
Developer Guide

AWS AppSync Events

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppSync Events Developer Guide

AWS AppSync Events: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppSync Events Developer Guide

Table of Contents

What is AWS AppSync Events? ... 1
AWS AppSync Events features ... 2
Pricing for AWS AppSync Events .. 3

Core concepts ... 4
API .. 4
Event .. 4
Channel ... 4
Channel namespace ... 4
Event handler .. 5
Publishing ... 5
Subscribing ... 5

Getting started .. 6
Prerequisites .. 6

Sign up for an AWS account .. 6
Create a user with administrative access ... 7
Account credentials ... 8
Set up the AWS Command Line Interface ... 8

Creating an Event API ... 8
Step 1: Create an event API using the AWS AppSync console ... 9
Step 2: Publish and subscribe to receive your first event ... 9
Step 3: Use wildcards in your channel subscription .. 10
Step 4: Publish in batches .. 11

Using the Amplify client ... 11
Step 1: Create an event API ... 11
Step 2: Deploy a React app with Vite .. 12
Step 3: Configure the Amplify client .. 13
Step 4: Connect to a channel and receive messages .. 14
Step 5: Send a message from your app .. 17

Channel namespaces ... 19
Channel namespace authorization ... 19
Channel namespace handlers and event processing .. 19

Using the onPublish event handler .. 20
Using the onSubscribe event handler .. 22

Authorizing and authenticating Event APIs ... 24

iii

AWS AppSync Events Developer Guide

Authorization types ... 24
API_KEY authorization .. 25
AWS_LAMBDA authorization .. 26
AWS_IAM authorization .. 29
OPENID_CONNECT authorization ... 31
AMAZON_COGNITO_USER_POOLS authorization ... 32
Circumventing SigV4 and OIDC token authorization limitations ... 33

Publish via HTTP ... 34
Event API WebSocket protocol ... 36

Handshake details to establish the WebSocket connection .. 39
Discovering the real-time endpoint from the Event API endpoint ... 40

Authorization formatting based on the AWS AppSync API authorization mode 41
API key subprotocol format .. 41
Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol format 41
AWS Lambda subprotocol format ... 42
AWS Identity and Access Management (IAM) subprotocol format ... 42

Real-time WebSocket operations .. 44
Configuring message details .. 45
Disconnecting the WebSocket ... 49

Configuring custom domain names ... 50
Registering and configuring a domain name ... 50
Creating a custom domain name ... 51
Wildcard custom domain names .. 50

CloudWatch logging and monitoring ... 53
Setting up and configuring logging on an Event API ... 53

Manually creating an IAM role with CloudWatch Logs permissions ... 54
CloudWatch metrics ... 55

HTTP endpoint metrics .. 55
Real-time endpoint metrics .. 57

Configuring CloudWatch Logs on Event APIs .. 61
Using token counts to optimize your requests ... 62

Using AWS WAF to protect APIs ... 64
Integrate an AppSync API with AWS WAF .. 64
Creating rules for a web ACL .. 66

Document History .. 69

iv

AWS AppSync Events Developer Guide

What is AWS AppSync Events?

AWS AppSync Events lets you create secure and performant serverless WebSocket APIs that
can broadcast real-time event data to millions of subscribers, without you having to manage
connections or resource scaling. With AWS AppSync Events, there is no API code required to get
started, so you can create production-ready real-time web and mobile experiences in minutes.

AWS AppSync Events further simplifies the management and scaling of real-time applications by
shifting tasks like message transformation and broadcast, publish and subscribe authentication,
and the creation of logs and metrics to AWS, while delivering reduced time to market, low latency,
enhanced security, and lower total costs.

With Event APIs, you can enable the following network communication types.

• Unicast

• Multicast

• Broadcast

• Batch publishing and messaging

This allows you to build the following types of interactive and collaborative experiences.

• Live chat and messaging

• Sports and score updates

• Real-time in-app alerts and notifications

• Live commenting and activity feeds

AWS AppSync Events simplifies real-time application development by providing the following
features.

• Automatic management of WebSocket connections and scaling

• Built-in support for broadcasting events to large numbers of subscribers

• Flexible event filtering and transformation capabilities

• Fine-grained authentication and authorization

• Seamless integration with other AWS services and external systems for event-driven
architectures

1

AWS AppSync Events Developer Guide

Whether you're building a small prototype or a large-scale production application, AWS AppSync
Events enables you to incorporate real-time experiences using a fully managed and scalable
platform, so you can focus on your application logic instead of the undifferentiated heavy lifting of
managing infrastructure.

AWS AppSync Events features

WebSocket and HTTP Support

Clients can publish events over HTTP and subscribe to channels using WebSockets.

Event APIs provide WebSocket endpoints that enable real-time and pub/sub capabilities.

Channel namespaces and channels

Events are published to channels, that are grouped under namespaces.

Namespaces allow you to define authentication and authorization rules and serverless functions
that apply to all channels within that namespace.

Namespace handlers

You can use the following two types of handlers to configure functions that run in response to
publish and subscribe actions.

• OnPublish - Runs when an event is published to a channel, allowing you to transform, filter,
and reject events.

• OnSubscribe - Runs when a client subscribes to a channel, allowing you to customize the
behavior or reject the subscription request.

Flexible authentication and authorization

Event APIs supports various authentication mechanisms (API key, IAM, Amazon Cognito, OIDC,
and Lambda authorizers) that can be configured at the API level and customized at the channel
namespace level.

Channel subscriptions

Clients receive events for channels they are subscribed to.

Wildcard Channel Subscriptions

Clients can subscribe to a group of related channels using a wildcard syntax (e.g., "namespace/
channel/*"), allowing them to receive events from multiple channels without explicitly
subscribing to each one.

AWS AppSync Events features 2

AWS AppSync Events Developer Guide

Scalable Event Broadcasting

The Event API automatically scales to handle large numbers of concurrent connections and can
efficiently broadcast events to all subscribed clients.

Integration with the AWS Ecosystem

AWS AppSync Events integrates with other AWS services like Amazon CloudWatch Logs,
CloudWatch metrics, and AWS WAF. You can easily implement event-driven architectures by
publishing directly from services like Amazon EventBridge, and AWS Lambda. Amazon Cognito
is directly supported as an authorization type.

Pricing for AWS AppSync Events

When you use AWS AppSync Events, you pay only for what you use with no minimum fees or
mandatory service usage. For more information, see AWS AppSync pricing.

Pricing for AWS AppSync Events 3

https://aws.amazon.com/appsync/pricing/

AWS AppSync Events Developer Guide

AWS AppSync Events concepts

Before you get started, review the following topics to help you understand the fundamental
concepts of AWS AppSync Events.

API

An Event API provides real-time capabilities by enabling you to publish events over HTTP and
subscribe to events over WebSockets. An Event API has one or more channel namespaces that
define the capabilities and behavior of channels that events can be addressed to. To learn more
about configuring an API, see Configuring authorization and authentication to secure Event APIs
and Configuring custom domain names for Event APIs.

Event

An event is a JSON-formatted unit of data that can be published to channels on your API and
received by clients that are interested in that channel. Events can contain any arbitrary data you
want to transmit in real-time, such as user actions, data updates, system notifications, or sensor
readings. Events are designed to be lightweight and efficient, with a maximum size of 240 KB per
event.

Channel

Channels are the routing mechanism for directing events from publishers to subscribers. You
can think of a channel as a "topic" or "subject" that represents a stream of related events. Clients
subscribe to channels in order to receive events published to those channels in real-time. Channels
are ephemeral and can be created on-demand.

Channel namespace

A channel namespace (or just namespace for short) provides a way to define the capabilities and
behaviors of the channels associated with it. Each namespace has a name. This name represents
the starting segment (the prefix) of a channel path. Any channel where the first segment in the
path matches the name of a namespace, belongs to that namespace. For example, any channel
with a first segment of default, such as /default/messages, /default/greetings, and

API 4

AWS AppSync Events Developer Guide

/default/inbox/user belongs to the namespace named default. To learn more about
namespaces, see Understanding channel namespaces.

Event handler

An event handler is a function defined in a namespace. An event handler is a custom function to
process published events before they are broadcast to subscribers. A event handler can also be
used to process subscription requests when clients try to subscribe to a channel.

Publishing

Publishing is the act of sending a batch of events to your Event API. Published events can be
broadcasted to subscribed clients. Publish is done over HTTP.

Subscribing

Subscribing is the act of listening for events on a specific channel or subset of channels over an
Event API WebSocket. Clients that subscribe can receive broadcast events in real-time. Clients can
establish multiple subscriptions over a single WebSocket.

Event handler 5

AWS AppSync Events Developer Guide

Getting started with AWS AppSync Events

You can quickly get started with AWS AppSync Events by creating an AWS AppSync Event API and
accessing it from a client. The first tutorial in this section will guide you through creating your
first AWS AppSync Event API in the AWS AppSync console. Then you will learn to publish and
subscribe to your event. The second tutorial guides you through creating a React app with Vite and
an Amplify client. Then you will use this Amplify client to publish and subscribe messages.

Topics

• Prerequisites

• Creating an AWS AppSync Event API

• Getting started with the Amplify Events client

Prerequisites

Before you begin the getting started tutorials, confirm that you have completed the prerequisites
to get set up with an AWS account.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Prerequisites 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS AppSync Events Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 7

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS AppSync Events Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Account credentials

Although you can use your root user credentials to access AWS AppSync, we recommend that
you use an AWS Identity and Access Management (IAM) account instead. You can use the
AWSAppSyncAdministrator managed policy to grant your IAM account the correct permissions to
manage your AWS AppSync resources.

Set up the AWS Command Line Interface

You can use the AWS Command Line Interface (CLI) to manage your AWS AppSync resources. For
information about how to install and configure the AWS CLI, see Getting started with the AWS CLI
in the AWS Command Line Interface User Guide.

Creating an AWS AppSync Event API

AWS AppSync Events allows you to create Event APIs to enable real-time capabilities in your
applications. In this section, you create an API with a default channel namespace. You’ll then use
the AWS AppSync console to publish messages and subscribe to messages sent to channels in the
namespace.

In this tutorial you will complete the following tasks.

Topics

• Step 1: Create an event API using the AWS AppSync console

Account credentials 8

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/appsync/latest/devguide/security_iam_policy_list.html#security-iam-awsmanpol-AWSAppSyncAdministrator
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS AppSync Events Developer Guide

• Step 2: Publish and subscribe to receive your first event

• Step 3: Use wildcards in your channel subscription

• Step 4: Publish in batches

Step 1: Create an event API using the AWS AppSync console

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. On the AWS AppSync console service page, choose Create API, then choose Event API.

3. On the Create Event API page, in the API details section, do the following:

a. For API enter the name of your API.

b. (optional) Enter the contact name for the API.

4. Choose Create.

You have now created an Event API. The API is configured with API Key as an authorization mode
for connect, publish, and subscribe actions. A default channel namespace with the name “default”
has also been created.

To learn more about customizing authorization, see Configuring authorization and authentication
to secure Event APIs. To learn more about channel namespaces, see Understanding channel
namespaces

Step 2: Publish and subscribe to receive your first event

Use the following instructions to publish an event.

1. In the AWS AppSync console choose the Pub/Sub Editor tab for the Event API that you
created in step 1.

2. In the Publish section, for Channel enter default in the first text box and enter /messages
in the second text box.

3. In the code editor, enter the following JSON payload.

[{"message": "Hello world!"}]

4. Choose Publish.

5. The publisher logs table displays a response similar to the following to confirm success.

Step 1: Create an event API using the AWS AppSync console 9

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

{
 "failed": [],
 "successful": [
 {
 "identifier": "53287bee-ae0d-42e7-8a90-e9d2a49e4bd7",
 "index": 0
 }
]
}

Now use the following instructions to subscribe to recieve messages.

1. In the Subscribe section of the editor, choose Connect to connect to your WebSocket
endpoint.

2. For Channel, enter the name of the channel you want to subscribe to, /default/messages,
and then choose Subscribe.

3. In the code editor, choose Publish again. You should receive a new data event in the subscriber
logs table with the published event.

Step 3: Use wildcards in your channel subscription

You can specify a wildcard "*" at the end of a channel path to receive events published to all
channels that match. Use the following instructions to set up a wildcard channel subscription for
your Event API.

1. If you are still subscribed to the channel from step 2, choose Unsubscribe.

2. In the Subscribe section, for Channel enter /default/*.

3. In the code editor section, choose Publish again to send another event. You should receive a
new data event in the subscriber logs table

4. In the Publish section, change the Channel name to /default/greetings/tutorial.

5. Choose Publish. You receive the message in the Subscribe section

Step 3: Use wildcards in your channel subscription 10

AWS AppSync Events Developer Guide

Step 4: Publish in batches

You can publish events in batches of up to five. Subscribed clients receive each message
individually.

1. In the AWS AppSync console, continue in the Pub/Sub Editor tab using the Event API that you
were working with in step 3.

2. In the Publish section JSON code editor, enter the following:

[
 {"message": "Hello world!"},
 {"message": "Bonjour lemonde!"},
 "Hola Mundo!"
]

3. Choose Publish.

4. In the Subscribe log table, you receive 3 data events.

Getting started with the Amplify Events client

You can connect to your AWS AppSync Event API using any HTTP and WebSocket client, and you
can also use the Amplify client for JavaScript. This getting started tutorial guides you through
connecting to an Event API from a JavaScript React application.

In this tutorial you will complete the following tasks.

Topics

• Step 1: Create an event API

• Step 2: Deploy a React app with Vite

• Step 3: Configure the Amplify client

• Step 4: Connect to a channel and receive messages

• Step 5: Send a message from your app

Step 1: Create an event API

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. On the AWS AppSync console service page, choose Create API, then choose Event API.

Step 4: Publish in batches 11

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

3. On the Create Event API page, in the API details section, do the following:

a. For API enter the name of your API.

b. (optional) Enter the contact name for the API.

4. Choose Create.

You have now created an Event API. The API is configured with API Key as an authorization mode
for connect, publish, and subscribe actions. A default channel namespace with the name “default”
has also been created.

To learn more about customizing authorization, see Configuring authorization and authentication
to secure Event APIs. To learn more about channel namespaces, see Understanding channel
namespaces

Step 2: Deploy a React app with Vite

1. From your local work environment, run the following command in a terminal window to create
a new Vite app for React.

npm create vite@latest appsync-events-app -- --template react

2. Run the following command to switch to the appsync-events-app directory and install the
dependencies and the Amplify library.

cd appsync-events-app
npm install
npm install aws-amplify

3. Open a different terminal window and cd into your appsync-events-app directory. Run the
following command to start your sever in dev mode.

npm run dev

(Optional) Configure Tailwind CSS

You can set up Tailwind CSS to style your project.

1. Open a terminal window and run the following commands to install the dependencies.

Step 2: Deploy a React app with Vite 12

AWS AppSync Events Developer Guide

npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p

2. Update the tailwind.config.js file with the following code.

/** @type {import('tailwindcss').Config} */
export default {
 content: [
 "./index.html",
 "./src/**/*.{js,ts,jsx,tsx}",
],
 theme: {
 extend: {},
 },
 plugins: [],
}

3. Set the content of ./src/index.css to the following.

@tailwind base;
@tailwind components;
@tailwind utilities;

4. Use the following command to start and restart your Vite app from the terminal where it is
currently running.

npm run dev

Step 3: Configure the Amplify client

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. Open the Integration tab for the Event API that you created in step 1.

3. Download your configuration file.

4. Save the amplify_outputs.json file in your project's src directory. Your configuration file
will look like the following.

{
 "API": {

Step 3: Configure the Amplify client 13

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

 "Events": {
 "endpoint": "https://abc1234567890.aws-appsync.us-west-2.amazonaws.com/
event",
 "region": "us-west-2",
 "defaultAuthMode": "apiKey",
 "apiKey": "da2-your-api-key-1234567890"
 }
 }
}

Important

You must set defaultAuthMode to apiKey and not API_KEY.

Step 4: Connect to a channel and receive messages

1. Update your App.jsx file with the following code.

import { useEffect, useState, useRef } from 'react'
import './App.css'

import { Amplify } from 'aws-amplify'
import { events } from 'aws-amplify/data'
import config from './amplify_outputs.json'

Amplify.configure(config)

export default function App() {
 const [messages, setMessages] = useState([])
 const [room, setRoom] = useState('')
 const counterRef = useRef(null)

 useEffect(() => {
 if (!room || !room.length) {
 return
 }
 let timeoutID
 const pr = events.connect(`/default/${room}`)
 pr.then((channel) => {
 channel.subscribe({
 next: (data) => {

Step 4: Connect to a channel and receive messages 14

AWS AppSync Events Developer Guide

 setMessages((messages) => [...messages, data.message])
 if (timeoutID) {
 clearTimeout(timeoutID);
 }
 counterRef.current?.classList.add('animate-bounce')
 timeoutID = setTimeout(() => {
 counterRef.current?.classList.remove('animate-bounce')
 }, 3000);
 },
 error: (value) => console.error(value),
 })
 })

 return () => {
 pr?.then((channel) => channel?.close())
 }
 }, [room])

 return (
 <div className='max-w-screen-md mx-auto'>
 <h2 className='my-4 p-4 font-semibold text-xl'>AppSync Events - Messages</h2>
 <button
 type="button"
 className='border rounded-md px-4 py-2 items-center text-sm font-medium
 transition-colors focus-visible:outline-none focus-visible:ring-1 focus-
visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-sky-200
 shadow hover:bg-sky-200/90'
 onClick={() => {
 const room = prompt('Room:')
 if (room && room.length) {
 setMessages([])
 setRoom(room.trim().replace(/\W+/g, '-'))
 }
 }}
 >
 set room
 </button>
 <div className='my-4 border-b-2 border-sky-500 py-1 flex justify-between'>
 <div>
 {room ? (

 Currently in room: {room}

) : (

Step 4: Connect to a channel and receive messages 15

AWS AppSync Events Developer Guide

 Pick a room to get started
)}
 </div>
 <div className='flex items-center uppercase text-xs tracking-wider font-
semibold'>
 <div className='mr-2'>Messages count:</div>
 <span ref={counterRef} className='transition-all inline-flex
 items-center rounded-md bg-sky-100 px-2.5 py-0.5 text-xs font-medium text-
sky-900'>{messages.length}</div>
 </div>
 <section id="messages" className='space-y-2'>
 {messages.map((message, index) => (
 <div
 key={index}
 className='border-b py-1 flex justify-between px-2'
 ><div>
 {message}
 </div>
 <div> </div>
 </div>
))}
 </section>
 </div>
)
}

2. Open the app in your browser and choose the set room button to set the room to "greetings".

3. Open the AWS AppSync console, and go to the Pub/Sub Editor tab for your API.

4. Set your channel to /default/greetings. Choose the "default" namespace and set the rest
of the path to /greetings.

5. Paste the following into the editor to send the event.

[
 {
 "message": "hello world!"
 }
]

6. You should see the message in your app.

7. Choose the set room button again to select another room. Send another event in the Pub/Sub
Editor to the /default/greetings channel. You do not see that message in your app.

Step 4: Connect to a channel and receive messages 16

AWS AppSync Events Developer Guide

Step 5: Send a message from your app

1. Open your App component and add the following line of code at the top of the file.

const [message, setMessage] = useState('')

2. In the same file, locate the last section element and add the following code.

<section>
 <form
 disabled={!room}
 className='w-full flex justify-between mt-8'
 onSubmit={async (e) => {
 e.preventDefault()
 const event = { message }
 setMessage('')
 await events.post(`/default/${room}`, event)
 }}
 >
 <input
 type="text"
 name="message"
 placeholder="Message:"
 className='flex flex-1 rounded-md border border-input px-3
 py-1 h-9 text-sm shadow-sm transition-colors focus-visible:outline-none
 focus-visible:ring-1 focus-visible:ring-ring disabled:cursor-not-allowed
 disabled:opacity-50 bg-transparent'
 value={message}
 disabled={!room}
 onChange={(e) => setMessage(e.target.value)}
 />
 <button
 type="submit"
 className='ml-4 border rounded-md px-4 flex items-center text-sm font-
medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-
visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-sky-200
 shadow hover:bg-sky-200/90'
 disabled={!room || !message || !message.length}>
 <svg xmlns="http://www.w3.org/2000/svg" className='size-4' width="24"
 height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" strokeWidth="2"
 strokeLinecap="round" strokeLinejoin="round"><path d="M14.536 21.686a.5.5 0 0
 0 .937-.024l6.5-19a.496.496 0 0 0-.635-.635l-19 6.5a.5.5 0 0 0-.024.937l7.93
 3.18a2 2 0 0 1 1.112 1.11z" /><path d="m21.854 2.147-10.94 10.939" /></svg>

Step 5: Send a message from your app 17

AWS AppSync Events Developer Guide

 </button>
 </form>
 </section>

3. You can now send a message to a room that you select, directly from your app.

Step 5: Send a message from your app 18

AWS AppSync Events Developer Guide

Understanding channel namespaces

Channel namespaces (or just namespaces for short) define the channels that are available on your
Event API, and the capabilities and behaviors of these channels. Channel namespaces provide a
scalable approach to managing large numbers of channels. Instead of configuring each channel
individually, developers can apply settings across an entire namespace.

Each namespace has a name. This name represents the starting segment (the prefix) of a channel
path. Any channel where the first segment in the path matches the name of a namespace, belongs
to that namespace. For example, any channel with a first segment of default, such as /default/
messages, /default/greetings, and /default/inbox/user belongs to the namespace
named default. A channel namespace is made up of a maximum of five segments.

In a sports-related Event API example, you could have namespaces such as basketball, soccer,
and baseball, with channels within each namespace such as basketball/games/1, soccer/
scores, and baseball/players.

You can only publish and subscribe to channels that belong to a defined namespace. However, a
channel is ephemeral and is created on-demand when a client needs to publish or subscribe to it.

Channel namespace authorization

When you define your Event API, you must configure the default authorization for connecting,
publishing and subscribing to an Event API. The publishing and subscribing authorization
configuration is automatically applied to all namespaces. You can override this configuration at the
namespace. To learn more about authorization, see Configuring authorization and authentication
to secure Event APIs.

Channel namespace handlers and event processing

You can define event handlers on channel namespaces. Event handlers are functions that run on
AWS AppSync's JavaScript runtime and enable you to run custom business logic. You can use an
event handler to process published events or process and authorize subscribe requests.

Channel namespace authorization 19

AWS AppSync Events Developer Guide

Using the onPublish event handler

The onPublish handler runs when events are received on a channel. The handler is called with the
list of events. You can use the handler to either filter events or transform the events before they
are sent to subscribed clients.

The default API behavior for the onPublish handler simply forwards all received events to be
broadcast. The onPublish function receives a context object as its first argument.

The following code demonstrates the default behavior for the onPublish handler.

export function onPublish(ctx) {
 return ctx.events
}

The Context object holds a list of events that are being handled. The type of each event is the
following.

type IncomingEvent<T> = {
 /**
 * The ID associated with the event.
 */
 id: String;
 /**
 * The payload associated with the event.
 */
 payload: T;
};

Processing events

The onPublish handler can act as an interceptor that can modify the list of events before they are
broadcast. The following processing rules apply.

• Your function must return an array.

• Each event must match the Event type shape, and must have an ID that matches the ID of an
incoming event.

• Duplicate event IDs are not allowed.

• Null objects in the returned array are dropped.

Using the onPublish event handler 20

AWS AppSync Events Developer Guide

The type of outgoing events is the following.

export type OutgoingEvent<T extends any = any> = {
 /**
 * The ID associated with the event.
 */
 id: String;
 /**
 * The payload associated with the event. Not required if an error is defined.
 */
 payload?: T;
 /**
 * The error associated with the event. Populating this field with a value will
 * result in this error being marked as a failure and not propogated through the
 * system.
 */
 error?: String;
}

Filtering

You can filter out events, and only return the list of events you want subscribers to receive. For
example, the handler below filters events and only forwards those that have “odds” greater than
zero.

export function onPublish(ctx) {
 return ctx.events.filter((event) => event.payload.odds > 0)
}

Transforming

You can also use a handler to transform events. Do this by mapping your events to the shape that
you want. For example, the handler below formats each event to include a timestamp and changes
the format of the message property.

import { util } from '@aws-appsync/utils'
export function onPublish(ctx) {
 return ctx.events.map(event => ({
 id: event.id,
 payload: {
 ...event.payload,

Using the onPublish event handler 21

AWS AppSync Events Developer Guide

 message: event.payload.message.toUpperCase()
 timestamp: util.time.nowISO8601()
 }
 }))
}

Note

Returning an event with an unknown id value results in an error.

Returning an error

To explicitly reject an event and notify the publisher that it was not accepted, add an error property
containing an error message to the processed event. The following example, rejects any event that
does not include a message property.

export function onPublish(ctx) {
 return ctx.events.map(event => {
 if (!event.payload.message || event.payload.message.length === 0) {
 event.error = "A message must be provided"
 }
 return event
 })
}

Using the onSubscribe event handler

The onSubscribe handler is called each time a client attempts to subscribe to a channel. You can
use this handler to run custom business logic, such as logging specific information, or applying
additional static authorization checks.

In the following example, the onSubscribe handler logs a message whan an admin user subscribes
to a channel.

export function onSubscribe(ctx) {
 if (ctx.identity.groups.includes('admin')) {
 console.log(`Admin ${ctx.identity.sub} subscribed to ${ctx.channel}`)
 }
}

Using the onSubscribe event handler 22

AWS AppSync Events Developer Guide

You can reject a subscription by calling util.unauthorized(). The following onSubscribe
handler restricts Amazon Cognito User Pool authenticated users to their own channel:

export function onSubscribe(ctx: Context) {
 if (ctx.info.channel.path !== `/messages/inbox/${ctx.identity.username}`) {
 console.log(`user ${ctx.identity.username} tried connecting to wrong channel:
 ${ctx.channel}`)
 util.unauthorized()
 }

Now clients can only subscribe to channels that match the pattern /messages/inbox/
[username].

Using the onSubscribe event handler 23

AWS AppSync Events Developer Guide

Configuring authorization and authentication to secure
Event APIs

AWS AppSync Events offers the following authorization types to secure Event APIs: API keys,
Lambda, IAM, OpenID Connect, and Amazon Cognito user pools. Each option provides a different
method of security.

1. API Key authorization: A simple key-based security option, with keys generated by the AppSync
service.

2. Lambda authorization: Enables custom authorization logic, evaluated by an Lambda function .

3. IAM authorization: Utilizes AWS's signature version 4 signing process, allowing fine-grained
access control through IAM policies.

4. OpenID Connect authorization: Integrates with OIDC-compliant services for user
authentication.

5. Amazon Cognito user pools: Implements group-based access control using Amazon Cognitos
user management features.

Authorization types

There are five ways you can authorize applications to interact with your AWS AppSync Event API.
You specify which authorization type you use by specifying one of the following authorization type
values in your AWS AppSync API or AWS CLI call:

• API_KEY

For using API keys.

• AWS_LAMBDA

For using an AWS Lambda function.

• AWS_IAM

For using AWS Identity and Access Management permissions.

• OPENID_CONNECT

For using your OpenID Connect provider.

Authorization types 24

AWS AppSync Events Developer Guide

• AMAZON_COGNITO_USER_POOLS

For using an Amazon Cognito user pool.

When you define your API, you configure the authorization mode to connect to your Event API
WebSocket. You also configure the default authorization modes to use when publishing and
subscribing to messages. You can use different authorization modes for each configuration. For
example, you might want your publisher to use IAM authorization for a backend process running on
an Amazon EC2 instance, but you want your clients to use an API key to subscribe to messages.

Optionally, you can also configure the authorization mode to use for publishing and subscribing to
messages on a namespace. When defined, these settings override the default configuration on your
API. This enables you to have different settings for different namespaces on your API.

To learn more about using authorization types in your WebSocket operations, see Understanding
the Event API WebSocket protocol

To learn more about publishing events using the HTTP endpoint, see Publish via HTTP.

API_KEY authorization

API Keys allow unauthenticated clients to securely use your API. An API key is a hard-coded value
in your application that is generated by the AWS AppSync service. You can rotate API keys from the
AWS Management Console, the AWS CLI, or from the AWS AppSync API Reference.

API keys are configurable for up to 365 days, and you can extend an existing expiration date for up
to another 365 days from that day.

On the client, the API key is specified by the header x-api-key. For example, if your API_KEY is
ABC123, you can publish a message to a channel using the HTTP endpoint via curl as follows:

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "x-api-key:ABC123" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

API_KEY authorization 25

https://docs.aws.amazon.com/appsync/latest/APIReference/Welcome.html

AWS AppSync Events Developer Guide

AWS_LAMBDA authorization

You can implement your own API authorization logic using an AWS Lambda function. When you
use Lambda functions for authorization, the following constraint applies.

• A Lambda function authorizer must not return more than 5MB of contextual data.

For example, if your authorization token is 'ABC123', you can publish via curl as follows:

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "Authorization:ABC123" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

Lambda functions are called before connection, publish, and subscription attempts. The return
value can be cached based on the API ID and the authentication token. By default, caching is not
turned on, but this can be enabled at the API level or by setting the ttlOverride value in a
function's return value.

You can also specify a regular expression that validates authorization tokens before the function is
called. These regular expressions are used to validate that an authorization token is of the correct
format before your function is called. Any request using a token which does not match this regular
expression will be denied automatically.

Lambda functions used for authorization require a principal policy for appsync.amazonaws.com
to be applied on them to allow AWS AppSync to call them. This action is done automatically
in the AWS AppSync console; The AWS AppSync console does not remove the policy. For more
information on attaching policies to Lambda functions, see Working with resource-based IAM
policies in Lambda in the AWS Lambda Developer Guide.

The Lambda function you specify will receive an event with the following shape:

{
 "authorizationToken": "ExampleAUTHtoken123123123",
 "requestContext": {
 "apiId": "aaaaaa123123123example123",

AWS_LAMBDA authorization 26

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke

AWS AppSync Events Developer Guide

 "accountId": "111122223333",
 "requestId": "f4081827-1111-4444-5555-5cf4695f339f",
 "operation": "EVENT_CONNECT",
 "channelNamespaceName": "news",
 "channel": "/news/latest"
 },
 "requestHeaders": {
 "header": "value"
 }
}

The operation property indicates the operation that is being evaluated and can have the following
values:

• EVENT_CONNECT

• EVENT_SUBSCRIBE

• EVENT_PUBLISH

The event object contains the headers that were sent in the request from the application client to
AWS AppSync.

The authorization function must return at least isAuthorized, a boolean indicating whether the
request is authorized to execute the operation on the Event API.

If this value is true, execution of the Event API continues. If this value is false, an
UnauthorizedException is raised.

Accepted keys

isAuthorized (boolean, required)

A boolean value indicating if the value in authorizationToken is authorized to execute the
operation on the Event API.

If this value is true, execution of the Event API continues. If this value is false, an
UnauthorizedException is raised

handlerContext (JSON object, optional)

A JSON object visible as $ctx.identity.handlerContext in your handlers. The object is a
map of strings. For example, if the following structure is returned by a Lambda authorizer:

AWS_LAMBDA authorization 27

AWS AppSync Events Developer Guide

{
 "isAuthorized":true
 "handlerContext": {
 "banana":"very yellow",
 "apple":"very green"
 }
}

The value of ctx.identity.handlerContext.apple in handlers will be very green. The
handlerContext object only supports key-value pairs. Nested keys are not supported.

Warning

The total size of this JSON object must not exceed 5MB.

ttlOverride (integer, optional)

The number of seconds that the response should be cached for. If no value is returned, the
value from the API is used. If this is 0, the response is not cached.

Lambda authorizers have a timeout of 10 seconds. We recommend designing functions to execute
in the shortest amount of time possible to scale the performance of your API.

Multiple AWS AppSync APIs can share a single authentication Lambda function. Cross-account
authorizer use is not supported.

The following example describes a Lambda function that demonstrates the various authentication
and failure states that a Lambda function can have when used as an AWS AppSync authorization
mechanism.

def handler(event, context):
 # This is the authorization token passed by the client
 token = event.get('authorizationToken')
 # If a lambda authorizer throws an exception, it will be treated as unauthorized.
 if 'Fail' in token:
 raise Exception('Purposefully thrown exception in Lambda Authorizer.')

 if 'Authorized' in token and 'ReturnContext' in token:

AWS_LAMBDA authorization 28

AWS AppSync Events Developer Guide

 return {
 'isAuthorized': True,
 'handlerContext': {
 'key': 'value'
 }
 }

 # Authorized with no context
 if 'Authorized' in token:
 return {
 'isAuthorized': True
 }

 # never cache response
 if 'NeverCache' in token:
 return {
 'isAuthorized': True,
 'ttlOverride': 0
 }

 # not authorized
 if 'Unauthorized' in token:
 return {
 'isAuthorized': False
 }

 # if nothing is returned, then the authorization fails.
 return {}

AWS_IAM authorization

This authorization type enforces the AWS signature version 4 signing process on your API. You can
associate AWS Identity and Access Management (IAM) access policies with this authorization type.
Your application can leverage this association by using an access key (which consists of an access
key ID and secret access key) or by using short-lived, temporary credentials provided by Amazon
Cognito Federated Identities.

Use the following example if you want an IAM role that has permission to perform all data
operations on an API.

{

AWS_IAM authorization 29

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS AppSync Events Developer Guide

"Version": "2012-10-17",
 "Statement": [
 {
"Effect": "Allow",
 "Action": [
 "appsync:connect",
 "appsync:publish",
 "appsync:subscribe",
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/{APIID}/*"
]
 }
]
}

Use the following example to restrict access to a specific API and a specific channel namespace.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:connect",
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/{APIID}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "appsync:publish",
 "appsync:subscribe"
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/{APIID}/channelNamespace/
{NAME}"
]
 }
]
}

AWS_IAM authorization 30

AWS AppSync Events Developer Guide

OPENID_CONNECT authorization

This authorization type enforces OpenID connect (OIDC) tokens provided by an OIDC-compliant
service. Your application can leverage users and privileges defined by your OIDC provider for
controlling access.

An Issuer URL is the only required configuration value that you provide to AWS AppSync
(for example, https://auth.example.com). This URL must be addressable over HTTPS.
AWS AppSync appends /.well-known/openid-configuration to the issuer URL and
locates the OpenID configuration at https://auth.example.com/.well-known/openid-
configuration per the OpenID Connect Discovery specification. It expects to retrieve an
RFC5785 compliant JSON document at this URL. This JSON document must contain a jwks_uri
key, which points to the JSON Web Key Set (JWKS) document with the signing keys. AWS AppSync
requires the JWKS to contain JSON fields of kty and kid.

AWS AppSync supports a wide range of signing algorithms.

Signing algorithms

RS256

RS384

RS512

PS256

PS384

PS512

HS256

HS384

HS512

ES256

ES384

OPENID_CONNECT authorization 31

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc5785

AWS AppSync Events Developer Guide

Signing algorithms

ES512

We recommend that you use the RSA algorithms. Tokens issued by the provider must include the
time at which the token was issued (iat) and may include the time at which it was authenticated
(auth_time). You can provide TTL values for issued time (iatTTL) and authentication time
(authTTL) in your OpenID Connect configuration for additional validation. If your provider
authorizes multiple applications, you can also provide a regular expression (clientId) that is used
to authorize by client ID. When the clientId is present in your OpenID Connect configuration,
AWS AppSync validates the claim by requiring the clientId to match with either the aud or azp
claim in the token.

To validate multiple client IDs use the pipeline operator (“|”) which is an “or” in regular expression.
For example, if your OIDC application has four clients with client IDs such as 0A1S2D, 1F4G9H,
1J6L4B, 6GS5MG, to validate only the first three client IDs, you would place 1F4G9H|1J6L4B|
6GS5MG in the client ID field.

AMAZON_COGNITO_USER_POOLS authorization

This authorization type enforces OIDC tokens provided by Amazon Cognito user pools. Your
application can leverage the users and groups in your handlers to apply custom business rules.

When using Amazon Cognito user pools, you can create groups that users belong to. This
information is encoded in a JWT token that your application sends to AWS AppSync in an
authorization header with each request.

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "Authorization:JWT_TOKEN" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

AMAZON_COGNITO_USER_POOLS authorization 32

AWS AppSync Events Developer Guide

Circumventing SigV4 and OIDC token authorization limitations

The following methods can be used to circumvent the issue of not being able to use your SigV4
signature or OIDC token as your Lambda authorization token when certain authorization modes are
enabled.

If you want to use the SigV4 signature as the Lambda authorization token when the AWS_IAM and
AWS_LAMBDA authorization modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the SigV4
signature.

• To retrieve the original SigV4 signature, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original SigV4
signature for authentication.

If you want to use the OIDC token as the Lambda authorization token when the OPENID_CONNECT
authorization mode or the AMAZON_COGNITO_USER_POOLS and AWS_LAMBDA authorization
modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the OIDC
token. The Lambda authorization token should not contain a Bearer scheme prefix.

• To retrieve the original OIDC token, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original OIDC token
for authentication.

Circumventing SigV4 and OIDC token authorization limitations 33

AWS AppSync Events Developer Guide

Publish via HTTP

AWS AppSync Events allows you to publish events via your API’s HTTP endpoint using a POST
operation. Publishing is the only supported action over the endpoint.

Publish steps

1. Send a POST request to the address: https://HTTP_DOMAIN/event.

2. Add the authorization header(s) required to authorize your request.

3. Specify the following in the request body:

• The channel that you are publishing to.

• The list of events you are publishing. You can publish up to 5 events in a batch.

Each specified event in your publish request must be a stringified valid JSON value.

Publish example

The following is an example of a request.

{
 "method": "POST",
 "headers": {
 "content-type": "application/json",
 "x-api-key": "da2-your-api-key"
 },
 "body": {
 "channel": "default/channel",
 "events": [
 "{\"event_1\":\"data_1\"}",
 "{\"event_2\":\"data_2\"}"
]
 }
}

You can use your Browser’s fetch API to publish the events. The following example
demonstrates this.

await fetch(`https://${HTTP_DOMAIN}/event`, {
 "method": "POST",

34

AWS AppSync Events Developer Guide

 "headers": {
 "content-type": "application/json",
 "x-api-key": "da2-your-api-key"
 },
 "body": {
 "channel": "default/channel",
 "events": [
 "{\"event_1\":\"data_1\"}",
 "{\"event_2\":\"data_2\"}"
]
 }
})

To learn more about the different authorization types that AWS AppSync Events supports, see
Configuring authorization and authentication to secure Event APIs.

35

AWS AppSync Events Developer Guide

Understanding the Event API WebSocket protocol

AWS AppSync Events' WebSocket API allows a client to subscribe and receive events in real-time.
Establishing a valid connection and subscribing to receive events is a simple multi-step process.

First, a client establishes a WebSocket connection with the AWS real-time endpoint, sends a
connection initialization message, and waits for acknowledgment.

After a successful connection is established, the client registers subscriptions by sending a
“subscribe” message with a unique ID and a channel path of interest. AWS AppSync confirms
successful subscriptions with acknowledgment messages. The client then listens for subscription
events, which are triggered when a publisher publishes events that are broadcast by the service. To
maintain the connection, AWS AppSync sends periodic keep-alive messages.

When finished, the client unsubscribes by sending “unsubscribe” messages. This system supports
multiple subscriptions on a single WebSocket connection and accommodates various authorization
modes, including API keys, Amazon Cognito user pools, IAM, and Lambda.

The following diagram demonstrates the WebSocket protocol message flow between the
WebSocket client and the real-time endpoint.

WebSocket protocol overview

36

AWS AppSync Events Developer Guide

37

AWS AppSync Events Developer Guide

In the preceeding diagram, the following WebSocket steps occur in the message flow.

• A client establishes a WebSocket connection with the AWS AppSync real-time endpoint. If there
is a network error, the client should do a jittered exponential backoff. For more information, see
Exponential backoff and jitter on the AWS Architecture Blog.

• After successfully establishing the WebSocket connection, the client sends a connection_init
message.

• The client waits for a connection_ackconnection_ack message from AWS AppSync. This
message includes a connectionTimeoutMs parameter, which is the maximum wait time in
milliseconds for a "ka" (keep-alive) message.

• AWS AppSync sends "ka" messages periodically. The client keeps track of the time that it received
each "ka" message. If the client doesn't receive a "ka" message within connectionTimeoutMs
milliseconds, the client should close the connection.

• The client registers the subscription by sending a subscribe message. A single WebSocket
connection supports multiple subscriptions, even if they are in different authorization modes.

• The client waits for AWS AppSync to send subscribe_success messages to confirm successful
subscriptions.

• The client listens for subscription events, which are sent after events are published to the
channel of interest.

• The client unregisters the subscription by sending an unsubscribe subscription message.

• After unregistering all subscriptions and checking that there are no messages transferring
through the WebSocket, the client can disconnect from the WebSocket connection.

38

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS AppSync Events Developer Guide

Handshake details to establish the WebSocket connection

All interactions with the AWS AppSync real-time endpoint begin with establishing a WebSocket
connection. The connection remains open as long as the client remains connected, up to a
maximum of 24 hours. Connecting is an operation that requires authorization credentials to
complete the handshake. To connect and initiate a successful handshake with AWS AppSync, a
WebSocket client needs the following information:

• The AWS AppSync Events realtime and HTTP endpoints

• The authorization details

To authorize your WebSocket connection establishment, send the authorization information as a
WebSocket subprotocol. To do this, a client must wrap the appropriate authorization credentials in
a JSON object, encode the object in Base64URL format, and append the encoded header string in
the list of subprotocols.

The following JavaScript example converts an authorization object into a base64URL encoded
string.

/**
 * Encodes an object into Base64 URL format
 * @param {*} authorization - an object with the required authorization properties
 **/
function getBase64URLEncoded(authorization) {
 return btoa(JSON.stringify(authorization))
 .replace(/\+/g, '-') // Convert '+' to '-'
 .replace(/\//g, '_') // Convert '/' to '_'
 .replace(/=+$/, '') // Remove padding `=`
}

Next, this example creates the required subprotocol value.

function getAuthProtocol(authorization) {
 const header = getBase64URLEncoded(authorization)
 return `header-${header}`
}

The following example uses bash to create a header, and then uses wscat to connect. You must
specify aws-appsync-event-ws as one of the subprotocols.

Handshake details to establish the WebSocket connection 39

AWS AppSync Events Developer Guide

$ REALTIME_DOMAIN='example1234567890000.appsync-realtime-api.us-west-2.amazonaws.com'
$ HTTP_DOMAIN='example1234567890000.appsync-api.us-east-1.amazonaws.com'
$ API_KEY='da2-12345678901234567890123456'

$ header="{\"host\":\"$HTTP_DOMAIN\", \"x-api-key\":\"$API_KEY\"}"
$ header=`echo "$header" | base64 | tr '+/' '-_' | tr -d '\n='`
$ wscat -p 13 -s "header-$header" -s "aws-appsync-event-ws" -c "wss://$REALTIME_DOMAIN/
event/realtime"

Connected (press CTRL+C to quit)

Discovering the real-time endpoint from the Event API endpoint

AWS AppSync Event APIs are configured with two endpoints: a realtime endpoint and an HTTP
endpoint. You can retrieve your endpoint information by visiting your API’s Settings page in the
AWS Management Console or by running the AWS CLI command aws appsync get-api.

AWS AppSync Events HTTP endpoint

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event

AWS AppSync Events real-time endpoint

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/event/
realtime

Applications can connect to the HTTP endpoint (https://) using any HTTP client, and can connect
to the real-time endpoint (wss://) using any WebSocket client.

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with your
HTTP and real-time endpoints using the following URLs.

AWS AppSync Events HTTP endpoint

https://api.example.com/event

AWS AppSync Events real-time endpoint

wss://api.example.com/event/realtime

Discovering the real-time endpoint from the Event API endpoint 40

AWS AppSync Events Developer Guide

Authorization formatting based on the AWS AppSync API
authorization mode

The format of the authorization subprotocol varies depending on the AWS AppSync authorization
mode. AWS AppSync supports API key, Amazon Cognito user pools, OpenID Connect (OIDC), AWS
Lambda, and IAM authorization modes. The host field in the object refers to the AWS AppSync
Events HTTP endpoint, which is used to validate the connection even if the wss:// call is made
against the real-time endpoint.

Use the following sections to learn how to format the authorization subprotocol for the supported
authorization modes.

API key subprotocol format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name.

• "x-api-key": <string>: The API key configured for the AWS AppSync Event API.

Example

{
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-api-key":"da2-12345678901234567890123456"
}

Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol
format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name.

• "Authorization": <string>: A JWT ID token. The header can use a Bearer scheme.

Example

Authorization formatting based on the AWS AppSync API authorization mode 41

AWS AppSync Events Developer Guide

{

 "Authorization":"eyEXAMPLEiJjbG5xb3A5eW5MK09QYXIrMTJHWEFLSXBieU5WNHhsQjEXAMPLEnM2WldvPSIsImFsZyI6IlEXAMPLEn0.eyEXAMPLEiJhNmNmMjcwNy0xNjgxLTQ1NDItOWYxOC1lNjY0MTg2NjlkMzYiLCJldmVudF9pZCI6ImVkMzM5MmNkLWNjYTMtNGM2OC1hNDYyLTJlZGI3ZTNmY2FjZiIsInRva2VuX3VzZSI6ImFjY2VzcyIsInNjb3BlIjoiYXdzLmNvZ25pdG8uc2lnbmluLnVzZXIuYWRtaW4iLCJhdXRoX3RpbWUiOjE1Njk0NTc3MTgsImlzcyI6Imh0dHBzOlwvXC9jb2duaXRvLWlkcC5hcC1zb3V0aGVhc3QtMi5hbWF6b25hd3MuY29tXC9hcC1zb3V0aGVhc3QtMl83OHY0SVZibVAiLCJleHAiOjE1Njk0NjEzMjAsImlhdCI6MTU2OTQ1NzcyMCwianRpIjoiNTgzZjhmYmMtMzk2MS00YzA4LWJhZTAtYzQyY2IxMTM5NDY5IiwiY2xpZW50X2lkIjoiM3FlajVlMXZmMzd1N3RoZWw0dG91dDJkMWwiLCJ1c2VybmFtZSI6ImVsb3EXAMPLEn0.B4EXAMPLEFNpJ6ikVp7e6DRee95V6Qi-
zEE2DJH7sHOl2zxYi7f-SmEGoh2AD8emxQRYajByz-rE4Jh0QOymN2Ys-ZIkMpVBTPgu-
TMWDyOHhDUmUj2OP82yeZ3wlZAtr_gM4LzjXUXmI_K2yGjuXfXTaa1mvQEBG0mQfVd7SfwXB-
jcv4RYVi6j25qgow9Ew52ufurPqaK-3WAKG32KpV8J4-Wejq8t0c-
yA7sb8EnB551b7TU93uKRiVVK3E55Nk5ADPoam_WYE45i3s5qVAP_-InW75NUoOCGTsS8YWMfb6ecHYJ-1j-
bzA27zaT9VjctXn9byNFZmEXAMPLExw",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"
}

AWS Lambda subprotocol format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name.

• "Authorization": <string>: The value that is passed as authorizationToken.

Example

{

 "Authorization":"M0UzQzM1MkQtMkI0Ni00OTZCLUI1NkQtMUM0MTQ0QjVBRTczCkI1REEzRTIxLTk5NzItNDJENi1BQjMwLTFCNjRFNzQ2NzlCNQo=",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"
}

AWS Identity and Access Management (IAM) subprotocol format

Header content

• "accept": "application/json, text/javascript": A constant string parameter.

• "content-encoding": "amz-1.0": A constant string parameter.

• "content-type": "application/json; charset=UTF-8": A constant string parameter.

• "host": <string>: This is the host for the AWS AppSync Events HTTP endpoint.

• "x-amz-date": <string>: The timestamp must be in UTC and in the following ISO 8601
format: YYYYMMDD'T'HHMMSS'Z'. For example, 20150830T123600Z is a valid timestamp.

AWS Lambda subprotocol format 42

AWS AppSync Events Developer Guide

Don't include milliseconds in the timestamp. For more information, see Elements of an AWS API
request signature in the IAM User Guide.

• "X-Amz-Security-Token": <string>: The AWS session token, which is required when using
temporary security credentials. For more information, see Use temporary credentials with AWS
resources in the IAM User Guide.

• "Authorization": <string>: Signature Version 4 (SigV4) signing information for the AWS
AppSync endpoint. For more information on the signing process, see Create a signed AWS API
request in the IAM User Guide.

The SigV4 signing HTTP request includes a canonical URL, which is the AWS AppSync HTTP
endpoint with /event appended. The service endpoint AWS Region is the same Region where
you're using the AWS AppSync API, and the service name is 'appsync'.

The HTTP request to sign to connect is the following.

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event",
 data: "{}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 }
}

The following is the request to sign when sending a subscribe message. The channel name is
specified in the request.

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event",
 body: "{\"channel\":\"/your/channel/*\"}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 }
}

AWS Identity and Access Management (IAM) subprotocol format 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-signing-elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-signing-elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-create-signed-request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-create-signed-request.html

AWS AppSync Events Developer Guide

Authorization header example

{
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-amz-date": "20200401T001010Z",
 "X-Amz-Security-Token":
 "AgEXAMPLEZ2luX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97Cljq7wOPL8KsxP3YtDuyc/9hAj8PhJ7Fvf38SgoCIQDhJEXAMPLEPspioOztj
+
+pEagWCveZUjKEn0zyUhBEXAMPLEjj//////////8BEXAMPLExODk2NDgyNzg1NSIMo1mWnpESWUoYw4BkKqEFSrm3DXuL8w
+ZbVc4JKjDP4vUCKNR6Le9C9pZp9PsW0NoFy3vLBUdAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse07wN2gG2tH0eKMEXAMPLEQX+sMbytQo8iepP9PZOzlZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnGlSNVx7SMcfovkFDqQamm
+88y1OwwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1F0QNW64S9Nvj
+BwDg3ht2CrNvpwjVYlj9U3nmxE0UG5ne83LL5hhqMpm25kmL7enVgw2kQzmU2id4IKu0C/
WaoDRuO2F5zE63vJbxN8AYs7338+4B4HBb6BZ6OUgg96Q15RA41/
gIqxaVPxyTpDfTU5GfSLxocdYeniqqpFMtZG2n9d0u7GsQNcFkNcG3qDZm4tDo8tZbuym0a2VcF2E5hFEgXBa
+XLJCfXi/77OqAEjP0x7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80VFUJXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr0a196Kq87w5KNMCkcCGFnwBNFLmfnbpNqT6rUBxxs3X5ntX9d8HVtSYINTsGXXMZCJ7fnbWajhg/
aox0FtHX21eF6qIGT8j1z+l2opU+ggwUgkhUUgCH2TfqBj+MLMVVvpgqJsPKt582caFKArIFIvO
+9QupxLnEH2hz04TMTfnU6bQC6z1buVe7h
+tOLnh1YPFsLQ88anib/7TTC8k9DsBTq0ASe8R2GbSEsmO9qbbMwgEaYUhOKtGeyQsSJdhSk6XxXThrWL9EnwBCXDkICMqdntAxyyM9nWsZ4bL9JHqExgWUmfWChzPFAqn3F4y896UqHTZxlq3WGypn5HHcem2Hqf3IVxKH1inhqdVtkryEiTWrI7ZdjbqnqRbl
+WgtPtKOOweDlCaRs3R2qXcbNgVhleMk4IWnF8D1695AenU1LwHjOJLkCjxgNFiWAFEPH9aEXAMPLExA==",
 "Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host;x-amz-date;x-amz-security-token,
 Signature=83EXAMPLEbcc1fe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdc"
}

Real-time WebSocket operations

After initiating a successful WebSocket handshake with AWS AppSync, the client must send a
subsequent message to connect to AWS AppSync for different operations. The WebSocket API has
the following properties.

WebSocket API message properties

Real-time WebSocket operations 44

AWS AppSync Events Developer Guide

id

The client provided ID of the operation. This property is required and is used to correlate
response error and success messages. For subscriptions, this property must be unique for all
subscriptions within a connection. The property is a string and is limited to a maximum of 128
alphanumeric + special character (_,+,-) characters. /^[a-zA-Z0-9-_+]{1,128}$/

type

The type of operation being performed. Supported client operations are subscribe, unsubscribe,
publish. The property is a string and must be one of the message types defined in the next
section, Configuring message details.

channel

The channel to subscribe to events. The property is a string made up of one to five
segments separated by a slash. Each segment is limited to 50 alphanumeric + dash
characters. The property is case sensitive. For example: channelNamespaceName or
channelNamespaceName/sub-segment-1/subSegment-2 /^\/?[A-Za-z0-9](?:[A-
Za-z0-9-]{0,48}[A-Za-z0-9])?(?:\/[A-Za-z0-9](?:[A-Za-z0-9-]{0,48}[A-Za-
z0-9])?){0,4}\/?$/

authorization

The authorization headers necessary to authorize the operation. For example, ApiKey will
contain both host and x-api-key but for IAM this will contain host, x-amz-date, x-amz-
security-token, and authorization.

Configuring message details

This section provides information about the syntax to use to configure the details for various
message types.

Connection init message

After the client has established the WebSocket connection, the client sends an init message to
initiate the connection session.

{ "type": "connection_init" }

Connection acknowledge message

Configuring message details 45

AWS AppSync Events Developer Guide

AWS AppSync responds with an “ack” message that contains a connection timeout value. If the
client doesn’t receive a keep-alive message within the connection timeout period, the client should
close the connection. The connection timeout period is 5 minutes.

{
 "type": "connection_ack",
 "connectionTimeoutMs": 300000
}

Keep-alive message

AWS AppSync periodically sends a keep-alive message to the client to maintain the connection.
If the client doesn’t receive a keep-alive message within the connection timeout period, the
client should close the connection. The keep-alive interval is 60 seconds. Clients do not need to
acknowledge these messages.

{ "type": "ka" }

Subscribe message

After receiving a connection_ack message, the client can send a subscription registration
message to listen for events on a channel.

• “id” is the ID of the subscription. This ID must be unique per client connection otherwise AWS
AppSync returns an error message indicating the subscription message is duplicated.

• “channel” is the channel to which the subscribed client is listening. Any messages published to
this channel will be delivered to the subscribed client.

• “authorization” is an object containing the fields required for authorization. The authorization
object follows the same rules as the headers for connecting to the WebSocket.

{
 "type": "subscribe",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "channel": "/namespaceA/subB/subC",
 "authorization": {
 "x-api-key": "da2-12345678901234567890123456",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com"
 }

Configuring message details 46

AWS AppSync Events Developer Guide

}

Subscription acknowledgment message

AWS AppSync acknowledges with a success message. “id” is the ID of the corresponding subscribe
operation that succeeded.

{
 "type": "subscribe_success",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

In case of an error, AWS AppSync sends a subscribe_error response.

{
 "type": "subscribe_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {
 "errorType": "SubscriptionProcessingError",
 "message": "There was an error processing the operation"
 }
]
}

Data message

When an event is published to a channel the client is subscribed to, the event is broadcast and
delivered in a data message. “id” is the ID of the corresponding subscription for the channel to
which the message was published.

{
 "type": "data",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "event": ["\"my event content\""]
}

In case of an error, such as a broadcasting error, an error can be received at the client:

{

Configuring message details 47

AWS AppSync Events Developer Guide

 "type": "broadcast_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {
 "errorType": "MessageProcessingError",
 "message": "There was an error processing the message"
 }
]
}

Unsubscribe message

When the client wants to stop listening to a subscribed channel, the client sends a message to
unregister the subscription. “id” is the ID of the corresponding subscription to which the client
wants to unregister.

{
 "type": "unsubscribe",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

AWS AppSync acknowledges with a success message. “id” is the ID of the corresponding subscribe
operation that succeeded.

{
 "type": "unsubscribe_success",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

If an error occurs, an error message is sent back to the client

{
 "type": "unsubscribe_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {
 "errorType": "UnknownOperationError",
 "message": "Unknown operation id ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
 }
]
}

Configuring message details 48

AWS AppSync Events Developer Guide

Disconnecting the WebSocket

Before disconnecting the WebSocket, to avoid data loss, the client should have the necessary
logic to check that no operation is currently in place through the WebSocket connection. All
subscriptions should be unregistered before disconnecting from the WebSocket.

Disconnecting the WebSocket 49

AWS AppSync Events Developer Guide

Configuring custom domain names for Event APIs

With AWS AppSync, you can use custom domain names to configure a single, memorable domain
that works for your Event APIs.

When you configure an AWS AppSync Event API, two endpoints are provisioned: An HTTP endpoint
and a real-time endpoint. These endpoints have the following format.

AWS AppSync Events HTTP endpoint

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event

AWS AppSync Events real-time endpoint

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/event/
realtime

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with both your
HTTP and real-time WebSocket endpoints using the following URLs.

AWS AppSync Events HTTP endpoint

https://api.example.com/event

AWS AppSync Events real-time endpoint

wss://api.example.com/event/realtime

Note

AWS AppSync APIs support only TLS 1.2 and TLS 1.3 for custom domain names.

Registering and configuring a domain name for an Event API

To set up custom domain names for your AWS AppSync APIs, you must have a registered internet
domain name. You can register an internet domain using Amazon Route 53 domain registration
or a third-party domain registrar of your choice. For more information about using Route 53, see
What is Amazon Route 53 in the Amazon Route 53 Developer Guide.

Registering and configuring a domain name 50

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html

AWS AppSync Events Developer Guide

An API's custom domain name can be the name of a subdomain or the root domain (also known
as the "zone apex") of a registered internet domain. After you create a custom domain name in
AWS AppSync, you must create or update your DNS provider's resource record to map to your API
endpoint. Without this mapping, API requests bound for the custom domain name cannot reach
AWS AppSync.

Creating a custom domain name in AWS AppSync

Creating a custom domain name for an AWS AppSync API sets up an Amazon CloudFront
distribution. You must set up a DNS record to map the custom domain name to the CloudFront
distribution domain name. This mapping is required to route API requests that are bound for the
custom domain name in AWS AppSync through the mapped CloudFront distribution.

You must also provide a certificate for the custom domain name. To set up the custom domain
name or to update its certificate, you must have permission to update CloudFront distributions
and describe the AWS Certificate Manager (ACM) certificate that you plan to use. To grant these
permissions, attach the following AWS Identity and Access Management (IAM) policy statement to
an IAM user, group, or role in your account.

{
"Version": "2012-10-17",
 "Statement": [
 {
"Sid": "AllowUpdateDistributionForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": ["cloudfront:updateDistribution"],
 "Resource": ["*"]
 },
 {
"Sid": "AllowDescribeCertificateForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": "acm:DescribeCertificate",
 "Resource": "arn:aws:acm:Region:account-id:certificate/certificate_ID"
 }
]
}

AWS AppSync supports custom domain names by leveraging Server Name Indication (SNI) on the
CloudFront distribution. For more information about using custom domain names on a CloudFront

Creating a custom domain name 51

AWS AppSync Events Developer Guide

distribution, including the required certificate format and the maximum certificate key length, see
Using HTTPS with CloudFront in the Amazon CloudFront Developer Guide.

To set up a custom domain name as the API's hostname, the API owner must provide an SSL/TLS
certificate for the custom domain name. To provide a certificate, do one of the following.

• Request a new certificate in ACM, or import a certificate issued by a third-party certificate
authority into ACM in the US East (N. Virginia) (us-east-1) AWS Region. For more information
about ACM, see What is AWS Certificate Manager in the AWS Certificate Manager User Guide.

• Provide an IAM server certificate. For more information, see Manage server certificates in IAM in
the IAM User Guide.

Wildcard custom domain names in AWS AppSync

AWS AppSync supports wildcard custom domain names. To configure a wildcard custom domain
name, specify a wildcard character (*) as the first subdomain of a custom domain. This represents
all possible subdomains of the root domain. For example, the wildcard custom domain name
*.example.com results in subdomains such as a.example.com, b.example.com, and
c.example.com. All these subdomains route to the same domain.

To use a wildcard custom domain name in AWS AppSync, you must provide a certificate issued
by ACM containing a wildcard name that can protect several sites in the same domain. For more
information, see ACM certificate characteristics and limitations in the AWS Certificate Manager User
Guide.

Wildcard custom domain names 52

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-certificate-characteristics.html

AWS AppSync Events Developer Guide

Using CloudWatch to monitor and log Event API data

You can log and debug your Event API using CloudWatch metrics and CloudWatch logs. These tools
enable developers to monitor performance, troubleshoot issues, and optimize their AWS AppSync
API operations effectively.

CloudWatch metrics is a tool that provides a wide range of metrics to monitor API performance
and usage. These metrics fall into two main categories:

1. HTTP API Metrics for Publish: These include 4XXError and 5XXError for tracking client and
server errors, Latency for measuring response times, Requests for monitoring total API calls,
TokensConsumed for tracking resource usage, and Events related to metrics for tracking event
publishing performance.

2. Real-time Subscription Metrics: These metrics focus on WebSocket connections and
subscription activities. They include metrics for connection requests, successful connections,
subscription registrations, message publishing, and active connections and subscriptions.

CloudWatch Logs is a tool that enables logging capabilities for your Eent APIs. Logs can be set at
two levels of the API:

1. Request-level Logs: These capture overall request information, including HTTP headers,
operation summaries, and subscription registrations.

2. Handler-level Logs: These provide detailed information about handler evaluation, including
request and response mappings, and tracing information for each field.

You can configure logging, interpret log entries, and use log data for troubleshooting and
optimization. AWS AppSync provides various log types that provide insight into your API's behavior.

Setting up and configuring logging on an Event API

Us the following instruction to turn on automatic logging on a Event API using the AWS AppSync
console.

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of an Event API.

Setting up and configuring logging on an Event API 53

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

3. On the API's homepage, in the navigation pane, choose Settings.

4. Under Logging, do the following:

a. Turn on Enable Logs.

b. (Optional) For Log level, choose your preferred field-level logging level (None, Error, or
All).

c. The procedure for adding a service role varies depending on whether you want to create a
new role or use an existing one.

• To create a new role:

• For Create or use an existing role, choose New role. This creates a new IAM role
that allows AWS AppSync to write logs to CloudWatch.

• To use an existing role:

i. Choose Existing role.

ii. In the service role list, select the ARN of an existing IAM role in your AWS account.

For information about the configuration of the IAM role, see Manually creating an
IAM role with CloudWatch Logs permissions.

5. Choose Save.

Manually creating an IAM role with CloudWatch Logs permissions

If you choose to use an existing IAM role, the role must grant AWS AppSync the required
permissions to write logs to CloudWatch. To configure this manually, you must provide a service
role ARN so that AWS AppSync can assume the role when writing the logs.

In the IAM console, create a new policy with the name
AWSAppSyncPushToCloudWatchLogsPolicy that has the following definition:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",

Manually creating an IAM role with CloudWatch Logs permissions 54

https://console.aws.amazon.com/iam

AWS AppSync Events Developer Guide

 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Next, create a new role with the name AWSAppSyncPushToCloudWatchLogsRole, and attach the
newly created policy to the role. Edit the trust relationship for this role to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Copy the role ARN and use it when setting up logging for an AWS AppSync Event API.

CloudWatch metrics

You can use CloudWatch metrics to monitor and provide alerts about specific events that can result
in HTTP status codes or from latency.

HTTP endpoint metrics

4XXError

Errors resulting from requests that are not valid due to an incorrect client configuration.
For example, these errors can occur when the request includes an incorrect JSON payload
or an incorrect query, when the service is throttled, or when the authorization settings are
misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

CloudWatch metrics 55

AWS AppSync Events Developer Guide

5XXError

Errors encountered during the execution of a request. This could also happen if AWS AppSyncc
encounters an issue during processing of a request.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

Latency

The time between when AWS AppSync receives a request from a client and when it returns a
response to the client. This doesn’t include the network latency encountered for a response to
reach the end devices.

Unit: Millisecond. Use the Average statistic to evaluate expected latencies.

Requests

The number of requests (queries + mutations) that all APIs in your account have processed, by
Region.

Unit: Count. The number of all requests processed in a particular Region.

TokensConsumed

Tokens are allocated to Requests based on the amount of resources (processing time and
memory used) that a Request consumes. Usually, each Request consumes one token.
However, a Request that consumes large amounts of resources is allocated additional tokens
as needed.

Unit: Count. The number of tokens allocated to requests processed in a particular Region.

DroppedEvents

The count of input events filtered by a OnPublish handler.

Unit: Count.

FailedEvents

The count of input events that encountered error during processing.

Unit: Count.

SuccessfulEvents

The count of input events that were processed successfully and submitted for broadcast in the
OnPublish handler.

HTTP endpoint metrics 56

AWS AppSync Events Developer Guide

Unit: Count.

PublishedHandlerInvocations

The number of OnPublish handler invocations.

Unit: Count.

Real-time endpoint metrics

ConnectRequests

The number of WebSocket connection requests made to AWS AppSync, including both
successful and unsuccessful attempts.

Unit: Count. Use the Sum statistic to get the total number of connection requests.

ConnectSuccess

The number of successful WebSocket connections to AWS AppSync. It is possible to have
connections without subscriptions.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful connections.

ConnectClientError

The number of WebSocket connections that were rejected by AWS AppSync because of client-
side errors. This could imply that the service is throttled or that the authorization settings are
misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side connection
errors.

ConnectServerError

The number of errors that originated from AWS AppSync while processing connections. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side connection
errors.

DisconnectSuccess

The number of successful WebSocket disconnections from AWS AppSync.

Real-time endpoint metrics 57

AWS AppSync Events Developer Guide

Unit: Count. Use the Sum statistic to get the total occurrences of the successful disconnections.

DisconnectClientError

The number of client errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

DisconnectServerError

The number of server errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

SubscribeSuccess

The number of subscriptions that were successfully registered to AWS AppSync through
WebSocket. It's possible to have connections without subscriptions, but it's not possible to have
subscriptions without connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful subscriptions.

SubscribeClientError

The number of subscriptions that were rejected by AWS AppSync because of client-side errors.
This can occur when a JSON payload is incorrect, the service is throttled, or the authorization
settings are misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side subscription
errors.

SubscribeServerError

The number of errors that originated from AWS AppSync while processing subscriptions. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side subscription
errors.

UnsubscribeSuccess

The number of unsubscribe requests that were successfully processed.

Real-time endpoint metrics 58

AWS AppSync Events Developer Guide

Unit: Count. Use the Sum statistic to get the total occurrences of the successful unsubscribe
requests.

UnsubscribeClientError

The number of unsubscribe requests that were rejected by AWS AppSync because of client-side
errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side unsubscribe
request errors.

UnsubscribeServerError

The number of errors that originated from AWS AppSync while processing unsubscribe requests.
This usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side unsubscribe
request errors.

BroadcastEventSuccess

The number of events that were successfully broadcast to subscribers.

Unit: Count. Use the Sum statistic to get the total of events that were successfully broadcast.

BroadcastEventClientError

The number of events that failed to broadcast because of client-side errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side broadcast
events errors

BroadcastEventServerError

The number of errors that originated from AWS AppSync while broadcasting events . This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side broadcast
errors.

BroadcastEventSize

The size of events broadcast.

Unit: Bytes.

Real-time endpoint metrics 59

AWS AppSync Events Developer Guide

ActiveConnections

The number of concurrent WebSocket connections from clients to AWS AppSync in 1 minute.

Unit: Count. Use the Sum statistic to get the total opened connections.

ActiveSubscriptions

The number of concurrent subscriptions from clients in 1 minute.

Unit: Count. Use the Sum statistic to get the total active subscriptions.

ConnectionDuration

The amount of time that the connection stays open.

Unit: Milliseconds. Use the Average statistic to evaluate connection duration.

InboundMessages

The number of inbound metered events. One metered event equals 5 kB of received event.

Unit: Count.

OutboundMessages

The number of metered messages successfully published. One metered message equals 5 kB of
delivered data.

Unit: Count. Use the Sum statistic to get the total number of successfully published metered
messages.

InboundMessageDelayed

The number of delayed inbound messages. Inbound messages can be delayed when either the
inbound message rate quota or outbound message rate quota is breached.

Unit: Count. Use the Sum statistic to get the total number of inbound messages that were
delayed.

InboundMessageDropped

The number of delayed inbound messages. Inbound messages can be delayed when either the
inbound message rate quota or outbound message rate quota is breached.

Real-time endpoint metrics 60

AWS AppSync Events Developer Guide

Unit: Count. Use the Sum statistic to get the total number of inbound messages that were
dropped.

SubscribeHandlerInvocations

The number of Subscribe handlers invoked.

Unit: Count.

Configuring CloudWatch Logs on Event APIs

You can configure two types of logging on any new or existing API: request-level logs and and
handler logs.

Request-level logs

When request-level logging is configured for an API, the following information is logged.

• The number of tokens consumed

• The request and response HTTP headers

• The overall operation summary

Handler logs

When handler logging is configured for an API, the following information is logged.

• Generated request mapping with source and arguments for each field

• The transformed response mapping for each field, which includes the data as a result of
resolving that field

• Tracing information for each field

If you turn on logging, AWS AppSync manages the CloudWatch Logs. The process includes creating
log groups and log streams, and reporting to the log streams with these logs.

When you turn on logging on an AWS AppSync API and make requests, AWS AppSync creates
a log group and log streams under the log group. The log group is named following the /aws/
appsync/apis/{api_id} format. Within each log group, the logs are further divided into log
streams. These are ordered by Last Event Time as logged data is reported.

Configuring CloudWatch Logs on Event APIs 61

AWS AppSync Events Developer Guide

Every log event is tagged with the x-amzn-RequestId of that request. This helps you filter log
events in CloudWatch to get all logged information about that request. You can get the RequestId
from the response headers of every AWS AppSync request.

The field-level logging is configured with the following log levels:

• None - No handler logs are captured.

• Error - Logs the following information only for the fields that are in error:

• The error section in the server response

• Handler errors and console.error logging from handlers

• The generated request/response functions that got resolved for error fields

• All - Logs the following information for all fields in the query:

• Custom logging from handlers

• The generated request/response functions that got resolved for each field

Using token counts to optimize your requests

Requests that consume less than or equal to 1,500 KB-seconds of memory and vCPU time are
allocated one token. Requests with resource consumption greater than 1,500 KB-seconds receive
additional tokens. For example, if a request consumes 3,350 KB-seconds, AWS AppSync allocates
three tokens (rounded up to the next integer value) to the request. By default, AWS AppSync
allocates a maximum of 5,000 or 10,000 request tokens per second to the APIs in your account,
depending upon the AWS Region in which it's deployed. If your APIs each use an average of two
tokens per second, you'll be limited to 2,500 or 5,000 requests per second, respectively. If you
need more tokens per second than the allotted amount, you can submit a request to increase the
default quota for the rate of request tokens. For more information, see AWS AppSync endpoints
and quotas in the AWS General Reference guide and Requesting a quota increase in the Service
Quotas User Guide.

A high per-request token count could indicate that there's an opportunity to optimize your
requests and improve the performance of your API. Factors that can increase your per-request
token count include:

• The complexity of your handlers

• The amount of data returned from your handlers

• Logging configuration, and the amount of custom logging in your handlers

Using token counts to optimize your requests 62

https://docs.aws.amazon.com/general/latest/gr/appsync.html#limits_appsync
https://docs.aws.amazon.com/general/latest/gr/appsync.html#limits_appsync
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS AppSync Events Developer Guide

Note

In addition to AWS AppSync metrics and logs, clients can access the number of tokens
consumed in a request via the response header x-amzn-appsync-TokensConsumed.

Log size limits

By default, if logging has been enabled, AWS AppSync will send up to 1 MB of logs per request.

Using token counts to optimize your requests 63

AWS AppSync Events Developer Guide

Using AWS WAF to protect AWS AppSync Event APIs

AWS WAF is a web application firewall that helps protect web applications and APIs from attacks. It
allows you to configure a set of rules, called a web access control list (web ACL), that allow, block,
or monitor (count) web requests based on customizable web security rules and conditions that
you define. When you integrate your AWS AppSync API with AWS WAF, you gain more control and
visibility into the HTTP traffic accepted by your API. To learn more about AWS WAF, see How AWS
WAF Works in the AWS WAF Developer Guide.

You can use AWS WAF to protect your AppSync API from common web exploits, such as SQL
injection and cross-site scripting (XSS) attacks. These could affect API availability and performance,
compromise security, or consume excessive resources. For example, you can create rules to allow or
block requests from specified IP address ranges, requests from CIDR blocks, requests that originate
from a specific country or region, requests that contain malicious SQL code, or requests that
contain malicious script.

You can also create rules that match a specified string or a regular expression pattern in HTTP
headers, method, query string, URI, and the request body (limited to the first 8 KB). Additionally,
you can create rules to block attacks from specific user agents, bad bots, and content scrapers. For
example, you can use rate-based rules to specify the number of web requests that are allowed by
each client IP in a trailing, continuously updated, 5-minute period.

To learn more about the types of rules that are supported and additional AWS WAF features, see
the AWS WAF Developer Guide and the AWS WAF API Reference.

Important

AWS WAF is your first line of defense against web exploits. When AWS WAF is enabled on
an API, AWS WAF rules are evaluated before other access control features, such as API key
authorization, IAM policies, OIDC tokens, and Amazon Cognito user pools.

Integrate an AppSync API with AWS WAF

You can integrate an Appsync API with AWS WAF using the AWS Management Console, the AWS
CLI, AWS CloudFormation, or any other compatible client.

Integrate an AppSync API with AWS WAF 64

https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html
https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html
https://docs.aws.amazon.com/waf/latest/APIReference/API_Types_AWS_WAFV2.html

AWS AppSync Events Developer Guide

To integrate an AWS AppSync API with AWS WAF

1. Create an AWS WAF web ACL. For detailed steps using the AWS WAF Console, see Creating a
web ACL.

2. Define the rules for the web ACL. A rule or rules are defined in the process of creating the web
ACL. For information about how to structure rules, see AWS WAF rules. For examples of useful
rules you can define for your AWS AppSync API, see Creating rules for a web ACL.

3. Associate the web ACL with an AWS AppSync API. You can perform this step in the AWS WAF
Console or in the AppSync Console.

• To associate the web ACL with an AWS AppSync API in the AWS WAF Console, follow the
instructions for Associating or disassociating a Web ACL with an AWS resource in the AWS
WAF Developer Guide.

• To associate the web ACL with an AWS AppSync API in the AWS AppSync Console

a. Sign in to the AWS Management Console and open the AppSync Console.

b. Choose the API that you want to associate with a web ACL.

c. In the navigation pane, choose Settings.

d. In the Web application firewall section, turn on Enable AWS WAF.

e. In the Web ACL dropdown list, choose the name of the web ACL to associate with
your API.

f. Choose Save to associate the web ACL with your API.

Note

After you create a web ACL in the AWS WAF Console, it can take a few minutes for the new
web ACL to be available. If you do not see a newly created web ACL in the Web application
firewall menu, wait a few minutes and retry the steps to associate the web ACL with your
API.

Note

AWS WAF integration only supports the Subscription registration message event
for real-time endpoints. AWS AppSync will respond with an error message instead of a

Integrate an AppSync API with AWS WAF 65

https://console.aws.amazon.com/waf/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-associating-aws-resource.html
https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

start_ack message for any Subscription registration message blocked by AWS
WAF.

After you associate a web ACL with an AWS AppSync API, you will manage the web ACL using the
AWS WAF APIs. You do not need to re-associate the web ACL with your AWS AppSync API unless
you want to associate the AWS AppSync API with a different web ACL.

Creating rules for a web ACL

Rules define how to inspect web requests and what to do when a web request matches the
inspection criteria. Rules don't exist in AWS WAF on their own. You can access a rule by name in
a rule group or in the web ACL where it's defined. For more information, see AWS WAF rules. The
following examples demonstrate how to define and associate rules that are useful for protecting
an AppSync API.

Example web ACL rule to limit request body size

The following is an example of a rule that limits the body size of requests. This would be entered
into the Rule JSON editor when creating a web ACL in the AWS WAF Console.

{
 "Name": "BodySizeRule",
 "Priority": 1,
 "Action": {
 "Block": {}
 },
 "Statement": {
 "SizeConstraintStatement": {
 "ComparisonOperator": "GE",
 "FieldToMatch": {
 "Body": {}
 },
 "Size": 1024,
 "TextTransformations": [
 {
 "Priority": 0,
 "Type": "NONE"
 }
]
 }

Creating rules for a web ACL 66

https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html

AWS AppSync Events Developer Guide

 },
 "VisibilityConfig": {
 "CloudWatchMetricsEnabled": true,
 "MetricName": "BodySizeRule",
 "SampledRequestsEnabled": true
 }
}

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. As an alternative to using the AWS Management Console, you can perform this
step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

It can take a few minutes for the changes to propagate, but after running this command, requests
that contain a body larger than 1024 bytes will be rejected by AWS AppSync.

Note

After you create a new web ACL in the AWS WAF Console, it can take a few minutes for
the web ACL to be available to associate with an API. If you run the CLI command and get
a WAFUnavailableEntityException error, wait a few minutes and retry running the
command.

Example web ACL rule to limit requests from a single IP address

The following is an example of a rule that throttles an AppSync API to 100 requests from a single
IP address. This would be entered into the Rule JSON editor when creating a web ACL with a rate-
based rule in the AWS WAF Console.

{
 "Name": "Throttle",
 "Priority": 0,
 "Action": {
 "Block": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,

Creating rules for a web ACL 67

AWS AppSync Events Developer Guide

 "MetricName": "Throttle"
 },
 "Statement": {
 "RateBasedStatement": {
 "Limit": 100,
 "AggregateKeyType": "IP"
 }
 }
}

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. You can perform this step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

Creating rules for a web ACL 68

AWS AppSync Events Developer Guide

Document History for AWS AppSync Events

The following table describes the documentation for this release of AWS AppSync Events.

• API version: 1.1

• Latest documentation update: October 30, 2024

Change Description Date

AWS AppSync Events release This release introduces AWS
AppSync Events.

October 30, 2024

69

	AWS AppSync Events
	Table of Contents
	What is AWS AppSync Events?
	AWS AppSync Events features
	Pricing for AWS AppSync Events

	AWS AppSync Events concepts
	API
	Event
	Channel
	Channel namespace
	Event handler
	Publishing
	Subscribing

	Getting started with AWS AppSync Events
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access
	Account credentials
	Set up the AWS Command Line Interface

	Creating an AWS AppSync Event API
	Step 1: Create an event API using the AWS AppSync console
	Step 2: Publish and subscribe to receive your first event
	Step 3: Use wildcards in your channel subscription
	Step 4: Publish in batches

	Getting started with the Amplify Events client
	Step 1: Create an event API
	Step 2: Deploy a React app with Vite
	(Optional) Configure Tailwind CSS

	Step 3: Configure the Amplify client
	Step 4: Connect to a channel and receive messages
	Step 5: Send a message from your app

	Understanding channel namespaces
	Channel namespace authorization
	Channel namespace handlers and event processing
	Using the onPublish event handler
	Using the onSubscribe event handler

	Configuring authorization and authentication to secure Event APIs
	Authorization types
	API_KEY authorization
	AWS_LAMBDA authorization
	AWS_IAM authorization
	OPENID_CONNECT authorization
	AMAZON_COGNITO_USER_POOLS authorization
	Circumventing SigV4 and OIDC token authorization limitations

	Publish via HTTP
	Understanding the Event API WebSocket protocol
	Handshake details to establish the WebSocket connection
	Discovering the real-time endpoint from the Event API endpoint

	Authorization formatting based on the AWS AppSync API authorization mode
	API key subprotocol format
	Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol format
	AWS Lambda subprotocol format
	AWS Identity and Access Management (IAM) subprotocol format

	Real-time WebSocket operations
	Configuring message details
	Disconnecting the WebSocket

	Configuring custom domain names for Event APIs
	Registering and configuring a domain name for an Event API
	Creating a custom domain name in AWS AppSync
	Wildcard custom domain names in AWS AppSync

	Using CloudWatch to monitor and log Event API data
	Setting up and configuring logging on an Event API
	Manually creating an IAM role with CloudWatch Logs permissions

	CloudWatch metrics
	HTTP endpoint metrics
	Real-time endpoint metrics

	Configuring CloudWatch Logs on Event APIs
	Using token counts to optimize your requests

	Using AWS WAF to protect AWS AppSync Event APIs
	Integrate an AppSync API with AWS WAF
	Creating rules for a web ACL

	Document History for AWS AppSync Events

