
Accelerate 
application 
modernization 
for serverless, containers, and microservices-based 
architectures with persistent and shared data

1

Application
modernization »

2

Expand possibilities 
with persistent and 

shared data »

3

The solution »

4

Executive summary »



Speed up time to market, increase innovation, improve reliability and TCO, and use the 
right tool for each workload

A modern application represents a combination of modern technologies, architectures, software delivery practices, 
and operational processes that leads teams to deliver value faster, more frequently, and more consistently. Modern 
applications take advantage of distributed technologies and focus on agile, event-driven serverless components that 
allow teams to offload undifferentiated heavy lifting, such as provisioning and managing compute infrastructure. This 
enables them to spend more time on delivering value for their customers. 

Organizations are modernizing applications with microservices, serverless, and containerized applications to respond 
to customers’ needs and scale to millions of users. It removes infrastructure management, helping you to implement 
more agile processes and adopt a DevOps culture. In turn, these enable you to deliver applications and features faster 
and continuously improve customer experiences. 

1  |  Application modernization

Serverless »

AWS Lambda »

Containers »

Data »

Next »»Prev

2



Why serverless?

Application Modernization Serverless Next »»Prev

Organizations want their development teams to focus on 
innovation and move with speed. Yet, most time is spent on 
operations and maintenance. 

A serverless strategy is based on the following tenets: no server 
management, pay-for-value services, nearly continuous scaling, 
and built-in fault tolerance. When adopting a serverless service or 
building a serverless architecture, these ideals are fundamental to 
application development strategy. AWS helps you build and iterate 
faster by taking best practices and building them into our services, 
so you have less and less to manage over time. We design them to 
be as simple to use and control as possible—so you can focus more 
on serving your customers.

Determining the TCO of serverless compared  
to server-based approaches

Serverless technologies provide the opportunity for faster 
time to market by dynamically and automatically allocating 
compute and memory based on user requests. They also 
provide cost savings through hands-off infrastructure 
management, which enables companies to redirect IT budget 
and human capital from operations to innovation. It’s no 
wonder that demand for serverless is on the rise.

Learn why running your applications through serverless is 
significantly cheaper compared to server-based approaches.

Read the whitepaper »

AWS Lambda

Containers Data

3

CASE STUDY

https://pages.awscloud.com/GLOBAL-ln-GC-300-deloitte-tco-serverless-whitepaper-2021-learn.html


AWS Lambda 

Application Modernization Serverless Next »»Prev

Let’s look at one of our key serverless compute services: AWS 
Lambda. It’s one of the first services adopted when starting a 
modernization journey. AWS Lambda is a serverless compute 
service that lets you run code without provisioning or managing 
servers, creating workload-aware cluster scaling logic, maintaining 
event integrations, and managing runtimes. With AWS Lambda, 
you can run code for virtually any type of application or backend 
service—all with zero administration. 

Just upload your code as a .zip file or container image, and AWS 
Lambda automatically and precisely allocates compute execution 
power and runs your code based on the incoming request or event 
for any scale of traffic. You can set up your code to automatically 
trigger from over 200 AWS services and SaaS applications or call it 
directly from any web or mobile app. You can write AWS Lambda 
functions in your favorite language (Node.js, Python, Go, Java, and 
more) and use both serverless and container tools, such as AWS 
Serverless Application Model (SAM) or Docker CLI, to build, test, 
and deploy your functions.

Containers Data

AWS Lambda

Asurion builds on-demand ML, using AWS 
Lambda and Amazon Elastic File System  
(Amazon EFS) 

Asurion is a leading provider of device insurance, warranty, 
and support service, and its experts can repair, replace, and 
resolve nearly any consumer tech issue. Asurion used an 
array of AWS technologies and performed real-time analysis 
of customer experiences during support calls using ML on 
AWS Lambda but struggled with fitting those call recordings 
in the AWS Lambda /tmp space. Asurion solved the issue 
by using Amazon EFS to give extended storage space to its 
ML functions running in AWS Lambda. Now, Asurion’s ML 
inference infrastructure scales elastically with call volume, 
and the company has reduced operational overhead as 
compared to maintaining instances and auto scaling.

Watch the AWS re:Invent session »

CASE STUDY

“We really wanted to use AWS 

Lambda to make our ML inference 

elastic but thought we wouldn’t be 

able to because of the size of data 

the process required. With Amazon 

EFS, we were easily able to give  

our function all of the storage 

space it needed.” 

Jeff Tougas,  
Former Senior Principal Software Engineer, 

Asurion

4

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/efs/
https://www.youtube.com/watch?v=Se7JPIHWgTU


Evolving containers 
with persistent data

Application Modernization Serverless

Containerizing your applications provides a predictable and simple 
way to create, package, and deploy software across different 
computing environments. 

When an application running in a container is terminated, 
associated data becomes inaccessible by the application. While this 
is fine for a stateless application—one that neither reads nor stores 
information about its state from one time to the next—stateful 
applications are different. A stateful application can remember 
some things about its state each time it runs.

Containerizing applications that require state means connecting to 
persistent storage. These applications may also need to share data 
among concurrent instances of a single-scale-out application or 
among multiple applications. Persistent, shared file storage enables 
containerizing stateful workloads like ML models and DevOps 
workloads such as GitLab, Jenkins, and Elasticsearch. 

Containers Data

AWS Lambda

Acquia modernizes web hosting with Amazon 
Elastic Kubernetes Service (Amazon EKS) and 
Amazon EFS 

Acquia’s software and services are built around Drupal to 
give enterprise companies the ability to build, operate, 
and optimize websites, applications, and other digital 
experiences. Acquia is continuously seeking to improve its 
web hosting environment to enhance customer experience 
while operating as efficiently as possible. By containerizing 
and running its hosting application on Amazon EKS and 
using Amazon EFS for persistent storage, Acquia was able 
to dynamically scale its customer environments. Acquia 
lowered its TCO through improved storage and compute 
utilization and further reduced administrative burden by 
leveraging fully managed services from AWS.

Watch the AWS re:Invent session »

CASE STUDY

“By containerizing our hosting 

applications and running them 

on Amazon EKS and Amazon 

EFS, we have improved our 

customer experience while 

considerably reducing our 

infrastructure and operational 

maintenance overhead.” 

Jake Farrell,  
Senior Director of Engineering,  

Acquia

5

Next »»Prev

https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://www.youtube.com/watch?v=wO9CxU17ckE


Advancing modern 
applications with data

Application Modernization

Data case logo  
and image

Links out »

Data case study subhead 
reritam repreic

Verit, sedis ra intotaspedi sequatenis mo et 
est di volupta tesequam estota quam velit 
omnis aut ut aut que mos miniti int, cus 
quae earcillab iust et, quia escimpori omni 
coreperchil est is apicabores netus as ditaturia 
dolore sequo moditis simi, consed quam, 
voluptatur? Quide dolum fugia que nosam 
untoris debitias .

Serverless Containers Data

AWS Lambda

Simplify persistent storage for  
modern applications  

As modern organizations leverage more microservices and 
containerized applications, the need for persistent storage 
for containers becomes increasingly critical. This whitepaper 
looks at the evolution of containers—from ephemeral to 
persistent—and discusses ways for developers and DevOps 
teams to utilize scalable, performant, and economical 
storage solutions from AWS for traditionally provisioned 
and serverless containers across geographies worldwide.

Read the whitepaper Persistent File Storage for Modern 

Applications »

CASE STUDY

Modern, data-intensive applications require fast access to large 
volumes of shared data. Because containers are transient in nature, 
long-running applications can benefit from keeping state in durable 
storage. Distributed applications, like ML training, web serving, and 
content management systems, benefit from persistent storage in a 
shared storage layer. 

AWS Lambda lets you run large-scale and mission-critical 
serverless applications. Amazon EFS provides highly available and 
durable serverless storage for those applications and simplifies 
the sharing of data that needs to persist beyond and between 
executions of AWS Lambda functions and AWS Fargate tasks. 
This powerful combination is ideal for building ML applications, 
loading large models, libraries, and other reference data, processing 
and backing up large amounts of data, hosting web content, and 
developing internal build systems.

6

Next »»Prev

https://pages.awscloud.com/Storage_PSFMA_Whitepaper.html
https://pages.awscloud.com/Storage_PSFMA_Whitepaper.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/efs/
https://aws.amazon.com/fargate/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&fargate-blogs.sort-by=item.additionalFields.createdDate&fargate-blogs.sort-order=desc


Next »»Prev

Persistent and shared data use cases for 
application modernization 

Modernize application development 
Modern, distributed applications, like ML training and 
stateful microservices, benefit from a shared storage layer. 
Amazon Elastic File System (Amazon EFS) enables you to 
build modern applications and persist and share data from 
your AWS containers and serverless applications—with zero 
management required. With Amazon EFS, you can focus on 
your applications, not on managing infrastructure.

Simplify DevOps 
Be more agile and responsive to your customers’ needs 
with scalable and highly available solutions. Amazon EFS 
provides a common storage repository to development 
environments, enabling you to share code and other 
files in a secure and organized way. Provision, duplicate, 
scale, and archive your test, development, and production 
environments with a few clicks.

 
 
 
 

Modernize content management systems 
Modernizing your content management systems helps 
your organization get its products and services to market 
faster, more reliably, securely, and at a lower cost. Together, 
AWS containers, AWS Fargate, and Amazon EFS provide a 
simple, elastic, highly available, and secure solution to help 
you modernize websites, online publications, and enterprise 
content management.

Deploy stateful microservices 
For stateful modern applications, Amazon EFS provides a 
data foundation, operating in concert with containers and 
serverless technologies to reliably and consistently deploy 
to AWS and allowing data to persist application state.

Accelerate data science 
Amazon EFS provides the ease of use, scale, performance, 
and consistency needed for ML and big data analytics 
workloads. Data scientists can use Amazon EFS to create 
personalized environments with home directories to store 
notebook files, training data, and model artifacts. Amazon 
SageMaker integrates with Amazon EFS for training jobs, 
allowing data scientists to iterate quickly.

2  |  Expand possibilities with  
       persistent and shared data

The modern applications 
advantage »

Amazon Elastic File System 
(Amazon EFS) » »

7

https://aws.amazon.com/efs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/


Organizations modernizing their applications with Amazon EFS 
are typically interested in application migration, application 
augmentation, or both. Migration involves either updating 
your build processes to build container images with existing 
applications or updating applications to run in a function-based 
compute environment like AWS Lambda. With augmentation, 
rather than migrate existing applications, you develop 
microservices with new functionality that can access shared 
data or state with existing applications. In both cases, this is an 
opportunity to migrate from self-managed storage to serverless 
AWS data services, like Amazon EFS.

The modern applications 
advantage

Expand possibilities with file data Amazon Elastic File System (Amazon EFS)The modern applications advantage Next »»Prev

8

T-Mobile improves performance and reduces  
costs with containers 

Global telecom giant T-Mobile was challenged by a customer-
facing app that underwent large spikes in usage based on the 
time of day and the month of the year. Its existing infrastructure 
wasn’t able to support the scalability required without 
overprovisioning to support peak demand.

T-Mobile modernized the applications to employ a microservices 
approach and deployed containers utilizing Amazon EFS to 
provide persistent storage and the ability to dynamically scale 
without any storage management overhead. The company now 
has 16,000 containers under management with Amazon EFS, 
has reduced storage costs by 70 percent while enjoying reduced 
storage management overhead, and has improved cycle times 
for deploying new application services.

Read the T-Mobile case study »

CASE STUDY

“We are a large organization 

that has lots of applications 

with varying requirements for 

availability and performance. 

(Amazon) EFS provides us with 

a common storage platform 

that meets these requirements 

across the board.”  

Amreth Chandrasehar,  
Former Senior Enterprise Architect,  

T-Mobile

https://aws.amazon.com/solutions/case-studies/tmobile-case-study/


Expand possibilities with file data

Amazon EFS enables you to build modern applications and persist and share 
data from your AWS containers and serverless applications—all with zero 
management required. You can share file data without provisioning or managing 
storage. And Amazon EFS is built to scale on demand to petabytes without 
disrupting applications. Grow and shrink your file systems automatically as you 
add and remove files, eliminating the need to provision and manage capacity to 
accommodate growth.

Designed for the vast majority of file workloads, from latency-sensitive applications 
to highly parallelized scale-out jobs requiring high throughput, Amazon EFS is ideal 
for ML, web serving, content management, and everything in-between. Amazon 
EFS is designed for 99.999999999% (11 nines) of durability, is highly available,  
and is natively integrated with AWS Backup, so your data is available whenever  
it’s needed.

Amazon EFS provides concurrent access for tens of thousands of connections  
for Amazon Elastic Computing (Amazon EC2) Instances, containers, and AWS 
Lambda functions. You pay only for the storage you use, with no minimum  
storage requirements.

Simple, serverless, set-and- 
forget, elastic file system

HOW IT WORKS: AMAZON EFS

Watch the Amazon EFS video »

The modern applications advantage Amazon Elastic File System (Amazon EFS)

9

Next »»Prev

https://www.youtube.com/watch?v=vAV4ASDnbN0&t=3s


10

3  |  The solution

Persistent, shared file storage for modern  
applications 

AWS Lambda lets you run large-scale and mission-critical 
serverless applications. Amazon provides highly available 
and durable serverless storage for those applications and 
simplifies the sharing of data that needs to persist beyond 
and between executions of AWS Lambda functions and 
AWS Fargate tasks. 

Amazon Elastic File System (Amazon EFS) attachments 
are configured in the application metadata, such as the 
Amazon Elastic Container Service (Amazon ECS) task 
definition or the Kubernetes persistent volume, including 
connectivity, so developers can focus on their applications, 
not infrastructure.

AWS containers, AWS Lambda, and Amazon EFS all scale up 
and down elastically with your applications and have lower 
operational overhead for supporting continuous integration 
and continuous delivery (CI/CD) DevOps pipelines. 

Modernizing applications also helps you improve reliability. 
AWS containers, AWS Lambda, and Amazon EFS are all 
regional services that span multiple availability zones with 
automatic failover. 

Modernizing applications with AWS is cost-optimized. You 
pay only for the storage and compute you use. Amazon 
EFS scales on demand from zero to petabytes with no 
disruptions, automatically growing and shrinking as you  
add and remove files. Amazon ECS, Amazon Elastic 
Kubernetes Services (Amazon EKS), and AWS Fargate 
Cluster Auto Scaling also enable capacity to grow and 
shrink to meet demand.

AWS services »

Get started »

How it works »

Discover Financial Services 
accelerated analytics and time 

to insights using AWS »

Next »»Prev

https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&fargate-blogs.sort-by=item.additionalFields.createdDate&fargate-blogs.sort-order=desc
https://aws.amazon.com/efs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/


Discover Financial Services provides banking and credit products 
to help customers achieve their financial goals. Over the years, 
individual analytics practices sprang up within Discover’s teams 
and business units. In all, there were about 8–10 toolsets across 
12 teams. Each practice required different skill sets and diverse 
tools. The company’s development team was tasked with creating a 
centralized platform that would allow the company’s data scientists 
to collaborate in a common environment, an internal data science 
workbench called AIR9.

Discover determined that Kubernetes was a good fit to host AIR9 
because many of the data science tools the company already used 
naturally lent themselves to containerization. Having dedicated 
containers would allow for isolated workloads and enable users to 
install custom packages and make changes to their environments 
that would be difficult to manage in a multi-tenant environment.

Discover Financial  
Services accelerated  
analytics and time to  
insights using AWS

The Solution Discover Financial Services How it works Get started

11

Read the Discover Financial Services case study »

“It used to take weeks to get 

users the tools they needed to 

do their jobs. Now we can do 

it in hours so they can start 

gleaning insights and delivering 

value for our customers almost 

immediately.”   

Brandon Harris,  
Director of Data Science Technology, 

Discover Financial Services

CASE STUDY

50 percent 
reduction in storage 
costs, using Amazon EFS 
Infrequent Access for home 
directories and Amazon 
Simple Storage Service 
(Amazon S3) for backups

Built 
a collaborative platform 
used by 85 percent of 
Discover’s data scientists

90 percent
Cut storage management  
time by 90 percent

10x–20x 
improvement in execution 
time over on-premises 
systems in a number of  
use cases

AWS services

Next »»Prev

https://aws.amazon.com/solutions/case-studies/discover-financial-services-case-study/


Chart your application modernization journey. 

How it works 

The Solution

12

Discover Financial Services How it works Get started

AWS services

Next »»Prev



The Solution

13

AWS Lambda and Amazon EFS 

Use the resources below to begin your application 
modernization journey.

AWS Lambda and Amazon EFS 
While AWS Lambda includes a 512 MB temporary file system 
for your code, this is an ephemeral scratch resource not 
intended for durable storage. 

With Amazon EFS for AWS Lambda, you can easily share data 
across function invocations. You can also read large reference 
data files and write function output to a persistent and shared 
store. The blog post Using Amazon EFS for AWS Lambda in 
your serverless applications shows how to enable Amazon  
EFS for Lambda in your AWS account and walks through  
some common use cases.

View the video Modernizing Serverless Applications  

with AWS Lambda and Amazon EFS »

AWS containers and Amazon EFS 

Native integrations between Amazon EFS and AWS container 
services simplify containerizing long-running stateful 
applications and applications with shared datasets. 

Amazon ECS and AWS Fargate with Amazon EFS  
Amazon ECS supports deploying containers on both Amazon 
Elastic Compute Cloud (EC2) and AWS Fargate. A three-part 
blog series Developers guide to using Amazon EFS with Amazon 
ECS and AWS Fargate gives you the information you need to get 
started: Part 1 provides the background about the need for the 
integration—its scope, use cases, and the scenarios it unlocks. 
Part 2 provides a deep dive on how Amazon EFS security works 
in container deployments based on Amazon ECS and AWS 
Fargate and considerations around regional deployments best 
practices. Part 3 is a practical example, including reusable code 
and commands.

Get started now
Amazon EKS and AWS Fargate with Amazon EFS 
With Amazon EKS, you have the choice to run Kubernetes 
pods on Amazon EC2 instances or AWS Fargate. AWS Fargate, 
a serverless compute engine for containers, allows you to run 
Kubernetes workloads without creating and managing servers, 
scaling your data plane, rightsizing Amazon EC2 instances, or 
dealing with worker nodes upgrades. Amazon EFS supplies 
persistent, shared storage needed to run stateful Kubernetes 
workloads on AWS Fargate. The blog post Running stateful 
workloads with Amazon EKS on AWS Fargate using Amazon 
EFS shows you how to run stateful Kubernetes workloads on 
AWS Fargate using Amazon EFS. 

Watch the demo Amazon EFS Secure data persistence with 

Amazon ECS and AWS Fargate »

Discover Financial Services How it works Get started

AWS services

Next »»Prev

https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://www.youtube.com/watch?v=BkVslqb5OC8
https://www.youtube.com/watch?v=BkVslqb5OC8
https://aws.amazon.com/ecs/
https://aws.amazon.com/ec2/?ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://aws.amazon.com/ec2/?ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://aws.amazon.com/fargate/
https://aws.amazon.com/blogs/containers/developers-guide-to-using-amazon-efs-with-amazon-ecs-and-aws-fargate-part-1/
https://aws.amazon.com/blogs/containers/developers-guide-to-using-amazon-efs-with-amazon-ecs-and-aws-fargate-part-2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/blogs/containers/developers-guide-to-using-amazon-efs-with-amazon-ecs-and-aws-fargate-part-3/
https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/
https://aws.amazon.com/efs/
https://aws.amazon.com/blogs/containers/running-stateful-workloads-with-amazon-eks-on-aws-fargate-using-amazon-efs/
https://aws.amazon.com/blogs/containers/running-stateful-workloads-with-amazon-eks-on-aws-fargate-using-amazon-efs/
https://aws.amazon.com/blogs/containers/running-stateful-workloads-with-amazon-eks-on-aws-fargate-using-amazon-efs/
https://www.youtube.com/watch?v=FJlHXBcDJiw&t=2s


The Solution

14

Amazon EFS » 

Amazon EFS is a simple, serverless, set-and-
forget, cloud-native file system that enables 
you to build modern applications and persist 
and share data from your AWS containers  
and serverless applications with zero 
management required.

Amazon EKS » 

Amazon EKS gives you the flexibility to  
start, run, and scale Kubernetes applications 
in the AWS Cloud or on-premises.

AWS Lambda » 

AWS Lambda is a serverless compute service 
that lets you run code without provisioning 
or managing servers, creating workload-
aware cluster scaling logic, maintaining event 
integrations, and managing runtimes.

AWS Fargate » 

AWS Fargate is a serverless compute engine 
for containers that works with both Amazon 
ECS and Amazon EKS. 

Amazon ECS » 

Amazon ECS is a fully managed  
container orchestration service that  
helps you easily deploy, manage, and  
scale containerized applications. 

AWS services 

Discover Financial Services How it works Get started

AWS services

Next »»Prev

https://aws.amazon.com/efs/
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&fargate-blogs.sort-by=item.additionalFields.createdDate&fargate-blogs.sort-order=desc
https://aws.amazon.com/ecs/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&ecs-blogs.sort-by=item.additionalFields.createdDate&ecs-blogs.sort-order=desc


15

Cloud file storage for your microservices  
architectures 

Modern application development is enabling organizations 
to innovate faster, respond to customer needs, and 
scale to millions of users. Modern applications are built 
on containers and serverless architectures that are 
complementary to one another. These modern architectures 
free developers from configuration and compatibility 
concerns and management overhead, so they can focus  
on building applications. 

It is now commonplace for new applications to be built  
with these modern techniques, and even in-place 
applications are being repackaged for deployment on 
containers and serverless architectures. Yet, there is a  
data problem to be addressed.

What is needed is a cloud file system that persists data, 
even when containerized applications and serverless 
functions are terminated. For these modern applications, 
a cloud-native file system becomes a data foundation, 
operating in concert with containers and serverless 
technologies to reliably and consistently deploy to AWS, 
allowing data to persist application state and share data 
among applications when needed.

4  |  Executive summary

Resources »

Next »»Prev



Modernize your applications with AWS 
containers, serverless, and Amazon EFS
Here are more resources to help guide you on your application modernization journey. 

Amazon Elastic 
File System »

Simple, serverless, set-and-forget, 
elastic file system

AWS Modern 
Applications »

Innovate faster, respond to customer 
needs, and scale to millions of users

»Prev

Get started with 
Amazon EFS in the 
AWS console »

Create a file system in seconds, 
with a few clicks in the AWS 
console

Persistent File 
Storage for Modern 
Applications »

Persist and share data with zero 
management required 

16

https://aws.amazon.com/efs/
https://aws.amazon.com/modern-apps/
https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Ffromtb%3Dtrue%26hashArgs%3D%2523%26isauthcode%3Dtrue%26state%3DhashArgsFromTB_us-east-1_eaa8bedb293b831d&client_id=arn%3Aaws%3Asignin%3A%3A%3Aconsole%2Fcanvas&forceMobileApp=0&code_challenge=IDXzGBbTpqeZHDBBNmTrGLiBvS8LCm0KMX9msmCSW64&code_challenge_method=SHA-256
https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Ffromtb%3Dtrue%26hashArgs%3D%2523%26isauthcode%3Dtrue%26state%3DhashArgsFromTB_us-east-1_a835ca8a79e21f99&client_id=arn%3Aaws%3Asignin%3A%3A%3Aconsole%2Fcanvas&forceMobileApp=0&code_challenge=iQNUlph89D6wsvxzyUz1Qy8ACTxAYE5foWX850fyVH8&code_challenge_method=SHA-256
https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Ffromtb%3Dtrue%26hashArgs%3D%2523%26isauthcode%3Dtrue%26state%3DhashArgsFromTB_us-east-1_a835ca8a79e21f99&client_id=arn%3Aaws%3Asignin%3A%3A%3Aconsole%2Fcanvas&forceMobileApp=0&code_challenge=iQNUlph89D6wsvxzyUz1Qy8ACTxAYE5foWX850fyVH8&code_challenge_method=SHA-256
https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Ffromtb%3Dtrue%26hashArgs%3D%2523%26isauthcode%3Dtrue%26state%3DhashArgsFromTB_us-east-1_a835ca8a79e21f99&client_id=arn%3Aaws%3Asignin%3A%3A%3Aconsole%2Fcanvas&forceMobileApp=0&code_challenge=iQNUlph89D6wsvxzyUz1Qy8ACTxAYE5foWX850fyVH8&code_challenge_method=SHA-256
https://aws.amazon.com/products/storage/persistent-file-storage-for-modern-apps/

	Button 17: 
	Button 11: 
	Button 21: 
	Button 24: 
	Button 51: 
	Button 27: 
	Button 30: 
	Button 54: 
	Button 33: 
	Button 36: 
	Button 39: 
	Button 42: 
	Button 64: 
	Button 45: 
	Button 48: 


