performance and scalability
improvements by enabling applications to utilise the
hardware resources of HPC systems in a less “bursty”
manner. The data-parallel nature of the computational
kernels within CloverLeaf enable us to reorder the loop
iterations within the kernels, which immediately precede
communication events. This allows the outer halo of cells
(which need to be communicated) to be computed first
before the inner region of cells, which are only required
on the host process. Figure 6 depicts this arrangement.

To create versions of CloverLeaf which overlap computa-
tion and communication operations we brought the MPI
calls inside the computational kernels which immediately
precede the particular communication events. Then once
the outer halo of cells have been computed we employ
non-blocking MPI calls to initiate the data transfers to the
appropriate neighbouring processes. Whilst these trans-
fers are taking place the computational kernel completes
the remaining calculations to update the inner region of



Titan HECToR

Cray Model XK7 XE6
Cabinets 200 30
Peak 20+ PF 800+ TF
Processor AMD Opteron 6274 AMD Opteron 6276
Proc Clock Speed 2.2 GHz 2.3 GHz
GPU NVIDIA K20x N/A
Compute Nodes 18,688 2,816
CPUs/Node 1 2
GPUs/Node 1 0
Total CPUs 18,688 5,632
Total GPUs 18,688 0
CPU Memory/Node 32GB 32 GB
GPU Memory/Node 6GB N/A
Interconnect Gemini Gemini
Compilers Cray CCE v8.1.2 Cray CCE v8.1.2
MPI Cray MPT v5.5.4 Cray MPT v5.6.1
CUDA CUDA Toolkit v5.0.35 N/A

TABLE I: Summary of Titan & HECToR platforms

cells, with these computations being fully overlapped
with communication operations. This approach relies
on diagonal communication operations as described in
Section IV-C5.

V. RESULTS

To assess the current performance of the CloverLeaf
mini-application and the success of our optimisations
we conducted a series of experiments using two Cray
platforms with different architectures, Titan and HEC-
ToR. The hardware and software configuration of these
machines is detailed in Table I.

In our experiments CloverLeaf was configured to simu-
late the effects of a small, high-density region of ideal gas
expanding into a larger, low-density region of the same
gas, causing a shock-front to form. The configuration can
be altered by increasing the number of cells used in the
computational mesh. This increase in mesh resolution
increases both the runtime and memory usage of the
simulation. In this study we focused on two different
problem configurations from the standard CloverLeaf
benchmarking suite. We used the 38402-cell problem
executed for 87 timesteps to examine the weak scaling
performance of CloverLeaf on the two Cray machine
architectures available to us, using several alternative
programming models; the results of these experiments
are detailed in Section V-A. Additionally we also used
the 153602-cell problem executed for 2955 timesteps,
strong-scaled to large processor counts, to analyse the
success of each of our communication-focused optimi-
sations; the results of these experiments are analysed in
Section V-B.

Abbreviation Description

RR MPI Rank reordering
MA Message Aggregation
MF One synchronisation per direction
DC Diagonal Communications
PP Pre-posting MPI receives
O Comms-Comp Overlap
TU Actively checking for messages
SM&DT Sequential Memory plus MPI Datatypes

TABLE II: Optimisation Abbreviations

A. Weak-Scaling Experiments

We evaluated the performance of CloverLeaf on both the
“standard” CPU-based Cray XE6 architecture (HECToR)
and the hybrid (CPU+GPU) Cray XK7 architecture of
Titan. The aim of these experiments was to assess the
suitability of each of these architectures for executing
the hydrodynamics applications CloverLeaf represents.
Additionally we sought to evaluate the performance
of two candidate programming models for GPU-based
architectures: MPI+OpenACC and MPI+CUDA.

We conducted experiments on a range of job sizes from
1 node up to the maximum job size on both machines
(2048 and 16384 nodes respectively for HECToR and
Titan). In all cases we compared the total application
wall-time for the particular architecture and program-
ming model combination, Figure 7 shows the results of
these experiments.

The data in Figure 7 demonstrate that under a weak-
scaling experimental scenario the scalability of Clover-
Leaf is already impressive. With the overall wall-time
increasing by only 2.52s (4.2%) on HECToR between
the 1 and 2048 node experiments and by only 4.99s
(16.7%) and 4.12s (27.2%) for the MPI+OpenACC and
MPI+CUDA versions respectively, as the application is
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Fig. 7: The 38402 cell/node problem weak scaled
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Fig. 8: Performance of CAF and Hybrid versions relative to the reference MPI implementation
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Fig. 9: Relative performance of the Message Aggregation, Multi-fields, Diagonal Comms & Pre-posting optimisations
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Fig. 10: Relative performance of the Computation-Communication Overlap optimisation
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scaled from 1 up to 16384 nodes on Titan.

Figure 7 also shows that the hybrid GPU-based XK7
architecture of Titan is able to outperform the CPU-
based XE6 architecture of HECToR consistently by over
2× on average under the OpenACC programming model
and 3.7× on average when the CUDA programming
model is employed. This demonstrates the utility of the
GPU-based architecture for accelerating this class of
application especially as in the Titan experiments only
the GPU devices are used for computational work. Addi-
tionally the Titan experiments show that the MPI+CUDA
programming model outperforms the MPI+OpenACC
model consistently by 1.8× as the size of the experiments
are increased from 1 up to 16384 nodes.

B. Strong-Scaling Experiments

To assess the performance of the various programming
models used to implement CloverLeaf and the success
of our communication-focused optimisations (discussed
in Section IV-C) at scale. We conducted a series of
strong-scaling experiments, on the HECToR platform,
using the 153602 cell problem from the CloverLeaf
benchmarking suite. For each job size examined we
executed all versions of CloverLeaf within the same node
allocation to eliminate any performance effects due to
different topology allocations from the batch system.

We again compared the overall wall-times of each ver-
sion but present our results in terms of the relative
performance (expressed as a %) of each particular ver-
sion against a reference version, typically the original
MPI implementation unless otherwise stated. Figures 8
to 11 contain the results of these experiments, for brevity
we omit the results from jobs below 64 nodes. The
mappings between the abbreviations used in these figures
and the actual optimisations to which they correspond,
are documented in Table II. Unfortunately, due to time
constraints it has only been possible to conduct one run
of each of these additional versions. However we feel
that the longer running test problem employed in these
experiments (2955 timesteps) limits the sensitivity of
our results to system noise and other similar distorting
effects. We leave the undertaking of these additional
experiments to future work.

Figure 8 presents a comparison of the relative perfor-
mance of the hybrid (MPI+OpenMP) version of Clover-
Leaf against the reference MPI implementation. This
shows that overall the performance of both versions
is broadly similarly up until 256 nodes, although the

MPI version slightly outperforming the hybrid version
by <1%. Beyond 256 nodes, however, the hybrid ver-
sion starts to significantly outperform the “flat” MPI
version delivering performance improvements of 15.6%
and 29.4% respectively at 512 and 1024 nodes. In our
experiments the hybrid version was executed with 4 MPI
tasks/node (1 per NUMA region) and 4 OpenMP threads
per task.

We also compared the relative performance of the various
CAF versions of CloverLeaf as well as the most perfor-
mant CAF implementation, at each job size, against the
reference MPI implementation (Figure 8). This analysis
demonstrates that for the CAF versions the buffer ex-
change based strategy significantly outperforms its array-
section based equivalent, with the performance disparity
increasing as the scales of the experiments are increased,
reaching 81% at 1024 nodes. Similarly the effect on per-
formance of employing local synchronisation as opposed
to global synchronisation also increases at scale, ranging
from only 3% at 64 nodes to a 36% improvement at 1024
nodes. The effect of our CAF “gets”-based optimisation
does initially deliver a modest performance improvement.
However, at 1024 nodes the original “puts”-based im-
plementation outperforms it by 6.7%. We speculate that
this is due to the smaller messages exchanged at this
job size and that “gets” are more suited to the larger
message sizes exchanged at lower node counts. Overall
no CAF implementation was able to improve on the
performance of the reference MPI implementation, with
the performance disparity increasing significantly as the
scales of the experiments were increased, reaching 18%
at 1024 nodes.

The results from our experiments with the
communication-focused optimisations to the reference
MPI implementation demonstrate the importance of
selecting a process to network topology mapping
which reflects the underlying communication pattern
or physical geometry of an application. Figure 11
documents that the success of our MPI rank reordering
optimisation increases as the scales of the experiments
are increased, reaching a 4.1% relative improvement at
1024 nodes.

Of the other optimisations which we analysed the “mes-
sage aggregation” technique proved to be the most suc-
cessful, improving performance consistently by over 6%
in the experiments which employed this technique in
isolation (Figure 9). We speculate that this may also be
a cause of a significant amount of the speedup which the



hybrid version was able to achieve at large scale. This
also exchanges fewer, larger, messages as a consequence
of the coarser decomposition which it employs at the
MPI level, however, we leave the confirmation of this
hypothesis to future work.

Interestingly our analysis (Figure 9) shows that in both
isolation and combination the “one synchronisation per
direction” and “diagonal communications” techniques
both had a detrimental affect on performance, con-
sistently decreasing performance as the scales of the
experiments were increased, reaching -4.5%, -7% and
-6.9% respectively at 1024 nodes. Employing the “di-
agonal communication” technique in combination with
the “message aggregation” technique also eliminated any
performance gains, reducing performance to an almost
identical level to the reference MPI implementation at
1024 nodes (Figure 9).

Additionally we conducted several experiments to anal-
yse the success of our computation-communication over-
lapping technique. Figure 10 presents these results to-
gether with equivalent versions that do not employ this
potential optimisation. Unfortunately rather than improv-
ing performance this technique consistently degraded
performance. With the relative performance of both
versions worsening as the scales of the experiments
were increased, reaching -12% and -5% at 1024 nodes.
At this job size both versions were approximately 5%
slower than their equivalent version which did not em-
ploy the overlap technique. We speculate here that this
performance degradation is due to the cache “unfriendly”
nature of the memory access pattern which this tech-
niques almost certainly causes, however we leave a more
detailed analysis of this result to future work.

Furthermore Figures 9 and 11 demonstrate that in our ex-
periments the “pre-posting” optimisation did not deliver
a significant affect on overall performance as the ver-
sions which employed this technique performed almost
identically when compared to equivalent versions which
did not. Similarly the use of the “active checking for
message arrivals” technique and the combined “sequen-
tial memory and MPI Datatypes” optimisation also had
only minor affects on performance, slightly degrading
relative performance on job sizes of ≥512 nodes, whilst
delivering minor performance improvements on job sizes
<512 nodes (Figure 11).

VI. CONCLUSIONS

As we approach the era of exascale computing improving
the scalability of applications will become increasingly
important in enabling applications to effectively harness
the parallelism available in future architectures and thus
achieve the required levels of performance. Similarly,
developing hybrid applications which are able to ef-
fectively harness the computational power available in
attached accelerator devices such as GPUs will also
become increasingly important.

The results presented here demonstrate the computational
advantage which utilising GPU-based architectures such
as Titan (XK7) can have over purely CPU-based al-
ternatives such as HECToR (XE6). As the GPU-based
architecture is able to consistently outperform the CPU-
based architecture by as much as 3.7× in the weak-
scaling experiments we conducted. Similarly, we have
also shown an OpenACC based approach can deliver
significant performance advantages on GPU-based archi-
tectures, consistently delivering 2× better performance
when compared to the CPU-based equivalents with min-
imal additional programming effort compared to alterna-
tive approaches such as CUDA. However, a CUDA based
approach is still required to achieve the greatest speedup
from the GPU-based architecture, consistently delivering
1.8× the performance of the OpenACC based approach
in our experiments.

Furthermore our strong scaling experiments demonstrate
the utility of the hybrid (MPI+OpenMP) programming
model. In our experiments the performance of both the
hybrid and “flat” MPI implementations was broadly simi-
lar at scales <512 nodes. Beyond this point, however, the
hybrid implementation delivers significant performance
improvements reaching 29.4% at 1024 nodes.

Our experiments demonstrate the importance of selecting
a process-to-node mapping which accurately matches
the communication pattern inherent in the application,
particularly at scale. Of the communication focused
optimisations which we analysed as part of this work
the “message aggregation” technique delivered the most
significant performance improvement, with its effects
again being more pronounced at large scale.

Surprisingly our “diagonal communications“, “one
synchronisation per direction” and “communication-
computation overlapping” optimisations actually had a
detrimental effect on performance. Whilst we did not
observe any significant effects on performance from
employing the “pre-posting”, “actively checking for



message arrivals” and “sequential memory plus MPI
Datatypes” optimisations.

The CAF-based implementations were not able to match
the performance of the reference MPI implementation.
Additionally, particularly at scale, we observed signifi-
cant performance differences between the various CAF
implementations, which have important implications for
how these constructs should be employed.

Overall, we feel that MPI is still the most likely candi-
date programming model for delivering inter-node paral-
lelism going forward towards the exascale era. Although
technologies such as CAF show promise they are not
yet able—at least in our experiments—to match the
performance of MPI. Hybrid programming approaches
primarily based on OpenMP will also become increas-
ingly important and can, as this work has shown, de-
liver significant performance advantages at scale. We
also feel that utilising, in some form, the computa-
tional power available through the parallelism inherent
in current accelerator devices will be crucial in reaching
exascale levels of performance. However a performant
open standards based approach will be vital in order
for large applications to be successfully ported to future
architectures. In this regard OpenACC shows promise,
however, we eagerly await the inclusion of accelerator
directives into OpenMP implementations.

In future work, using CloverLeaf, we plan to integrate
some of our communications focused optimisations with
the GPU targeted versions of the code (e.g. CUDA and
OpenACC). With the aim of assessing whether, together
with technologies such as NVIDIA’s GPUDirect, these
optimisations can deliver performance benefits on GPU
based architectures such as the XK7.

We also plan to improve and generalise our MPI rank
remapping work and build this into an external applica-
tion which can be employed prior to the execution of the
main application to optimise the rank-to-topology map-
ping within a given node allocation. Exploring alternative
rank-to-topology mappings may also deliver performance
benefits e.g. increasing the number of network hops be-
tween neighbouring processing may effectively increase
the bandwidth available to each process by increasing the
number of communication paths available to them. This
may present an interesting trade-off against the increased
communication latency in such an arrangement.

To determine whether our hypotheses are correct, re-
garding the causes of the performance disparities pre-
sented here, we plan to conduct additional experiments

to produce detailed profiles of the various implemen-
tations. Furthermore, we also plan to investigate the
Neighbourhood Collectives which have been standard-
ised with MPI v3.0 and additional programming models
such as SHMEM. As well as investigating alternative
data structures to potentially alleviate the memory access
pattern problems associated with the communication-
computation overlap techniques employed here.
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