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For distributions without serious outliers, the median and the mean 
will be similar. I’ve included a hypothetical summary of the quality data 
for the competitor’s printers. In particular, I’ve laid out the data in what 
is known as a frequency distribution. The number of quality problems per 
printer is arrayed along the bottom; the height of each bar represents the 
percentages of printers sold with that number of quality problems. For 
example, 36 percent of the competitor’s printers had two quality defects 
during the warranty period. Because the distribution includes all possible 
quality outcomes, including zero defects, the proportions must sum to 1 
(or 100 percent).

Frequency Distribution of Quality Complaints  
for Competitor’s Printers
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Because the distribution is nearly symmetrical, the mean and median 
are relatively close to one another. The distribution is slightly skewed 
to the right by the small number of printers with many reported quality 
defects. These outliers move the mean slightly rightward but have no 
impact on the median. Suppose that just before you dash off the quality 
report to your boss you decide to calculate the median number of quality 
problems for your firm’s printers and the competition’s. With a few key-
strokes, you get the result. The median number of quality complaints for 
the competitor’s printers is 2; the median number of quality complaints 
for your company’s printers is 1.

Huh? Your firm’s median number of quality complaints per printer 
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is actually lower than your competitor’s. Because the Kardashian marriage 
is getting monotonous, and because you are intrigued by this finding, you 
print a frequency distribution for your own quality problems.

Frequency Distribution of Quality Complaints at Your Company
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Quality problems per printer

What becomes clear is that your firm does not have a uniform quality 
problem; you have a “lemon” problem; a small number of printers have a 
huge number of quality complaints. These outliers inflate the mean but 
not the median. More important from a production standpoint, you do not 
need to retool the whole manufacturing process; you need only figure out 
where the egregiously low-quality printers are coming from and fix that.*

Neither the median nor the mean is hard to calculate; the key is 
determining which measure of the “middle” is more accurate in a par-
ticular situation (a phenomenon that is easily exploited). Meanwhile, the 
median has some useful relatives. As we’ve already discussed, the median 
divides a distribution in half. The distribution can be further divided 

* Manufacturing update: It turns out that nearly all of the defective printers were 
being manufactured at a plant in Kentucky where workers had stripped parts off 
the assembly line in order to build a bourbon distillery. Both the perpetually drunk 
employees and the random missing pieces on the assembly line appear to have com-
promised the quality of the printers being produced there.
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Imagine a frequency distribution describing popcorn popping on a stove 
top. Some kernels start to pop early, maybe one or two pops per second; 
after ten or fifteen seconds, the kernels are exploding frenetically. Then 
gradually the number of kernels popping per second fades away at roughly 
the same rate at which the popping began. The heights of American men 
are distributed more or less normally, meaning that they are roughly sym-
metrical around the mean of 5 feet 10 inches. Each SAT test is specifically 
designed to produce a normal distribution of scores with mean 500 and 
standard deviation of 100. According to the Wall Street Journal, Americans 
even tend to park in a normal distribution at shopping malls; most cars park 
directly opposite the mall entrance—the “peak” of the normal curve—with 
“tails” of cars going off to the right and left of the entrance.

The beauty of the normal distribution—its Michael Jordan power, 
finesse, and elegance—comes from the fact that we know by definition 
exactly what proportion of the observations in a normal distribution lie 
within one standard deviation of the mean (68.2 percent), within two 
standard deviations of the mean (95.4 percent), within three standard 
deviations (99.7 percent), and so on. This may sound like trivia. In fact, 
it is the foundation on which much of statistics is built. We will come 
back to this point in much great depth later in the book.

The Normal Distribution

34.1%

13.6% 13.6%
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Having said all that, here is a graph of American wages over the past 
three decades. I’ve also added the 90th percentile to illustrate changes 
in the wages for middle-class workers compared over this time frame to 
those workers at the top of the distribution.
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Source: “Changes in the Distribution of Workers’ Hourly Wages between 1979 and 
2009,” Congressional Budget Office, February 16, 2011. The data for the chart can be 
found at http://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/120xx/doc12051/02
-16-wagedispersion.pdf.

A variety of conclusions can be drawn from these data. They 
do not present a single “right” answer with regard to the economic 
fortunes of the middle class. They do tell us that the typical worker, 
an American worker earning the median wage, has been “running in 
place” for nearly thirty years. Workers at the 90th percentile have 
done much, much better. Descriptive statistics help to frame the 
issue. What we do about it, if anything, is an ideological and political  
question.

•  •  •
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Appendix to Chapter 2

Data for the printer defects graphics
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Formula for variance and standard deviation

Variance and standard deviation are the most common statistical mecha-
nisms for measuring and describing the dispersion of a distribution. The 
variance, which is often represented by the symbol σ2, is calculated by 
determining how far the observations within a distribution lie from the 
mean. However, the twist is that the difference between each observation 
and the mean is squared; the sum of those squared terms is then divided 
by the number of observations.

Specifically:

For any set of n observations x1, x2, x3 . . . xn with mean µ,

Variance = σ2 = [(x1 – µ)2 + (x2 – µ)2 + (x3 – µ)2 + . . . (xn – µ)2]/n

Because the difference between each term and the mean is squared, 
the formula for calculating variance puts particular weight on observa-
tions that lie far from the mean, or outliers, as the following table of 
student heights illustrates.
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Group 
1

Height 
(µ = 70 
inches)

Distance from 
the mean = 
Absolute  
value of  
(xn – µ)*

(xn – µ)2 Group 2
Height 
(µ = 70 
inches)

Distance from 
the mean = 
Absolute  
value of  
(xn – µ)*

(xn – µ)2

Nick 74 4 16 Sahar 65 5 25

Elana 66 4 16 Maggie 68 2 4

Dinah 68 2 4 Faisal 69 1 1

Rebecca 69 1 1 Ted 70 0 0

Ben 73 3 9 Jeff 71 1 1

Charu 70 0 0 Narciso 75 5 25

Total = 14 Total = 46 Total = 14 Total = 56

Variance = 
46/6 = 7.7

Variance = 
56/6 = 9.3

Standard 
deviation = 
∙∙∙7.7 = 2.8

Standard 
deviation = 
∙∙∙9.3 = 3

* Absolute value is the distance between two figures, regardless of direction, so that it 
is always positive. In this case, it represents the number of inches between the height 
of the individual and the mean.

Both groups of students have a mean height of 70 inches. The heights 
of students in both groups also differ from the mean by the same number 
of total inches: 14. By that measure of dispersion, the two distributions 
are identical. However, the variance for Group 2 is higher because of the 
weight given in the variance formula to values that lie particularly far 
from the mean—Sahar and Narciso in this case.

Variance is rarely used as a descriptive statistic on its own. Instead, the 
variance is most useful as a step toward calculating the standard deviation 
of a distribution, which is a more intuitive tool as a descriptive statistic.

The standard deviation for a set of observations is the square 
root of the variance:

For any set of n observations x1, x2, x3 . . . xn with mean µ,

standard deviation = σ = square root of this whole quantity =  

[(x1 – µ)2 + (x2 – µ)2 + (x3 – µ)2 + . . . (xn – µ)2]/n√
————————————————————
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American manufacturing? One often hears that American manufacturing 
jobs are being lost in huge numbers to China, India, and other low-wage 
countries. One also hears that high-tech manufacturing still thrives in the 
United States and that America remains one of the world’s top exporters 
of manufactured goods. Which is it? This would appear to be a case in 
which sound analysis of good data could reconcile these competing nar-
ratives. Is U.S. manufacturing profitable and globally competitive, or is 
it shrinking in the face of intense foreign competition?

Both. The British news magazine the Economist reconciled the two 
seemingly contradictory views of American manufacturing with the fol-
lowing graph.

“The Rustbelt Recovery,” March 10, 2011
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The seeming contradiction lies in how one defines the “health” of 
U.S. manufacturing. In terms of output—the total value of goods pro-
duced and sold—the U.S. manufacturing sector grew steadily in the 
2000s, took a big hit during the Great Recession, and has since bounced 
back robustly. This is consistent with data from the CIA’s World Factbook 
showing that the United States is the third-largest manufacturing exporter 
in the world, behind China and Germany. The United States remains a 
manufacturing powerhouse.

But the graph in the Economist has a second line, which is manufactur-
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actually gone down. Yes, spending has gone up in nominal terms, but that 
does not reflect the changing value of the dollars being spent. One 1970 
dollar is equal to $5.83 in 2011; the government would need to spend 
$58.3 million on veterans’ housing benefits in 2011 to provide support 
comparable to the $10 million it was spending in 1970.

Real figures, on the other hand, are adjusted for inflation. The 
most commonly accepted methodology is to convert all of the figures 
into a single unit, such as 2011 dollars, to make an “apples and apples” 
comparison. Many websites, including that of the U.S. Bureau of Labor 
Statistics, have simple inflation calculators that will compare the value 
of a dollar at different points in time.* For a real (yes, a pun) example 
of how statistics can look different when adjusted for inflation, check 
out the following graph of the U.S. federal minimum wage, which plots 
both the nominal value of the minimum wage and its real purchasing 
power in 2010 dollars.
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Source: http://oregonstate.edu/instruct/anth484/minwage.html.

* Available at http://www.bls.gov/data/inflation_calculator.htm.
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Defense Spending in Billions, 1981–1988
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For the Democrats, my former professor merely used the same (nomi-
nal) data, but a longer time frame. For this group, he pointed out that Jimmy 
Carter deserves credit for beginning the defense buildup. As the following 
“Democratic” slide shows, the defense spending increases from 1977 to 
1980 show the same basic trend as the increases during the Reagan presi-
dency. Thank goodness that Jimmy Carter—a graduate of Annapolis and a 
former naval officer—began the process of making America strong again!

Defense Spending in Billions, 1977–1988
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Source: http://www.usgovernmentspending.com/spend.php?span=usgs302&year= 
1988&view=1&expand=30&expandC=&units=b&fy=fy12&local=s&state=US&pie=
#usgs302.
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Defense Spending in Billions, 1981–1988
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my five-star ratings for two other documentaries, Enron: The Smartest 
Guys in the Room and Fog of War.

Correlation measures the degree to which two phenomena are 
related to one another. For example, there is a correlation between sum-
mer temperatures and ice cream sales. When one goes up, so does the 
other. Two variables are positively correlated if a change in one is associ-
ated with a change in the other in the same direction, such as the relation-
ship between height and weight. Taller people weigh more (on average); 
shorter people weigh less. A correlation is negative if a positive change 
in one variable is associated with a negative change in the other, such as 
the relationship between exercise and weight.

The tricky thing about these kinds of associations is that not every 
observation fits the pattern. Sometimes short people weigh more than tall 
people. Sometimes people who don’t exercise are skinnier than people 
who exercise all the time. Still, there is a meaningful relationship between 
height and weight, and between exercise and weight.

If we were to do a scatter plot of the heights and weights of a ran-
dom sample of American adults, we would expect to see something like 
the following:

Scatter Plot for Height and Weight
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The correlation between height and weight for this group of 
students is .83. Given that the correlation coefficient can range 
from –1 to 1, this is a relatively high degree of positive correla-
tion, as we would expect with height and weight.

A B C D E F

Student Height Weight
Height in 

standard units
Weight in 

standard units 
(Weight in standard units) × 

(Height in standard units)

Nick 74 193 1.21 0.99 1.19

Elana 66 133 –0.63 –0.67 0.42

Dinah 68 155 –0.17 –0.06 0.01

Rebecca 69 147 0.06 –0.29 –0.02

Ben 73 175 0.98 0.49 0.48

Charu 70 128 0.29 –0.81 –0.24

Sahar 60 100 –2.00 –1.59 3.18

Maggie 63 128 –1.32 –0.81 1.07

Faisal 67 170 –0.40 0.35 –0.14

Ted 70 182 0.29 0.68 0.20

Narciso 70 178 0.29 0.57 0.17

Katrina 70 118 0.29 –1.09 –0.32

CJ 75 227 1.44 1.93 2.77

Sophia 62 115 –1.54 –1.17 1.81

Will 74 211 1.21 1.49 1.80

Mean 68.73 157.33 Total = 12.39

Standard 
Deviation

4.36 36.12 Correlation coefficient = Total/n = 12.39/15 = 0.83

The formula for calculating the correlation coefficient requires a 
little detour with regard to notation. The figure ∑, known as the sum-
mation sign, is a handy character in statistics. It represents the summa-
tion of the quantity that comes after it. For example, if there is a set of 
observations x1, x2, x3, and x4, then ∑ (xi) tells us that we should sum the 
four observations: x1 + x2 + x3 + x4. Thus, ∑ (xi) = x1 + x2 + x3 + x4. Our 
formula for the mean of a set of i observations could be represented as 
the following: mean = ∑ (xi)/n.

We can make the formula even more adaptable by writing 
n

∑
i=1 

(xi), which 
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today. And I might win $2 again tomorrow. But if I buy thousands of 
$1 lottery tickets, each with an expected payout of $.56, then it becomes 
a near mathematical certainty that I will lose money. By the time I’ve 
spent $1 million on tickets, I’m going to end up with something strik-
ingly close to $560,000.

The law of large numbers explains why casinos always make money 
in the long run. The probabilities associated with all casino games favor 
the house (assuming that the casino can successfully prevent blackjack 
players from counting cards). If enough bets are wagered over a long 
enough time, the casino will be certain to win more than it loses. The 
law of large numbers also demonstrates why Schlitz was much better off 
doing 100 blind taste tests at halftime of the Super Bowl rather than just 
10. Check out the “probability density functions” for a Schlitz type of test 
with 10, 100, and 1,000 trials. (Although it sounds fancy, a probability 
density function merely plots the assorted outcomes along the x-axis and 
the expected probability of each outcome on the y-axis; the weighted 
probabilities—each outcome multiplied by its expected frequency—will 
add up to 1.) Again I’m assuming that the taste test is just like a coin flip 
and each tester has a .5 probability of choosing Schlitz. As you can see 
below, the expected outcome converges around 50 percent of tasters’ 
choosing Schlitz as the number of tasters gets larger. At the same time, 
the probability of getting an outcome that deviates sharply from 50 per-
cent falls sharply as the number of trials gets large.
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	 100 Trials
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I stipulated earlier that Schlitz executives would be happy if 40 per-
cent or more of the Michelob drinkers chose Schlitz in the blind taste 
test. The figures below reflect the probability of getting that outcome as 
the number of tasters gets larger:

10 blind taste testers: .83
100 blind taste testers: .98
1,000 blind taste testers: .9999999999
1,000,000 blind taste testers: 1

By now the intuition is obvious behind the chapter subtitle, “Don’t 
buy the extended warranty on your $99 printer.” Okay, maybe that’s not 
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successful, there is only a 60 percent chance that the U.S. Food and Drug 
Administration will approve the new miracle baldness cure as safe for use 
on humans. Even then, if the drug is safe and effective, there is a 10 per-
cent chance that a competitor will come to market with a better drug at 
about the same time, wiping out any potential profits. If everything goes 
well—the drug is safe, effective, and unchallenged by competitors—then 
the best estimate on the return on your investment is $25 million.

Should you make the investment?
This seems like a muddle of information. The potential payday is 

huge—25 times your initial investment—but there are so many poten-
tial pitfalls. A decision tree can help organize this kind of information 
and—if the probabilities associated with each outcome are correct—
give you a probabilistic assessment of what you ought to do. The deci-
sion tree maps out each source of uncertainty and the probabilities 
associated with all possible outcomes. The end of the tree gives us all 
the possible payoffs and the probability of each. If we weight each payoff 
by its likelihood, and sum all the possibilities, we will get the expected 
value of this investment opportunity. As usual, the best way to under-
stand this is to take a look.

The Investment Decision

$1 million
investment

.3
Cure
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approved
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Gets to
market

$25 million

$0

$0
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= $4,050,000

   (.3)(.6)(.1)($0)
= 0.018 ($0)
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   (.3)(.4)($0)
= 0.12 ($0)
= $0
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Expected payoff = $4,050,000 + $0 + $0 + $175,000
                           = $4,225,000
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Widespread Screening for a Rare Disease

175 million
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= = = .09 = 9%

Only 1,750 adults have the disease. They all test positive. Over 174 
million adults do not have the disease. Of this healthy group who are 
tested, 99.9999 get the correct result that they do not have the disease. 
Only .0001 get a false positive. But .0001 of 174 million is still a big num-
ber. In fact, 17,500 people will, on average, get false positives.

Let’s look at what that means. A total of 19,250 people are noti-
fied that they have the disease; only 9 percent of them are actually sick! 
And that’s with a test that has a very low rate of false positives. Without 
going too far off topic, this should give you some insight into why cost 
containment in health care sometimes involves less screening of healthy 
people for diseases, not more. In the case of a disease like HIV/AIDS, 
public health officials will often recommend that the resources available 
be used to screen the populations at highest risk, such as gay men or 
intravenous drug users.
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as a matter of chance, a very few will be significantly higher than 
the population mean, and a very few will be significantly lower.

Cue the music, because this is where everything comes together in 
a powerful crescendo . . .

	 4.	� The central limit theorem tells us that the sample means will be 
distributed roughly as a normal distribution around the popu-
lation mean. The normal distribution, as you may remember 
from Chapter 2, is the bell-shaped distribution (e.g., adult men’s 
heights) in which 68 percent of the observations lie within one 
standard deviation of the mean, 95 percent lie within two stan-
dard deviations, and so on.

	 5.	� All of this will be true no matter what the distribution of the 
underlying population looks like. The population from which the 
samples are being drawn does not have to have a normal distribu-
tion in order for the sample means to be distributed normally.

Let’s think about some real data, say, the household income distribu-
tion in the United States. Household income is not distributed normally 
in America; instead, it tends to be skewed to the right. No household 
can earn less than $0 in a given year, so that must be the lower bound 
for the distribution. Meanwhile, a small group of households can earn 
staggeringly large annual incomes—hundreds of millions or even billions 
of dollars in some cases. As a result, we would expect the distribution of 
household incomes to have a long right tail—something like this:
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The larger the number of samples, the more closely the distribution 
will approximate the normal distribution. And the larger the size of each 
sample, the tighter that distribution will be. To test this result, let’s do 
a fun experiment with real data on the weights of real Americans. The 
University of Michigan conducts a longitudinal study called Americans’ 
Changing Lives, which consists of detailed observations on several thou-
sand American adults, including their weights. The weight distribution 
is skewed slightly right, because it’s biologically easier to be 100 pounds 
overweight than it is to be 100 pounds underweight. The mean weight 
for all adults in the study is 162 pounds.

Using basic statistical software, we can direct the computer to take a 
random sample of 100 individuals from the Changing Lives data. In fact, 
we can do this over and over again to see how the results fit with what the 
central limit theorem would predict. Here is a graph of the distribution 
of 100 sample means (rounded to the nearest pound) randomly generated 
from the Changing Lives data.

	 100 Sample Means, n = 100
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The larger the sample size and the more samples taken, the more 
closely the distribution of sample means will approximate the normal 
curve. (As a rule of thumb, the sample size must be at least 30 for the 
central limit theorem to hold true.) This makes sense. A larger sample is 
less likely to be affected by random variation. A sample of 2 can be highly 
skewed by 1 particularly large or small person. In contrast, a sample of 
500 will not be unduly affected by a few particularly large or small people.
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In the case of the Changing Lives data, we actually know the stan-
dard deviation of the population; often that is not the case. For large 
samples, we can assume that the standard deviation of the sample is rea-
sonably close to the standard deviation of the population.*

Finally, we have arrived at the payoff for all of this. Because the sam-
ple means are distributed normally (thanks to the central limit theorem), 
we can harness the power of the normal curve. We expect that roughly 
68 percent of all sample means will lie within one standard error of the 
population mean; 95 percent of the sample means will lie within two 
standard errors of the population mean; and 99.7 percent of the sample 
means will lie within three standard errors of the population mean.

Frequency Distribution of Sample Means
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Sample means

68%

+1 SE– 1 SE

Population mean, µ

+2 SE–2 SE

+3 SE–3 SE

95%
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Frequency Distribution of Sample Means

* When the standard deviation for the population is calculated from a smaller sample, the 
formula is tweaked slightly: se = s/∙∙∙∙n – 1 . This helps to account for the fact that the 
dispersion in a small sample may understate the dispersion of the full population. This is 
not highly relevant to the bigger points in this chapter.
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Distribution of Sample Means
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As the distribution above shows, we would expect roughly 95 percent 
of all 60-person samples drawn from the Changing Lives participants to 
have a mean weight within two standard errors of the population mean, 
or roughly between 153 pounds and 171 pounds.* Conversely, only 5 
times out of 100 would a sample of 60 persons randomly drawn from the 
Changing Lives participants have a mean weight that is greater than 171 
pounds or less than 153 pounds. (You are conducting what is known as 
a “two-tailed” hypothesis test; the difference between this and a “one-
tailed” test will be covered in an appendix at the end of the chapter.) Your 
handlers on the counterterrorism task force have decided that .05 is the 
significance level for your mission. If the mean weight of the 60 passen-
gers on the hijacked bus is above 171 or below 153, then you will reject 
the null hypothesis that the bus contains Changing Lives participants, 
accept the alternative hypothesis that the bus contains 60 people headed 
somewhere else, and await further orders.

* To be precise, 95 percent of all sample means will lie within 1.96 standard errors 
above or below the population mean.

NakedStats_5pp.indd   151 10/12/12   12:32 PM



158  •  naked statistics158  •  naked statistics

the standard error for the total brain volume of the 38 children in the 
control group is 18 cubic centimeters. You will recall that the central 
limit theorem tells us that for 95 samples out of 100, the sample mean is 
going to lie within two standard errors of the true population mean, in 
one direction or the other.

As a result, we can infer from our sample that 95 times out of 100 
the interval of 1310.4 cubic centimeters ± 26 (which is two standard 
errors) will contain the average brain volume for all children with autism 
spectrum disorder. This expression is called a confidence interval. We 
can say with 95 percent confidence that the range 1284.4 to 1336.4 cubic 
centimeters contains the average total brain volume for children in the 
general population with autism spectrum disorder.

Using the same methodology, we can say with 95 percent confidence 
that the interval of 1238.8 ± 36, or between 1202.8 and 1274.8 cubic cen-
timeters, will include the average brain volume for children in the general 
population who do not have autism spectrum disorder.

Yes, there are a lot of numbers here. Perhaps you’ve just hurled 
the book across the room.* If not, or if you then went and retrieved the 
book, what you should notice is that our confidence intervals do not over-
lap. The lower bound of our 95 percent confidence interval for the aver-
age brain size of children with autism in the general population (1284.4 
cubic centimeters) is still higher than the upper bound for the 95 percent 
confidence interval for the average brain size for young children in the 
population without autism (1274.8 cubic centimeters), as the following 
diagram illustrates.

1150 1200 1250

95% con�dence interval
for the non-autism
general population

1202.8 1238.8 1274.8 1284.4 1310.4 1336.4

95% con�dence interval
for children with

autism spectrum disorder

1300 1350

* I will admit that I did once tear a statistics book in half out of frustration.
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and protecting civil liberties. The null hypothesis is that an indi-
vidual is not a terrorist. As in a regular criminal context, we do 
not want to commit a Type I error and send innocent people to 
Guantánamo Bay. Yet in a world with weapons of mass destruc-
tion, letting even a single terrorist go free (a Type II error) can 
be literally catastrophic. This is why—whether you approve of 
it or not—the United States is holding suspected terrorists at 
Guantánamo Bay on the basis of less evidence than might be 
required to convict them in a regular criminal court.

Statistical inference is not magic, nor is it infallible, but it is an 
extraordinary tool for making sense of the world. We can gain great 
insight into many life phenomena just by determining the most likely 
explanation. Most of us do this all the time (e.g., “I think that college 
student passed out on the floor surrounded by beer cans has had too much 
to drink” rather than “I think that college student passed out on the floor 
surrounded by beer cans has been poisoned by terrorists”).

Statistical inference merely formalizes the process.

Appendix to Chapter 9

Calculating the standard error for a difference of means

Formula for comparing two means
	 x– – y–
————

 	   numerator yields the size of the difference in means

∙∙∙s2x + s2y—   —nx      ny

 	  � denominator yields the standard error for a difference 
in mean between two samples

where 	 x– = mean for sample x
	 y– = mean for sample y

NakedStats_5pp.indd   164 10/12/12   12:32 PM



The Monty Hall Problem   •  165Inference   •  165

	 sx = standard deviation for sample x
	 sy = standard deviation for sample y
	 nx = number of observations in sample x
	 ny = number of observations in sample y

Our null hypothesis is that the two sample means are the same. The 
formula above calculates the observed difference in means relative to 
the size of the standard error for the difference in means. Again, we lean 
heavily on the normal distribution. If the underlying population means 
are truly the same, then we would expect the difference in sample means 
to be less than one standard error about 68 percent of the time; less than 
two standard errors about 95 percent of the time; and so on.

In the autism example from the chapter, the difference in the mean 
between the two samples was 71.6 cubic centimeters with a standard error 
of 22.7. The ratio of that observed difference is 3.15, meaning that the 
two samples have means that are more than 3 standard errors apart. As 
noted in the chapter, the probability of getting samples with such differ-
ent means if the underlying populations have the same mean is very, very 
low. Specifically, the probability of observing a difference of means that 
is 3.15 standard errors or larger is .002.

Difference in Sample Means
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The cumulative
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tail to the right
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Difference in Sample Means 
(Measured in Standard Errors)
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Now let’s revisit the other alternative hypothesis—that male basket-
ball players could be taller or shorter than the general population. Our 
general approach is the same. Again, we will reject our null hypothesis that 
basketball players are the same height as the general population if we get a 
result that would occur 5 times in 100 or less if there really is no difference 
in heights. The difference, however, is that we must now entertain the pos-
sibility that basketball players are shorter than the general population. We 
will therefore reject our null hypothesis if our sample of male basketball 
players has a mean height that is significantly higher or lower than the mean 
height for our sample of normal men. This requires a two-tailed hypothesis 
test. The cutoff points for rejecting our null hypothesis will be different 
because we must now account for the possibility of a large difference in 
sample means in both directions: positive or negative. More specifically, 
the range in which we will reject our null hypothesis has been split between 
the two tails. We will still reject our null hypothesis if we get an outcome 
that would occur 5 percent of the time or less if basketball players are the 
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same height as the general population; only now we have two different ways 
that we can end up rejecting the null hypothesis.

We will reject our null hypothesis if the mean height for the sample 
of male basketball players is so much larger than the mean for the nor-
mal men that we would observe such an outcome only 2.5 times in 100 if 
basketball players are really the same height as everyone else.

And we will reject our null hypothesis if the mean height for the 
sample of male basketball players is so much smaller than the mean for 
the normal men that we would observe such an outcome only 2.5 times 
in 100 if basketball players are really the same height as everyone else.

Together, these two contingencies add up to 5 percent, as the dia-
gram below illustrates.
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(x = y)Judgment should inform whether a one- or a two-tailed hypothesis 
is more appropriate for the analysis being conducted.
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weights of a group of graduate students, you might recall what it looked 
like from Chapter 4:

Scatter Plot for Height and Weight
W
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Height (inches)

If you were asked to describe the pattern, you might say something 
along the lines of “Weight seems to increase with height.” This is not a 
terribly insightful or specific statement. Regression analysis enables us to 
go one step further and “fit a line” that best describes a linear relationship 
between the two variables.

Many possible lines are broadly consistent with the height and 
weight data. But how do we know which is the best line for these data? In 
fact, how exactly would we define “best”? Regression analysis typically 
uses a methodology called ordinary least squares, or OLS. The technical 
details, including why OLS produces the best fit, will have to be left to a 
more advanced book. The key point lies in the “least squares” part of the 
name; OLS fits the line that minimizes the sum of the squared residuals. 
That’s not as awfully complicated as it sounds. Each observation in our 
height and weight data set has a residual, which is its vertical distance 
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from the regression line, except for those observations that lie directly 
on the line, for which the residual equals zero. (On the diagram below, 
the residual is marked for a hypothetical person A.) It should be intuitive 
that the larger the sum of residuals overall, the worse the fit of the line. 
The only nonintuitive twist with OLS is that the formula takes the square 
of each residual before adding them all up (which increases the weight 
given to observations that lie particularly far from the regression line, or 
the “outliers”).

Ordinary least squares “fits” the line that minimizes the sum of the 
squared residuals, as illustrated below.

Line of Best Fit for Height and Weight
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A

If the technical details have given you a headache, you can be for-
given for just grasping at the bottom line, which is that ordinary least 
squares gives us the best description of a linear relationship between two 
variables. The result is not only a line but, as you may recall from high 
school geometry, an equation describing that line. This is known as the 
regression equation, and it takes the following form: y = a + bx, where y 
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called multiple regression analysis when more than one explanatory 
variable is involved, or multivariate regression analysis) will give us 
a coefficient for each explanatory variable included in the regression 
equation. In other words, among people who are the same sex and height, 
what is the relationship between age and weight? Once we have more 
than one explanatory variable, we can no longer plot these data in two 
dimensions. (Try to imagine a graph that represents the weight, sex, 
height, and age of each participant in the Changing Lives study.) Yet 
the basic methodology is the same as in our simple height and weight 
example. As we add explanatory variables, a statistical package will cal-
culate the regression coefficients that minimize the total sum of the 
squared residuals for the regression equation.

Let’s work with the Changing Lives data for now; then I’ll go back 
and give an intuitive explanation for how this statistical parting of the 
Red Sea could possibly work. We can start by adding one more variable 
to the equation that explains the weights of the Changing Lives partici-
pants: age. When we run the regression including both height and age as 
explanatory variables for weight, here is what we get.

WEIGHT = –145 + 4.6 ∙ (HEIGHT IN INCHES)  

+ .1 ∙ (AGE IN YEARS)

The coefficient on age is .1. That can be interpreted to mean that 
every additional year in age is associated with .1 additional pounds in 
weight, holding height constant. For any group of people who are the same 
height, on average those who are ten years older will weigh one pound 
more. This is not a huge effect, but it’s consistent with what we tend to 
see in life. The coefficient is significant at the .05 level.

You may have noticed that the coefficient on height has increased 
slightly. Once age is in our regression, we have a more refined under-
standing of the relationship between height and weight. Among people 
who are the same age in our sample, or “holding age constant,” every 
additional inch in height is associated with 4.6 pounds in weight.

Let’s add one more variable: sex. This will be slightly different 
because sex can only take on two possibilities, male or female. How does 
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one put M or F into a regression? The answer is that we use what is 
called a binary variable, or dummy variable. In our data set, we enter a 
1 for those participants who are female and a 0 for those who are male. 
(This is not meant to be a value judgment.) The sex coefficient can then 
be interpreted as the effect on weight of being female, ceteris paribus. 
The coefficient is –4.8, which is not surprising. We can interpret that 
to mean that for individuals who are the same height and age, women 
typically weigh 4.8 pounds less than men. Now we can begin to see some 
of the power of multiple regression analysis. We know that women tend 
to be shorter than men, but our coefficient takes this into account since 
we have already controlled for height. What we have isolated here is the 
effect of being female. The new regression becomes:

WEIGHT = –118 + 4.3 ∙ (HEIGHT IN INCHES)  

+ .12 (AGE IN YEARS) – 4.8 (IF SEX IS FEMALE)

Our best estimate of the weight of a fifty-three-year-old woman who 
is 5 feet 5 inches is: –118 + 4.3 (65) + .12 (53) – 4.8 = 163 pounds.

And our best guess for a thirty-five-year-old male who is 6 feet 3 
inches is –118 + 4.3 (75) + .12 (35) = 209 pounds. We skip the last term 
in our regression result (–4.8) since this person is not female.

Now we can start to test things that are more interesting and less pre-
dictable. What about education? How might that affect weight? I would 
hypothesize that better-educated individuals are more health conscious 
and therefore will weigh less, ceteris paribus. We also haven’t tested any 
measure of exercise; I assume that, holding other factors constant, the 
people in the sample who get more exercise will weigh less.

What about poverty? Does being low-income in America have 
effects that manifest themselves in weight? The Changing Lives study 
asks whether the participants are receiving food stamps, which is a good 
measure of poverty in America. Finally, I’m interested in race. We know 
that people of color have different life experiences in the United States 
because of their race. There are cultural and residential factors associated 
with race in America that have implications for weight. Many cities are still 
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degrees of freedom. The more degrees of freedom we have, the more 
confident we can be that our sample represents the true population, 
and the “tighter” our distribution will be, as the following diagram 
illustrates.
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When the number of degrees of freedom gets large, the t-distribution 
converges to the normal distribution. That’s why when we are working 
with large data sets, we can use the normal distribution for our assorted 
calculations.

The t-distribution merely adds nuance to the same process of statis-
tical inference that we have been using throughout the book. We are still 
formulating a null hypothesis and then testing it against some observed 
data. If the data we observe would be highly unlikely if the null hypoth-
esis were true, then we reject the null hypothesis. The only thing that 
changes with the t-distribution is the underlying probabilities for evaluat-
ing the observed outcomes. The “fatter” the tail in a particular probability 
distribution (e.g., the t-distribution for eight degrees of freedom), the 
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Regression Equation for Weight

Variable Coefficient
Standard 

Error t-statistic
p-value (two-

tailed test)
95% Confidence 

Interval

Height 4.4 .2 21.4 .000 4.0 to 4.8

Age .08 .03 2.2 .026 .01 to .2

Sex –5.7 1.7 –3.4 .001 –9.0 to –2.4

Years of Educational 
Attainment

–.7 .2 –3.5 .000 –1.1 to –.3

Bottom Quintile of 
Physical Activity

3.7 1.4 2.6 .009 .9 to 6.5

Dummy for 
Receiving Food 
Stamps

5.6 2.1 2.7 .007 1.5 to 9.7

Non-Hispanic Black 9.7 1.3 7.2 .000 7.0 to 12.3

Intercept –117
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Using regression to analyze a nonlinear relationship.* Have you ever 
read the warning label on a hair dryer—the part that cautions, Do Not 
Use in the Bath Tub? And you think to yourself, “What kind of moron 
uses a hair dryer in the bath tub?” It’s an electrical appliance; you don’t use 
electrical appliances around water. They’re not designed for that. If regres-
sion analysis had a similar warning label, it would say, Do Not Use When 
There Is Not a Linear Association between the Variables That You Are 
Analyzing. Remember, a regression coefficient describes the slope of 
the “line of best fit” for the data; a line that is not straight will have a 
different slope in different places. As an example, consider the following 
hypothetical relationship between the number of golf lessons that I take 
during a month (an explanatory variable) and my average score for an 
eighteen-hole round during that month (the dependent variable). As you 
can see from the scatter plot, there is no consistent linear relationship.

Effect of Golf Lessons on Score
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* There are more sophisticated methods that can be used to adapt regression analysis 
for use with nonlinear data. Before using those tools, however, you need to appreciate 
why using the standard ordinary least squares approach with nonlinear data will give 
you a meaningless result.
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manager, and so on. Whatever happened after the tax cut cannot be 
attributed solely to the tax cut. The challenge with any “before and after” 
kind of analysis is that just because one thing follows another does not 
mean that there is a causal relationship between the two.

A “difference in differences” approach can help us identify the effects 
of some intervention by doing two things. First, we examine the “before” 
and “after” data for whatever group or jurisdiction has received the treat-
ment, such as the unemployment figures for a county that has imple-
mented a job training program. Second, we compare those data with the 
unemployment figures over the same time period for a similar county that 
did not implement any such program.

The important assumption is that the two groups used for the 
analysis are largely comparable except for the treatment; as a result, 
any significant difference in outcomes between the two groups can be 
attributed to the program or policy being evaluated. For example, sup-
pose that one county in Illinois implements a job training program to 
combat high unemployment. Over the ensuing two years, the unem-
ployment rate continues to rise. Does that make the program a failure? 
Who knows?

Effect of Job Training on Unemployment in County A
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Other broad economic forces may be at work, including the possibil-
ity of a prolonged economic slump. A difference-in-differences approach 
would compare the change in the unemployment rate over time in the 
county we are evaluating with the unemployment rate for a neighboring 
county with no job training program; the two counties must be similar in 
all other important ways: industry mix, demographics, and so on. How does 
the unemployment rate in the county with the new job training program 
change over time relative to the county that did not implement such a program? 
We can reasonably infer the treatment effect of the program by comparing 
the changes in the two counties over the period of study—the “difference 
in differences.” The other county in this study is effectively acting as a con-
trol group, which allows us to take advantage of the data collected before 
and after the intervention. If the control group is good, it will be exposed 
to the same broader forces as our treatment group. The difference-in-
differences approach can be particularly enlightening when the treatment 
initially appears ineffective (unemployment is higher after the program is 
implemented than before), yet the control group shows us that the trend 
would have been even worse in the absence of the intervention.

Effect of Job Training on Unemployment in County A,  
with County B as a Comparison
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