
User Guide

Amazon Aurora DSQL

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Aurora DSQL User Guide

Amazon Aurora DSQL: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Aurora DSQL User Guide

Table of Contents

... viii
What is Amazon Aurora DSQL? .. 1

Core components .. 1
Getting started .. 4

Prerequisites .. 4
Getting started .. 4
SQL commands ... 5
Multi-Region ... 7

Authentication and authorization .. 9
IAM roles to manage clusters .. 9
IAM roles to connect to clusters ... 9
PostgreSQL and IAM roles ... 10
Revoking authorization using IAM and PostgreSQL ... 10
Using IAM policy actions to manage clusters in Aurora DSQL ... 11
IAM policy to connect to clusters ... 12
ARN format .. 12
Generate an authentication token ... 12

Console .. 13
AWS CloudShell ... 13
AWS CLI ... 15
Python SDK .. 16
C++ SDK .. 16
JavaScript SDK ... 18
Java SDK ... 19
Rust SDK ... 20
Ruby SDK .. 21
.NET .. 22
Golang ... 25

Using database roles with IAM roles ... 27
Authorize custom database roles to connect to a cluster .. 27
Authorize database roles to use SQL in a database .. 27
Revoke database authorization from an IAM role ... 28

Accessing Aurora DSQL ... 29
PostgreSQL protocol .. 29

iii

Amazon Aurora DSQL User Guide

Console ... 30
SQL clients ... 31

Access Aurora DSQL with psql (PostgreSQL interactive terminal) .. 31
Access Aurora DSQL with DBeaver .. 32
Access Aurora DSQL with JetBrains DataGrip ... 33

Programmatic access ... 34
Working with Aurora DSQL .. 36

PostgreSQL compatibility ... 36
Supported data types ... 37

Date time precision .. 40
Types supported during query runtime ... 41

Supported PostgreSQL features ... 41
Supported subsets of PostgreSQL commands ... 43
Unsupported PostgreSQL features ... 45

Unsupported objects .. 45
Unsupported constraints ... 45
Unsupported operations ... 45
Unsupported extensions .. 45
Unsupported SQL expressions ... 46
Limitations .. 47

Connections ... 47
Concurrency control ... 48
Data definition language .. 49
Primary keys .. 50
Async indexes .. 51

Syntax .. 52
Parameters .. 52
Examples ... 53
Usage notes .. 55

System tables and commands .. 56
System tables and queries in Aurora DSQL .. 56
Analyze .. 65

Programming with Aurora DSQL .. 66
Manage clusters with the AWS SDKs ... 66

Create a cluster .. 4
Get a cluster .. 85

iv

Amazon Aurora DSQL User Guide

Update a cluster .. 92
Delete a cluster ... 100

Manage clusters with the AWS CLI .. 117
CreateCluster ... 117
GetCluster ... 118
UpdateCluster .. 119
DeleteCluster ... 119
ListClusters ... 120
CreateMultiRegionClusters .. 121
GetCluster on multi-Region clusters .. 122
DeleteMultiRegionClusters .. 122

Programming with Python .. 123
Build with Django ... 123
Build with SQLAlchemy ... 140
Using Psycopg2 ... 145
Using Psycopg3 ... 146

Programming with Java ... 148
Build with JDBC, Hibernate, and HikariCP .. 149
Using pgJDBC .. 153

Programming with JavaScript ... 155
Using node-postgres .. 155

Programming with C++ .. 157
Using Libpq .. 157

Programming with Ruby .. 161
Using pg ... 162
Using Ruby on Rails ... 164

Programming with .NET ... 168
Using Npgsql ... 168

Programming with Rust ... 171
Using sqlx ... 171

Programming with Golang .. 174
Using pgx ... 174

Utilities, tutorials, and sample code .. 179
Tutorials and sample code on GitHub ... 179
Using the AWS SDK ... 180
Using AWS Lambda ... 180

v

Amazon Aurora DSQL User Guide

Security .. 186
AWS managed policies ... 187

AmazonAuroraDSQLFullAccess .. 187
AmazonAuroraDSQLReadOnlyAccess ... 188
AmazonAuroraDSQLConsoleFullAccess .. 188
AuroraDSQLServiceRolePolicy .. 189
Policy updates ... 190

Data protection .. 190
Data encryption .. 191

Identity and access management ... 193
Audience ... 193
Authenticating with identities ... 194
Managing access using policies ... 197
How Aurora DSQL works with IAM ... 199
Identity-based policy examples ... 206
Troubleshooting .. 209

Using a service-linked role ... 211
Service-linked role permissions for Aurora DSQL .. 211
Create a service-linked role .. 211
Edit a service-linked role .. 211
Delete a service-linked role .. 212
Supported Regions for Aurora DSQL service-linked roles ... 212

Using IAM condition keys ... 212
Create a cluster in a specific Region .. 212
Create a multi-Region cluster in specific Regions ... 213
Create a multi-Region cluster with specific witness Region .. 214

Incident response ... 214
Compliance validation .. 215
Resilience ... 216

Backup and restore .. 217
Replication .. 217
High availability .. 217

Infrastructure Security .. 218
Configuration and vulnerability analysis .. 218
Cross-service confused deputy prevention ... 219
Security best practices .. 220

vi

Amazon Aurora DSQL User Guide

Detective security best practices ... 221
Preventative security best practices ... 222

Tagging resources .. 224
Name tag ... 224
Tagging requirements ... 224
Tagging usage notes ... 225

Known issues ... 226
Quotas and limits .. 229

Cluster quotas ... 229
Database limits ... 230

API reference ... 234
Troubleshooting ... 235

Authentication errors .. 235
Authorization errors .. 236
SQL errors .. 236
OCC errors ... 237

Document history .. 238

vii

Amazon Aurora DSQL User Guide

Amazon Aurora DSQL is provided as a Preview service. To learn more, see Betas and Previews in
the AWS Service Terms.

viii

https://aws.amazon.com/service-terms/

Amazon Aurora DSQL User Guide

What is Amazon Aurora DSQL?

Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale,
high availability, and zero infrastructure management. Aurora DSQL provides active-active high
availability that enables 99.99% single-Region and 99.999% multi-Region availability.

You can use Aurora DSQL to automatically manage system infrastructure and scale your database
based on the needs of your workload. With Aurora DSQL, you don't have to worry about
maintenance downtime related to provisioning, patching, or infrastructure upgrades.

Aurora DSQL is optimized for transactional workloads that benefit from ACID transactions and a
relational data model. Because it's serverless and optimized for transactional workloads, Aurora
DSQL is ideal for application patterns of microservice, serverless, and event-driven architectures.
Aurora DSQL is PostgreSQL compatible, so you can use familiar drivers, object-relational mappings
(ORMs), frameworks, and SQL features.

Aurora DSQL automatically scales compute, I/O, and storage, so it can efficiently adapt to your
workload needs. The active-active serverless design automates failure recovery, so you don't have
to worry about traditional database failover. This means that your applications benefit from Multi-
AZ and multi-Region availability, and you don't have to be concerned about eventual consistency
or missing data related to failovers. Aurora DSQL helps you to build and maintain applications that
are always available at any scale.

For information about the core components in Aurora DSQL and to get started with the service, see
the following:

• the section called “Core components”

• the section called “PostgreSQL compatibility”

• Getting started

• Accessing Aurora DSQL

• Working with Aurora DSQL

Understanding core components in Amazon Aurora DSQL

To learn about the core components in Aurora DSQL, review the following:

Core components 1

Amazon Aurora DSQL User Guide

Distributed architecture

Aurora DSQL is based on a novel distributed database that is composed of four multi-tenant
components:

• Relay and connectivity

• Compute and databases

• Transaction log, concurrency control, and isolation

• User storage

A control plane coordinates all of these. Each of these components provide redundancy
across three Availability Zones (AZs), with automatic cluster scaling and self-healing in case of
component failures. To learn more about how this architecture supports high availability, see
the section called “Resilience”.

Aurora DSQL clusters

Single-Region clusters synchronously replicate data, remove replication lag, and prevent
database failovers, and make sure that data is consistent across multiple Availability Zones
(AZ) or Regions. If there are infrastructure failures, Aurora DSQL automatically routes requests
to healthy infrastructure without manual intervention. Aurora DSQL provides atomicity,
consistency, isolation, and durability (ACID) transactions with strong consistency, snapshot
isolation, atomicity, and cross-AZ and cross-Region durability.

Multi-Region linked clusters provide the same resilience and connectivity as single-Region
clusters. However, they improve availability by offering two Regional endpoints, one in each
linked cluster Region. Both endpoints of a linked cluster present a single logical database. They
are available for concurrent read and write operations, and provide strong data consistency.
This means that you can build applications that run in multiple Regions at the same time for
performance and resilience—and know that readers will always see the same data.

Note

During preview, you can interact with clusters in us-east-1 – US East (N. Virginia) and us-
east-2 – US East (Ohio).

Core components 2

Amazon Aurora DSQL User Guide

PostgreSQL databases

The distributed database layer (compute) in Aurora DSQL is based on a current major version
of PostgreSQL. You can connect to Aurora DSQL with familiar PostgreSQL drivers and tools.
Aurora DSQL is currently compatible with PostgreSQL version 16 and supports a subset of
PostgreSQL features, expressions, and data types. For more information about the supported
SQL features, see the section called “PostgreSQL compatibility”.

Core components 3

Amazon Aurora DSQL User Guide

Getting started with Aurora DSQL

Use the following steps to get started with Aurora DSQL.

Topics

• Prerequisites

• Create a cluster and connect with IAM authentication

• Run SQL commands in Aurora DSQL

• Create a multi-Region linked cluster

Prerequisites

• Your IAM identity must have permissions to sign in to the AWS Management Console.

• Your IAM identity must have access to perform any action on any resource in your AWS account,
or you must be able to get access to the following IAM policy action: dsql:*.

Note

This guide assumes a Unix-like environment with Python v3.8+ and psql v14+. AWS
CloudShell provides Python v3.8+ and psql v14+ with no extra setup. You can also use the
AWS CLI in a different environment, but you must manually set up Python v3.8+ and psql
v14+. If you prefer a GUI, you can Access Aurora DSQL with DBeaver or Access Aurora DSQL
with JetBrains DataGrip.

Create a cluster and connect with IAM authentication

To create a new cluster in Aurora DSQL

1. Sign in to the AWS Management Console and open the Aurora DSQL console at https://
console.aws.amazon.com/dsql.

2. Choose Create cluster. Configure any of the settings that you want, such as deletion
protection or tags.

3. Choose Create cluster.

Prerequisites 4

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html
https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL User Guide

To connect to the cluster with an authentication token

1. Choose the cluster that you want to connect to. Choose Connect.

2. Copy the endpoint.

3. Use the following command to use psql to start a connection to your cluster. Replace
your_cluster_endpoint with the cluster endpoint.

PGSSLMODE=require \
 psql --dbname postgres \
--username admin \
--host your_cluster_endpoint

You should see a prompt to provide a password. Generate an authentication token and use it
as your password.

4. Make sure that you chose Connect as admin.

5. Copy the generated authentication token and paste it into the prompt to connect to Aurora
DSQL from your SQL client.

6. Press Enter. You should see a PostgreSQL prompt.

postgres=>

If you get an access denied error, make sure that your IAM identity has the
dsql:DbConnectAdmin permission. If you have the permission and continue to get access
deny errors, see Troubleshoot IAM and How can I troubleshoot access denied or unauthorized
operation errors with an IAM policy?.

Run SQL commands in Aurora DSQL

The following steps provide some SQL commands that you can run in Aurora DSQL.

1. Start by creating a schema named example.

CREATE SCHEMA example;

2. Create an invoice table that uses an automatically generated UUID as the primary key.

SQL commands 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues

Amazon Aurora DSQL User Guide

CREATE TABLE example.invoice(id UUID PRIMARY KEY DEFAULT gen_random_uuid(), created
 timestamp, purchaser int, amount float);

3. Create a secondary index that uses the empty table.

CREATE INDEX invoice_created_idx on example.invoice(created);

4. Create a department table.

CREATE TABLE example.department(id INT PRIMARY KEY UNIQUE, name text, email text);

5. Use psql \copy to load in some data. Download the data files named department-
insert-multirow.sql and invoice.csv from the aws-samples/aurora-dsql-samples
repository on GitHub.

6. Use the command psql \include to load the files. These operations create tables and insert
sample data.

\include samples/department-insert-multirow.sql

\copy example.invoice(created, purchaser, amount) from samples/invoice.csv csv

7. You can then list departments that are sorted by their total sales.

SELECT name, sum(amount) AS sum_amount
FROM example.department LEFT JOIN example.invoice ON
 department.id=invoice.purchaser
GROUP BY name
HAVING sum(amount) > 0
ORDER BY sum_amount DESC;

Example output:

 name | sum_amount
--------------------------+--------------------
 Example Department Three | 54061.67752854594
 Example Department Seven | 53869.65965365204
 Example Department Eight | 52199.73742066634
 Example Department One | 52034.078869900826
 Example Department Six | 50886.15556256385

SQL commands 6

https://github.com/aws-samples/aurora-dsql-samples/tree/main/quickstart_data

Amazon Aurora DSQL User Guide

 Example Department Two | 50589.98422247931
 Example Department Five | 49549.852635496005
 Example Department Four | 49266.15578027619
(8 rows)

Create a multi-Region linked cluster

These steps guide you through how to create a multi-Region linked cluster. They also demonstrate
cross-Region write replication and consistent reads from both Regional endpoints.

To create a new cluster and connect in multiple Regions

1. From the Aurora DSQL Clusters page, choose Create cluster.

2. Choose Add linked Regions and choose a Region for your linked cluster Region. The linked
cluster Region is a separate Region to create another cluster in. Aurora DSQL replicates all
writes to this cluster as well, so you can read and write from any linked cluster.

3. Choose a witness Region. The witness Region receives all data that is written to linked clusters,
but you can't write to it. The witness Region stores a limited window of encrypted transaction
logs. Aurora DSQL uses these capabilities to provide multi-Region durability and availability.

Note

Witness Regions don't host client endpoints and don't provide user data access. A
limited window of the encrypted transaction log is maintained in witness Regions.
This facilitates recovery and supports transactional quorum in the event of Region
unavailability. During preview, you can only choose us-west-2 as the witness Region.

4. Choose Create.

5. While Aurora DSQL is creating your cluster, open two instances of AWS CloudShell in different
Regions. Open one in the environment in us-east-1 and another one in us-east-2.

Note

During preview, creating linked clusters takes additional time.

6. Connect to your cluster in us-east-2.

Multi-Region 7

Amazon Aurora DSQL User Guide

export PGSSLMODE=require \
 psql --dbname postgres \
--username admin \
--host replace_with_your_cluster_endpoint_in_us-east-2

To write in one Region and read from a second Region

1. In your us-east-2 CloudShell environment, go through the steps in the section called “SQL
commands”.

Example transactions

Example

CREATE SCHEMA example;
CREATE TABLE example.invoice(id UUID PRIMARY KEY DEFAULT gen_random_uuid(), created
 timestamp, purchaser int, amount float);
CREATE INDEX invoice_created_idx on example.invoice(created);
CREATE TABLE example.department(id INT PRIMARY KEY UNIQUE, name text, email text);

2. Use PSQL meta commands to load data. For more information, see the section called “SQL
commands”.

\copy example.invoice(created, purchaser, amount) from samples/invoice.csv csv
\include samples/department-insert-multirow.sql

3. In your us-east-1 CloudShell environment, query the data that you inserted from a different
Region:

Example

SELECT name, sum(amount) AS sum_amount
FROM example.department
LEFT JOIN example.invoice ON department.id=invoice.purchaser
GROUP BY name
HAVING sum(amount) > 0
ORDER BY sum_amount DESC;

Multi-Region 8

Amazon Aurora DSQL User Guide

Understanding authentication and authorization for
Aurora DSQL

Aurora DSQL uses IAM roles and policies for cluster authorization. You associate IAM roles with
PostgreSQL database roles for database authorization. This approach combines benefits from
IAM with PostgreSQL privileges. Aurora DSQL uses these features to provide a comprehensive
authorization and access policy for your cluster, database, and data.

Manage your clusters using IAM

Cluster management (creating, reading, updating, deleting, tagging) requires you to be
authenticated and authorized with IAM to perform those actions.

• Authorization – to manage clusters, you must grant authorization using IAM actions for
Aurora DSQL. For example, your IAM identity must have permissions to the IAM action
dsql:CreateCluster to create a cluster. For more information, see the section called “Using
IAM policy actions to manage clusters in Aurora DSQL”.

• Authentication – use IAM to manage clusters. You can do so with the AWS Management Console,
AWS CLI, or the AWS SDK.

Connect to your cluster using IAM

To connect to your cluster, you must authenticate with IAM and be authorized to connect to the
cluster. When you connect, instead of providing a credential, you use a temporary authentication
token.

• Authorization – grant the following IAM policy actions to the IAM identity you’re using to
establish the connection to your cluster’s endpoint.

• Use dsql:DbConnectAdmin if you're using the admin role. Aurora DSQL creates and manages
this role for you.

• Use dsql:DbConnect if you're using a custom database role. You create and manage this role
in your database.

• Authentication – generate an authentication token using an IAM identity with authorization
to connect. Provide it as the password when you connect to your database. To learn more, see
Generating an authentication token.

IAM roles to manage clusters 9

https://www.postgresql.org/docs/current/user-manag.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-iam-features.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-iam-features.html
https://www.postgresql.org/docs/current/user-manag.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html

Amazon Aurora DSQL User Guide

• Authorization expiring – after you establish a connection, the role is authorized until the
maximum of one hour for the connection. To learn more, see Understanding connections in
Aurora DSQL.

Interact with your database using PostgreSQL database roles
and IAM roles

To manage database-level authorization, you must use PostgreSQL database roles. Aurora DSQL
has two types of roles: an admin role and a custom role. You manage database-level authorization
by granting PostgreSQL permissions to your PostgreSQL database roles.

Aurora DSQL creates the admin role for you, and you can't modify it. Connecting as an admin
lets you perform actions such as creating new database roles to associate with IAM roles. You
must associate your custom database roles with your IAM roles to let the IAM role connect to your
database.

• Authorization – use the admin role to connect to your cluster. Use PostgreSQL to set up custom
database roles and grant permissions. To learn more, see PostgreSQL database roles and
PostgreSQL privileges

• Authentication – use the admin role to connect to your cluster. Use the AWS IAM GRANT
command to associate the custom database role with the IAM identity with authorization to
connect to the cluster. To learn more, see the section called “Authorize custom database roles to
connect to a cluster”.

Revoking authorization using IAM and PostgreSQL

Revoking admin authorization to connect to clusters

To revoke authorization to connect to your cluster with the admin role, you must revoke the IAM
identity's access to dsql:DbConnectAdmin.

After revoking connection authorization from the IAM identity, Aurora DSQL rejects all new
connection attempts from that IAM identity. Any active connections using the IAM identity might
stay authorized for the connection’s duration. You can find connection duration in Quotas and
limits. To learn more about connections, see the section called “Connections”.

Revoking custom role authorization to connect to clusters

PostgreSQL and IAM roles 10

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-connections.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-connections.html
https://www.postgresql.org/docs/current/user-manag.html
https://www.postgresql.org/docs/current/ddl-priv.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html

Amazon Aurora DSQL User Guide

To revoke access to non-admin database roles, you must revoke the IAM identity’s access to
dsql:DbConnect.

You can also remove the association between the database role and IAM by using the AWS IAM
REVOKE operation. To learn more about revoking access from database roles, please see the section
called “Revoke database authorization from an IAM role”.

Revoking database-level privileges

You can't manage permissions of the admin role. To learn how to manage permissions for custom
database roles, see PostgreSQL privileges. Modifications to privileges take effect on the next
transaction after Aurora DSQL successfully commits the modification transaction.

Using IAM policy actions to manage clusters in Aurora DSQL

The IAM policy action you use depends on the role you use to connect to your cluster and any other
IAM actions you need. For example, if your role only needs to be able to get cluster information,
then you might limit their permissions to only the GetCluster and ListClusters permissions.

The following example policy shows all of the available IAM policy actions for managing clusters.
For connecting to clusters, see Using IAM policy actions to connect to clusters.

{
"Version" : "2012-10-17",
 "Statement" : [
 {
"Effect" : "Allow",
 "Action" : [
 "dsql:CreateCluster",
 "dsql:GetCluster",
 "dsql:UpdateCluster",
 "dsql:DeleteCluster",
 "dsql:ListClusters",
 "dsql:CreateMultiRegionClusters",
 "dsql:DeleteMultiRegionClusters",
 "dsql:TagResource",
 "dsql:ListTagsForResource",
 "dsql:UntagResource"
],
 "Resource" : "*"
 }

Using IAM policy actions to manage clusters in Aurora DSQL 11

https://www.postgresql.org/docs/current/ddl-priv.html
https://docs.aws.amazon.com/authentication-authorization-iam-policy-connect

Amazon Aurora DSQL User Guide

]
}

Using IAM policy actions to connect to clusters

When connecting to your cluster with the default database role of admin you must use an IAM
identity with authorization to perform following IAM policy action.

"dsql:DbConnectAdmin"

When connecting to your cluster with a custom role, you must first associate IAM role with the
database role. The IAM identity you use to connect to your cluster must have authorization to
perform the following IAM policy action.

"dsql:DbConnect"

To learn more about custom roles, see the section called “Using database roles with IAM roles”.

Amazon Resource Name (ARN) format for Aurora DSQL
resources

The ARN format for a cluster in Aurora DSQL is cluster/<clusterID>.

For example, if your cluster ID was foo0bar1baz2quux3quuux4, the ARN of the cluster would be
arn:aws:dsql:us-east-1:123456789012:cluster/foo0bar1baz2quux3quux4.

Generating an authentication token in Amazon Aurora DSQL

To connect to Amazon Aurora DSQL with your preferred SQL client, you must generate an
authentication token that you use as the password. By default, these tokens automatically expire
in one hour if you use the AWS console to create it. If you use the AWS CLI or SDKs to create the
token, the default is 15 minutes. The maximum is 604,800 seconds, which is one week. To connect
to Aurora DSQL from your client again, you can use the same token if it hasn't expired, or you can
generate a new one.

To get started with generating a token, first create an IAM policy and a cluster in Aurora DSQL, and
then use the console, AWS CLI, or the AWS SDKs to generate a token.

IAM policy to connect to clusters 12

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html#getting-started-quickstart

Amazon Aurora DSQL User Guide

At a minimum, you must have the following IAM permissions listed in
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-
authorization.html#authentication-authorization-iam-role-connect, depending on what database
role you want to use to connect.

Topics

• Use the AWS console to generate a token in Aurora DSQL

• Use AWS CloudShell to generate a token in Aurora DSQL

• Use the AWS CLI to generate a token in Aurora DSQL

• Use the Python SDK to generate a token in Aurora DSQL

• Use the C++ SDK to generate a token in Aurora DSQL

• Use the JavaScript SDK to generate a token in Aurora DSQL

• Use the Java SDK to generate a token in Aurora DSQL

• Use the Rust SDK to generate a token in Aurora DSQL

• Use the Ruby SDK to generate a token in Aurora DSQL

• Use the .NET to generate a token in Aurora DSQL

• Use the Golang to generate a token in Aurora DSQL

Use the AWS console to generate a token in Aurora DSQL

The following steps describe how to use the AWS console to generate an authentication token.

1. After you create a cluster, choose the cluster ID of the cluster for which you want to generate
an authentication token. Choose Connect.

2. In the modal, choose whether you want to connect as admin or with a custom database role.

3. Copy the generated authentication token and use it to connect to Aurora DSQL from your SQL
client.

To learn more about custom database roles and IAM in Aurora DSQL, see Authentication and
authorization.

Use AWS CloudShell to generate a token in Aurora DSQL

Before you can generate an authentication token, you must have completed following
prerequisites.

Console 13

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-iam-role-connect
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-iam-role-connect
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-iam-role-connect
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing-sql-clients.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing-sql-clients.html

Amazon Aurora DSQL User Guide

• Created a Aurora DSQL cluster.

• Added permission to run the Amazon S3 operation get-object to retrieve objects from an AWS
account outside of your organization.

The following steps describe how to use AWS CloudShell to generate an authentication token.

1. Sign in to the AWS Management Console.

2. After you sign in, navigate to Aurora DSQL's home page

3. At the bottom left of the AWS console, choose AWS CloudShell.

4. Follow Installing or updating to the latest verison of the AWS CLI to install the AWS CLI.

sudo ./aws/install --update

5. Run the following command that generates an authentication token. Remember to replace the
region and cluster_endpoint parameters with your Region and the endpoint of your own
cluster. If you run into issues, see Troubleshoot IAM and How can I troubleshoot access denied
or unauthorized operation errors with an IAM policy?.

aws dsql generate-db-connect-admin-auth-token \
--expires-in 3600 \
--region us-east-1 \
--hostname cluster_endpoint

Note

Use generate-db-connect-auth-token if you are _not_ connecting as admin user.

6. Use the following command to use psql to start a connection to your cluster.

PGSSLMODE=require \
 psql --dbname postgres \
--username admin \
--host cluster_endpoint

7. You should see a prompt to provide a password. Copy the token that you generated, and make
sure you don't include any additional spaces or characters. Paste it into the following prompt
from psql.

AWS CloudShell 14

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html#getting-started-quickstart
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues

Amazon Aurora DSQL User Guide

Password for user admin:

8. Press Enter. You should see a PostgreSQL prompt.

postgres=>

If you get an access denied error, make sure that your IAM identity has the
dsql:DbConnectAdmin permission. If you have the permission and continue to get access
deny errors, see Troubleshoot IAM and How can I troubleshoot access denied or unauthorized
operation errors with an IAM policy?.

To learn more about custom database roles and IAM in Aurora DSQL, see Authentication and
authorization.

Use the AWS CLI to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the generate-db-connect-admin-auth-token

• If you are connecting with a custom database role, you use the generate-db-connect-auth-
token

The following example uses the following attributes to generate an authentication token for the
admin role.

• your_cluster_endpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

Linux and macOS

aws dsql generate-db-connect-admin-auth-token \
--region us-east-1 \
--expires-in 3600 \
--hostname <your_cluster_endpoint>

AWS CLI 15

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues

Amazon Aurora DSQL User Guide

Windows

aws dsql generate-db-connect-admin-auth-token ^
--region=us-east-1 ^
--expires-in=3600 ^
--hostname=<your_cluster_endpoint>

Use the Python SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the generate_connect_admin_auth_token

• If you are connecting with a custom database role, you use the
generate_connect_auth_token

The following example uses the following attributes to generate an authentication token for the
admin role.

• your_cluster_endpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

def generate_token(your_cluster_endpoint, region):
 client = boto3.client("dsql", region_name=region)
 # use `generate_db_connect_auth_token` if you are _not_ connecting as admin
 instead.
 token = client.generate_connect_admin_auth_token(your_cluster_endpoint, region)
 print(token)
 return token

Use the C++ SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

Python SDK 16

Amazon Aurora DSQL User Guide

• If you are connecting as admin user, you use the GenerateDBConnectAdminAuthToken

• If you are connecting with a custom database role, you use the
GenerateDBConnectAuthToken

The following example uses the following attributes to generate an authentication token for the
admin role.

• yourClusterEndpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

C++ SDK 17

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;

std::string generateToken(String yourClusterEndpoint, String region) {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQLClient client{clientConfig};
 std::string token = "";

 // If you aren not using admin role to connect, use GenerateDBConnectAuthToken
 instead
 const auto presignedString =
 client.GenerateDBConnectAdminAuthToken(yourClusterEndpoint, region);
 if (presignedString.IsSuccess()) {
 token = presignedString.GetResult();
 } else {
 std::cerr << "Token generation failed." << std::endl;
 }

 std::cout << token << std::endl;

 Aws::ShutdownAPI(options);
 return token;
}

Use the JavaScript SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the getDbConnectAdminAuthToken

• If you are connecting with a custom database role, you use the getDbConnectAuthToken

JavaScript SDK 18

Amazon Aurora DSQL User Guide

The following example uses the following attributes to generate an authentication token for the
admin role.

• yourClusterEndpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

import { DsqlSigner } from "@aws-sdk/dsql-signer";

async function generateToken(yourClusterEndpoint, region) {
 const signer = new DsqlSigner({
 hostname: yourClusterEndpoint,
 region,
 });
 try {
 // Use `getDbConnectAuthToken` if you are _not_ logging in as `admin` user
 const token = await signer.getDbConnectAdminAuthToken();
 console.log(token);
 return token;
 } catch (error) {
 console.error("Failed to generate token: ", error);
 throw error;
 }
}

Use the Java SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the generateDbConnectAdminAuthToken

• If you are connecting with a custom database role, you use the
generateDbConnectAuthToken

The following example uses the following attributes to generate an authentication token for the
admin role.

Java SDK 19

Amazon Aurora DSQL User Guide

• yourClusterEndpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region eg: us-east-1 or us-east-2

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.services.dsql.DsqlUtilities;
import software.amazon.awssdk.regions.Region;

public class GenerateAuthToken {
 public static String generateToken(String yourClusterEndpoint, Region region) {
 DsqlUtilities utilities = DsqlUtilities.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 // Use `generateDbConnectAuthToken` if you are _not_ logging in as `admin`
 user
 String token = utilities.generateDbConnectAdminAuthToken(builder -> {
 builder.hostname(yourClusterEndpoint)
 .region(region);
 });

 System.out.println(token);
 return token;
 }
}

Use the Rust SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the db_connect_admin_auth_token

• If you are connecting with a custom database role, you use the db_connect_auth_token

The following example uses the following attributes to generate an authentication token for the
admin role.

Rust SDK 20

Amazon Aurora DSQL User Guide

• your_cluster_endpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

use aws_config::{BehaviorVersion, Region};
use aws_sdk_dsql::auth_token::{AuthTokenGenerator, Config};

async fn generate_token(your_cluster_endpoint: String, region: String) -> String {
 let sdk_config = aws_config::load_defaults(BehaviorVersion::latest()).await;
 let signer = AuthTokenGenerator::new(
 Config::builder()
 .hostname(&your_cluster_endpoint)
 .region(Region::new(region))
 .build()
 .unwrap(),
);

 // Use `db_connect_auth_token` if you are _not_ logging in as `admin` user
 let token = signer.db_connect_admin_auth_token(&sdk_config).await.unwrap();
 println!("{}", token);
 token.to_string()
}

Use the Ruby SDK to generate a token in Aurora DSQL

Once your cluster is ACTIVE, you can generate an authentication token.

There are two ways to generate the token

• If you are connecting as admin user, you use the generate_db_connect_admin_auth_token

• If you are connecting with a custom database role, you use the
generate_db_connect_auth_token

The following example uses the following attributes to generate an authentication token for the
admin role.

• your_cluster_endpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

Ruby SDK 21

Amazon Aurora DSQL User Guide

require 'aws-sdk-dsql'

def generate_token(your_cluster_endpoint, region)
 credentials = Aws::SharedCredentials.new()

 begin
 token_generator = Aws::DSQL::AuthTokenGenerator.new({
 :credentials => credentials
 })

 # The token expiration time is optional, and the default value 900 seconds
 # if you are not using admin role, use generate_db_connect_auth_token instead
 token = token_generator.generate_db_connect_admin_auth_token({
 :endpoint => your_cluster_endpoint,
 :region => region
 })
 rescue => error
 puts error.full_message
 end
end

Use the .NET to generate a token in Aurora DSQL

Note

.NET SDK does not provide the API to generate the token. The following code sample
shows how to generate the authentication token for .NET.

Once your cluster is ACTIVE, you can generate an authentication token.

The following example uses the following attributes to generate an authentication token for the
admin role.

• your_cluster_endpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

• action – needs to be specified based on the postgres user

• If you are connecting as admin user, you use the DbConnectAdmin action

.NET 22

Amazon Aurora DSQL User Guide

• If you are connecting with a custom database role, you use the DbConnect action

.NET 23

Amazon Aurora DSQL User Guide

using Amazon.Runtime;
using Amazon.Runtime.Internal;
using Amazon.Runtime.Internal.Auth;
using Amazon.Runtime.Internal.Util;

public static class TokenGenerator
{
 public static string GenerateDbConnectAdminAuthToken(string? your_cluster_endpoint,
 Amazon.RegionEndpoint region, string? action)
 {
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();

 string accessKey = awsCredentials.GetCredentials().AccessKey;
 string secretKey = awsCredentials.GetCredentials().SecretKey;
 string token = awsCredentials.GetCredentials().Token;

 const string DsqlServiceName = "dsql";
 const string HTTPGet = "GET";
 const string HTTPS = "https";
 const string URISchemeDelimiter = "://";
 const string ActionKey = "Action";

 action = action?.Trim();
 if (string.IsNullOrEmpty(action))
 throw new ArgumentException("Action must not be null or empty.");
 string ActionValue = action;
 const string XAmzSecurityToken = "X-Amz-Security-Token";

 ImmutableCredentials immutableCredentials = new ImmutableCredentials(accessKey,
 secretKey, token) ?? throw new ArgumentNullException("immutableCredentials");
 ArgumentNullException.ThrowIfNull(region);

 your_cluster_endpoint = your_cluster_endpoint?.Trim();
 if (string.IsNullOrEmpty(your_cluster_endpoint))
 throw new ArgumentException("Cluster endpoint must not be null or empty.");

 GenerateDsqlAuthTokenRequest authTokenRequest = new
 GenerateDsqlAuthTokenRequest();
 IRequest request = new DefaultRequest(authTokenRequest, DsqlServiceName)
 {
 UseQueryString = true,
 HttpMethod = HTTPGet
 };
 request.Parameters.Add(ActionKey, ActionValue);
 request.Endpoint = new UriBuilder(HTTPS, your_cluster_endpoint).Uri;

 if (immutableCredentials.UseToken)
 {
 request.Parameters[XAmzSecurityToken] = immutableCredentials.Token;
 }

 var signingResult = AWS4PreSignedUrlSigner.SignRequest(request, null, new
 RequestMetrics(), immutableCredentials.AccessKey,
 immutableCredentials.SecretKey, DsqlServiceName, region.SystemName);

 var authorization = "&" + signingResult.ForQueryParameters;
 var url = AmazonServiceClient.ComposeUrl(request);

 // remove the https:// and append the authorization
 return url.AbsoluteUri[(HTTPS.Length + URISchemeDelimiter.Length)..] +
 authorization;
 }

 private class GenerateDsqlAuthTokenRequest : AmazonWebServiceRequest
 {
 public GenerateDsqlAuthTokenRequest()
 {
 ((IAmazonWebServiceRequest)this).SignatureVersion = SignatureVersion.SigV4;
 }
 }
}

.NET 24

Amazon Aurora DSQL User Guide

Use the Golang to generate a token in Aurora DSQL

Note

Golang SDK does not provide the API to generate the token. The following code sample
shows how to generate the authentication token for Golang.

Once your cluster is ACTIVE, you can generate an authentication token.

The following example uses the following attributes to generate an authentication token for the
admin role.

• yourClusterEndpoint – endpoint of the cluster. Follows the format
your_cluster_identifier.dsql.AWS_REGION.on.aws

• region – The AWS Region, such as us-east-2 or us-east-1

• action – needs to be specified based on the postgres user

• If you are connecting as admin user, you use the DbConnectAdmin action

• If you are connecting with a custom database role, you use the DbConnect action

Golang 25

Amazon Aurora DSQL User Guide

func GenerateDbConnectAdminAuthToken(yourClusterEndpoint string, region string, action
 string) (string, error) {
 // Fetch credentials
 sess, err := session.NewSession()
 if err != nil {
 return "", err
 }

 creds, err := sess.Config.Credentials.Get()
 if err != nil {
 return "", err
 }
 staticCredentials := credentials.NewStaticCredentials(
 creds.AccessKeyID,
 creds.SecretAccessKey,
 creds.SessionToken,
)

 // The scheme is arbitrary and is only needed because validation of the URL requires
 one.
 endpoint := "https://" + yourClusterEndpoint
 req, err := http.NewRequest("GET", endpoint, nil)
 if err != nil {
 return "", err
 }
 values := req.URL.Query()
 values.Set("Action", action)
 req.URL.RawQuery = values.Encode()

 signer := v4.Signer{
 Credentials: staticCredentials,
 }
 _, err = signer.Presign(req, nil, "dsql", region, 15*time.Minute, time.Now())
 if err != nil {
 return "", err
 }

 url := req.URL.String()[len("https://"):]

 return url, nil
}

Golang 26

Amazon Aurora DSQL User Guide

Using database roles with IAM roles

The following sections describe how to use database roles from PostgreSQL with IAM roles in
Aurora DSQL.

Authorize custom database roles to connect to a cluster

Create an IAM role and grant connection authorization with the IAM policy action:
dsql:DbConnect

The IAM policy must also grant permission to access the cluster resource(s). Use a wildcard * or
How to restrict access to cluster ARNs.

Authorize database roles to use SQL in a database

You must use an IAM role with authorization to connect to the cluster.

1. Connect as a admin

Use the admin database role with an IAM identity that is authorized for IAM action
dsql:DbConnectAdmin to connect to your cluster.

2. Create a new database role

CREATE ROLE example WITH LOGIN;

3. Associate the database role with the AWS IAM role ARN

AWS IAM GRANT example TO 'arn:aws:iam::111122223333:role/example';

4. Grant database-level permissions to the database role

Use GRANT to provide authorization within the database.

GRANT USAGE ON SCHEMA myschema TO example;

GRANT SELECT, INSERT, UPDATE ON ALL TABLES IN SCHEMA myschema TO example;

For more information, see PostgreSQL GRANT and PostgreSQL Privileges.

Using database roles with IAM roles 27

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-iam-condition-keys.html#using-iam-condition-keys-create-cluster
https://www.postgresql.org/docs/current/sql-grant.html
https://www.postgresql.org/docs/current/ddl-priv.html

Amazon Aurora DSQL User Guide

Revoke database authorization from an IAM role

To revoke database authorization, use the AWS IAM REVOKE operation.

AWS IAM REVOKE example FROM 'arn:aws:iam::111122223333:role/example';

To learn more about revoking authorization, see Revoking authorization using IAM and
PostgreSQL.

Revoke database authorization from an IAM role 28

https://docs.aws.amazon.com/authentication-authorization-revoke
https://docs.aws.amazon.com/authentication-authorization-revoke

Amazon Aurora DSQL User Guide

Accessing Aurora DSQL

You can access Aurora DSQL through the following methods.

Topics

• Using the PostgreSQL protocol with Aurora DSQL

• Access Aurora DSQL through the AWS Management Console

• Using SQL clients with Aurora DSQL

• Understanding programmatic access to Amazon Aurora DSQL

Using the PostgreSQL protocol with Aurora DSQL

The following table shows how Aurora DSQL supports the PostgreSQL protocol.

PostgreSQL Aurora DSQL Notes

Role (aka User or Group) Database Role Aurora DSQL creates a role
for you named admin. If you
create custom database roles,
you must use the admin role
to associate them with IAM
roles for authenticating when
connecting to your cluster.
For more information, see
Configure custom database
roles.

Host (aka hostname or
hostspec)

Cluster Endpoint Aurora DSQL single region
clusters provide a single
managed endpoint and will
automatically redirect traffic
in case there’s any unavailab
ility within the region.

Port N/A - use default 5432 PostgreSQL default

PostgreSQL protocol 29

https://www.postgresql.org/docs/current/protocol.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html

Amazon Aurora DSQL User Guide

PostgreSQL Aurora DSQL Notes

Database (dbname) use postgres Aurora DSQL creates this for
you upon Cluster creation

SSL Mode SSL is always enabled server-
side

In Aurora DSQL, Aurora DSQL
supports the require SSL
Mode. Connections without
SSL will be rejected by Aurora
DSQL.

Password Authentication Token Aurora DSQL requires
temporary authentication
tokens instead of long-lived
passwords. To learn more, see
the section called “Generate
an authentication token”.

You do not need to store credentials in the database because authentication is managed using
IAM. An authentication token is a unique string of characters that is generated dynamically.
Authentication tokens are generated using AWS Signature Version 4. The token is only used for
authentication and doesn't affect the connection after it is established. If you try to re-connect
using an expired token, the connection request is denied. For more information, see the section
called “Generate an authentication token”.

Access Aurora DSQL through the AWS Management Console

Follow the steps below to access Aurora DSQL through the AWS Management Console.

1. Sign in to the AWS Management Console and open the Aurora DSQL at https://
console.aws.amazon.com/dsql

2. To connect to your cluster, open AWS CloudShell and connect with psql.

Console 30

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL User Guide

Using SQL clients with Aurora DSQL

Aurora DSQL uses the PostgreSQL protocol, so you can use your preferred interactive client by
providing a signed IAM authentication token as the password when connecting to your cluster.

In Aurora DSQL, extra steps are required to generate an authentication token and provide to the
SQL client to connect to your cluster.

Topics

• Access Aurora DSQL with psql (PostgreSQL interactive terminal)

• Access Aurora DSQL with DBeaver

• Access Aurora DSQL with JetBrains DataGrip

Access Aurora DSQL with psql (PostgreSQL interactive terminal)

For more information about psql, see https://www.postgresql.org/docs/current/app-psql.htm. To
download the PostgreSQL-provided installers, see PostgreSQL Downloads.

If you already have the AWS CLI installed, use the following example to connect to your cluster. You
can also use AWS CloudShell which comes with psql pre-installed, or, you can install psql directly.

Aurora DSQL requires a valid IAM token as the password when connecting.
Aurora DSQL provides tools for this and here we're using Python.
export PGPASSWORD=$(aws dsql generate-db-connect-admin-auth-token \
--region us-east-1 \
--expires-in 3600 \
--hostname your_cluster_endpoint)

Aurora DSQL requires SSL and will reject your connection without it.
export PGSSLMODE=require

Connect with psql which will automatically use the values set in PGPASSWORD and
 PGSSLMODE.
Quiet mode will suppress unnecessary warnings and chatty responses. Still outputs
 errors.
psql --quiet \
--username admin \
--dbname postgres \
--host your_cluster_endpoint

SQL clients 31

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html
https://www.postgresql.org/docs/current/app-psql.htm
https://www.postgresql.org/download/

Amazon Aurora DSQL User Guide

Access Aurora DSQL with DBeaver

See the following steps to learn how to use the DBeaver Community edition to connect to your
cluster.

Set up a new connection

1. Choose New Database Connection.

2. In the New Database Connection window, choose PostgreSQL.

3. In the Connection settings/Main tab, choose Connect by: Host and enter the following
information.

• Host - Use your cluster endpoint.

Database - Enter postgres

Authentication - Choose Database Native

Username - Enter admin

Password - Generate an authentication token. Copy the generated token and use it as
your password.

4. Ignore any warnings and paste your authentication token into the DBeaver Password field.

Note

You must set SSL mode in the client connections. Aurora DSQL supports
SSLMODE=require. Aurora DSQL enforces SSL communication on the server side and
rejects non-SSL connections.

5. You should be connected to your cluster and can start running SQL statements.

Important

The administrative features provided by DBeaver for the PostgreSQL databases (such
as Session Manager and Lock Manager) do not apply to a database, due to its unique
architecture. While accessible, these screens will not provide reliable information on the
database health or status.

Access Aurora DSQL with DBeaver 32

https://dbeaver.io/download/
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html

Amazon Aurora DSQL User Guide

Authentication credentials expiry

Established sessions will remain authenticated for a maximum of 1 hour or until an explicit
disconnect or a client-side timeout takes place. If new connections need to be established, a valid
Authentication token must be provided in the Password field of the Connection settings. Trying
to open a new session (for example, to list new tables, or a new SQL console) will force a new
authentication attempt. If the authentication token configured in the Connection settings is no
longer valid, that new session will fail and all the previously opened sessions will get invalidated at
that point in time too. Have this in mind when choosing the duration of your IAM authentication
token with the expires-in option.

Access Aurora DSQL with JetBrains DataGrip

Set up a new connection

1. Choose New Data Source and choose PostgreSQL.

2. In the Data Sources/General tab, enter the following information:

• Host - Use your cluster endpoint.

Port - Aurora DSQL uses the PostgreSQL default: 5432

Database - Aurora DSQL uses the PostgreSQL default of postgres

Authentication - Choose User & Password .

Username - Enter admin.

Password - Generate a token and paste it into this field.

URL - Don't modify this field. It will be auto-populated based on the other fields.

3. Password - Provide this by generating an authentication token. Copy the resulting output of
the token generator and paste it into the password field.

Note

You must set SSL mode in the client connections. Aurora DSQL supports
PGSSLMODE=require. Aurora DSQL enforces SSL communication on the server side
and will reject non-SSL connections.

Access Aurora DSQL with JetBrains DataGrip 33

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html

Amazon Aurora DSQL User Guide

4. You should be connected to your cluster and can start running SQL statements:

Important

Some of the views provided by DataGrip for the PostgreSQL databases (such as Sessions)
don't apply to a database because of its unique architecture. While accessible, these screens
don't provide reliable information on the actual sessions connected to the database.

Authentication credentials expiration

Established sessions will remain authenticated for a maximum of 1 hour or until an explicit
disconnect or a client-side timeout takes place. If new connections need to be established, a new
Authentication token must be generated and provided in the Password field of the Data Source
Properties. Trying to open a new session (for example, to list new tables, or a new SQL console)
will force a new authentication attempt. If the authentication token configured in the Connection
settings is no longer valid, that new session will fail and all the previously opened sessions will
become invalid.

Understanding programmatic access to Amazon Aurora DSQL

Aurora DSQL provides you with the following tools to manage your Aurora DSQL resources
programmatically.

AWS Command Line Interface (AWS CLI)

You can create and manage your resources by using the AWS CLI in a command-line shell. The
AWS CLI provides direct access to the APIs for AWS services, such as Aurora DSQL. For syntax
and examples for the commands for Aurora DSQL, see dsql in the AWS CLI Command Reference.

AWS software development kits (SDKs)

AWS provides SDKs for many popular technologies and programming languages. They make it
easier for you to call AWS services from within your applications in that language or technology.
For more information about these SDKs, see Tools for developing and managing applications on
AWS.

Programmatic access 34

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_CreateCluster.html
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/

Amazon Aurora DSQL User Guide

Aurora DSQL API

This API is another programming interface for Aurora DSQL. When using this API, you must
format every HTTPS request correctly and add a valid digital signature to every request. For
more information, see API reference.

AWS CloudFormation

During Preview, Aurora DSQL doesn't support AWS CloudFormation.

Programmatic access 35

Amazon Aurora DSQL User Guide

Working with Amazon Aurora DSQL

The following sections describe various ways of working with Aurora DSQL.

Topics

• Understanding PostgreSQL compatibility

• Supported data types in Aurora DSQL

• Supported PostgreSQL features in Aurora DSQL

• Supported subsets of PostgreSQL commands in Aurora DSQL

• Unsupported PostgreSQL features in Aurora DSQL

• Understanding connections in Aurora DSQL

• Understanding concurrency control in Aurora DSQL

• Understanding data definition language (DDL) in Aurora DSQL

• Primary keys in Aurora DSQL

• Creating async indexes in Aurora DSQL

• Using system tables and commands in Aurora DSQL

Understanding PostgreSQL compatibility

Aurora DSQL is PostgreSQL compatible, which means that it provides identical behavior for most
supported features, identical query results for all SQL features, and supports many popular
PostgreSQL drivers and tools with minor configuration changes. Supported SQL expressions return
identical data in query results, including sort order, scale and precision for numeric operations,
and equivalence for string operations. With a few documented exceptions, such as synchronous
replication, no-lock concurrency control, and asynchronous DDL execution, Aurora DSQL behaves
comparably to PostgreSQL.

Aurora DSQL supports core relational features like ACID transactions, secondary indexes, joins,
insert, and updates. See Supported SQL expressions for an overview of supported SQL features.

Aurora DSQL doesn't support all PostgreSQL features. For more information, see Unsupported
PostgreSQL features.

Aurora DSQL uses standard PostgreSQL drivers and supports common PostgreSQL-compatible
tools with some configuration changes. To see a list of supported tools, see Utilities, tools, and

PostgreSQL compatibility 36

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-features
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-unsupported-features
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-unsupported-features
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_tutorials-sample-code.html

Amazon Aurora DSQL User Guide

sample code. To see code examples and other developer-related topics, see Programming with
Aurora DSQL.

Supported data types in Aurora DSQL

See the following table to learn about the supported core data types in Aurora DSQL

Name Aliases Description Aurora DSQL
Specific Limits

Storage Size

smallint int2 signed two-byte
integer. 32768
to +3276

 2 bytes

integer int, int4 signed four-
byte integer.
-2147483648 to
+2147483647

4 bytes

bigint int8 signed eight-
byte integer.
-92233720
36854775808
to +92233720
36854775807

8 bytes

boolean bool logical Boolean
(true/false)

1 byte

character [(n)] char [(n)] fixed-length
character string

4096 bytes 1 2 variable up to
4100 bytes

character
varying [(n)]

varchar [(n)] variable-length
character string

65535 bytes 1 2 variable up to
65539 bytes

bpchar [(n)] if fixed-length,
alias for char

4096 bytes 1 2 variable up to
4100 bytes

Supported data types 37

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_tutorials-sample-code.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/programming-with.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/programming-with.html

Amazon Aurora DSQL User Guide

Name Aliases Description Aurora DSQL
Specific Limits

Storage Size

if variable
length, alias for
varchar where
trailing spaces
are semantically
insignificant

text variable-length
character string

1 MiB 1 2 variable up to
1MB limit

bytea binary data
("byte array")

1 MiB 1 2 variable up to
1MB limit

real float4 single precision
floating-point
number (4
bytes). 6 decimal
digits precision

4 bytes

double precision float8 double precision
floating-point
number (8
bytes). 15
decimal digits
precision

8 bytes

numeric [(p, s)] decimal [(p, s)],
dec[(p,s)]

exact numeric
of selectable
precision. Up to
38 digits before
the decimal
point up to 37
digits after the
decimal point

Max precision =
38

Max scale = 37

2

8 bytes + 2
bytes per
percision digit.
Max size 27
bytes

Supported data types 38

Amazon Aurora DSQL User Guide

Name Aliases Description Aurora DSQL
Specific Limits

Storage Size

date calendar date
(year, month,
day)

4 bytes

time [(p)]
[without time
zone]

timestamp time of day (no
time zone)

8 bytes

time [(p)] with
time zone

timetz time of day,
including time
zone

12 bytes

timestamp [(p)]
[without time
zone]

date and time
(no time zone)

8 bytes

timestamp [(p)]
with time zone

timestamptz date and time,
including time
zone

8 bytes

interval [fields]
[(p)]

time span 16 bytes

UUID universally
unique identifier
(v4)

16 bytes

1 – If you use this data type in a primary key or key column, the maximum size is limited to 255
bytes.

2 – If you don't explicitly specify a size when you run CREATE TABLE or ALTER TABLE ADD
COLUMN, then Aurora DSQL enforces the defaults. Aurora DSQL applies limits when you run
INSERT or UPDATE.

The following are data types and their implicit limits.

Supported data types 39

Amazon Aurora DSQL User Guide

Name Implicit Limit

character [(n)] 4096 bytes

bpchar [(n)] 4096 bytes

character varying [(n)] 65535 bytes

text 1MB

bytea 1 MB

numeric [(p, s)] numeric (18,0)

Date time precision

The following are the supported date time data types in Aurora DSQL and their precision values.

Name Low Value High Value Resolution

timestamp [(p)]
[without time zone]

4713 BC 294276 AD 1 microsecond

timestamp [(p)] with
time zone

4713 BC 294276 AD 1 microsecond

date 4713 BC 5874897 AD 1 day

time [(p)] [without
time zone]

0 1 1 microsecond

time [(p)] with time
zone

00:00:00+1559 24:00:00-1559 1 microsecond

interval [fields]
[(p)]

-178000000 years 178000000 years 1 microsecond

Date time precision 40

Amazon Aurora DSQL User Guide

Types supported during query runtime

Aurora DSQL supports all documented storage types when you apply type transformations, such as
CAST and AS, when you run queries. The following types are supported only during query runtime.

• Array types of all of the above types.

postgres=> select string_to_array('1,2', ',');
 string_to_array

 {1,2}
(1 row)

• inet – IPv4, IPv6 host addresses, and their subnets. For more information, see inet in the
PostgreSQL documentation.

Supported PostgreSQL features in Aurora DSQL

The table below characterizes general PostgreSQL expression support for the Aurora DSQL. This
list is not exhaustive.

Warning

In Aurora DSQL, you might find that SQL expressions beyond those characterized below are
working. Be aware that there may be changes to behavior or support for such expressions.

Category Primary Clause Supported Clauses

SELECT FROM see SELECT rows

SELECT GROUP BY ALL, DISTINCT

SELECT ORDER BY ASC, DESC, NULLS ..

SELECT LIMIT

SELECT DISTINCT

Types supported during query runtime 41

https://www.postgresql.org/docs/16/datatype-net-types.html#DATATYPE-INET
https://www.postgresql.org/docs/16/datatype-net-types.html#DATATYPE-INET

Amazon Aurora DSQL User Guide

Category Primary Clause Supported Clauses

SELECT HAVING

SELECT WITH

SELECT USING

SELECT INNER JOIN ON

SELECT OUTER JOIN LEFT, RIGHT, FULL, ON

SELECT CROSS JOIN ON

SELECT OVER RANK (), PARTITION BY

SELECT UNION UNION ALL

SELECT INTERSECT INTERSECT ALL

SELECT EXCEPT EXCEPT ALL

SELECT FOR UPDATE

INSERT INTO VALUES

INSERT INTO SELECT, WITH

UPDATE SET WHERE, WHERE (SELECT)

UPDATE SET FROM, WITH

CREATE TABLE PRIMARY KEY

CREATE INDEX Can run on empty tables only.

CREATE INDEX ASYNC ON, NULLS FIRST, NULLS
LAST

DROP TABLE

DROP INDEX

Supported PostgreSQL features 42

Amazon Aurora DSQL User Guide

Category Primary Clause Supported Clauses

DELETE FROM USING, WHERE

GRANT [permission] ON, TO

REVOKE [permission] ON, FROM, CASCADE,
RESTRICT

CREATE ROLE, WITH

CREATE FUNCTION LANGUAGE SQL

EXPLAIN - -

BEGIN [WORK | TRANSACTION]
[READ ONLY | READ WRITE

COMMIT

ANALYZE relation name only

CREATE DOMAIN

ALTER TABLE ADD COLUMN (no default)

Supported subsets of PostgreSQL commands in Aurora DSQL

Aurora DSQL doesn't support all of the syntax in supported PostgreSQL commands. For example,
CREATE TABLE in PostgreSQL has a large number of clauses and parameters that Aurora DSQL
doesn't support. This section describes the syntax of PostgreSQL syntax that Aurora DSQL does
support for these commands.

CREATE TABLE

CREATE TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]

Supported subsets of PostgreSQL commands 43

Amazon Aurora DSQL User Guide

])

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression)|
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY |
 INDEXES | STATISTICS | ALL }

index_parameters in UNIQUE, and PRIMARY KEY constraints are:
[INCLUDE (column_name [, ...])]

ALTER TABLE

ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

Supported subsets of PostgreSQL commands 44

Amazon Aurora DSQL User Guide

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Unsupported PostgreSQL features in Aurora DSQL

See the following to learn more about which PostgreSQL features are unsupported in Aurora DSQL

Unsupported objects

• Databases - Aurora DSQL supports only one database per cluster at this time.

• Views

• Temporary Tables

• Triggers

• Types

• Tablespaces

• UDFs / Functions other than functions using language = SQL

• Sequences

Unsupported constraints

• Foreign keys

• Exclusion constraints

Unsupported operations

• ALTER SYSTEM

• TRUNCATE

• VACUUM

• SAVEPOINT

Unsupported extensions

Aurora DSQL doesn't support PostgreSQL extensions at this time. The following notable extensions
are unsupported.

Unsupported PostgreSQL features 45

Amazon Aurora DSQL User Guide

• PL/pgSQL

• PostGIS

• PGVector

• PGAudit

• Postgres_FDW

• PGCron

• pg_stat_statements

Unsupported SQL expressions

Category Primary Clause Unsupported Clauses

CREATE VIEW

CREATE INDEX [ASYNC] ASC DESC

CREATE INDEX if table has data

TRUNCATE

ALTER SYSTEM All alter systemis blocked

CREATE TABLE COLLATE, AS SELECT,
INHERITS, PARTITION

CREATE FUNCTION LANGUAGE plpgsql (any
language besides sql)

CREATE TEMPORARY TABLES

CREATE EXTENSION

CREATE SEQUENCE

CREATE MATERIALIZED VIEW

CREATE TABLESPACE

Unsupported SQL expressions 46

Amazon Aurora DSQL User Guide

Category Primary Clause Unsupported Clauses

CREATE TRIGGER

CREATE TYPE

CREATE DATABASE

Limitations

• CREATE DATABASE: Aurora DSQL supports a single database postgres which is UTF-8 and
collation = C only. You can't modify the system timezone and it's set to UTC

• SET TRANSACTION [ISOLATION LEVEL]: Aurora DSQL isolation level is equivalent to PostgreSQL
Repeatable Read. You can't change this isolation level.

• A transaction can't contain mixed DDL and DML operations

• A transaction can contain at most 1 DDL statement

• A transaction cannot modify more than 10,000 rows, and this limit is modified by secondary
index entries. For example, consider a table with five columns, where the primary key is the
first column, and the fifth column has a secondary index. Given an UPDATE that will change a
single row targeting all five columns, the number of rows modified would be two. One for the
Primary Key and one for the row in secondary index object. If this same UPDATE affected only
the columns without a secondary index, the number of rows modified would be one. This limit
applies to all DML statements (INSERT, UPDATE, DELETE).

• A connection cannot exceed 1 hour.

• AutoVacuuming to keep statistics up to date. Vacuum is not required in Aurora DSQL.

Understanding connections in Aurora DSQL

To connect to Aurora DSQL, use a standard Postgres driver configured with TLS. To connect, you
specify a Postgres role as the user, a password, and an authentication token. Aurora DSQL provides
libraries for you to generate authentication tokens in most AWS supported languages. Once you're
connected, you can use your session to run transaction for up to 1 hour with a transaction timeout
of 5 minutes each. If you start a transaction after the 55th minute, Aurora DSQL still runs the
transaction until you reach the limit of 5 minutes before it closes the session.

Limitations 47

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_database-limits

Amazon Aurora DSQL User Guide

Aurora DSQL authenticates each session with a state, such as prepared statements or an active
query. A connection is a TLS-wrapped TCP connection that might get rejected if Aurora DSQL
can't turn it into a session for any reason. Each session maps to exactly one connection. With a
connection, a client can't have a session, and a connection can only have one session in Aurora
DSQL.

To make sure that a user with revoked Postgres credentials can't connect to a cluster on an existing
session, we authenticate the user against Aurora DSQL's IAM trust tables at the beginning of each
transaction.

Connection limits

By default, you can create up to 1000 connections per cluster at 10 connections per second with
a burst of 100. For example, if one connection is one token in a token bucket, you begin with
100 available tokens in the bucket. If you create 100 tokens, you have zero remaining tokens and
have to wait for a second before you can create more connections. The refill rate is 10 tokens per
second. To increase these limits, contact AWS support.

Understanding concurrency control in Aurora DSQL

Aurora DSQL is PostgreSQL compatible. Repeatable read operations in PostgreSQL are the same
as ACID transactions with snapshot isolation in Aurora DSQL. Unlike PostgreSQL, Aurora DSQL
uses a lock-free concurrency control mechanism. This means that a slow transaction can't slow
other transactions, and transactional deadlocks can't happen. This approach is often better than
optimistic concurrency control.

Optimistic concurrency control (OCC) is evaluated at transaction commit time. This is different than
lock-based concurrency control, which first establishes locks on changed rows or tables to make
sure that conflicts don't occur when Aurora DSQL processes commits. With an optimistic control
scheme, Aurora DSQL assumes that application are designed to minimize conflict, so locking
objects is often unnecessary.

If conflicts happen in OCC, such as multiple concurrent transactions updating the same row, Aurora
DSQL processes the transaction with the earliest start time. All other conflicting transactions
return a PostgreSQL serialization error. This error indicates to a client that you should have abort
and retry logic. This is similar to abort and retry logic that would be applied with a standard
PostgreSQL lock timeout or deadlock situation. However, this abort and retry logic is exercised
more frequently in an OCC-based scheme. The ideal design pattern should be to enable transaction
retry as a first recourse whenever possible. This is known as idempotency.

Concurrency control 48

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_cluster-quotas
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility.html

Amazon Aurora DSQL User Guide

When you consider workload performance, you should still think about common relational
database regardless of which concurrency control scheme you use. First, avoid high contention on
single keys or small key ranges/hot keys. This means that you should design your schema in a way
that spreads out update operations over your cluster key range. This can be as simple as choosing a
random primary key for your tables and avoiding patterns that increase contention on single keys
as business growth increases the demand to update your database.

Understanding data definition language (DDL) in Aurora DSQL

Aurora DSQL features a Multi-AZ distributed and shared-nothing database layer built on top of
multi-tenant compute and storage fleets. Because there isn't a single primary database node
or leader, the database catalog is distributed, and schema changes are managed as distributed
transactions. As such, there are a few ways in which DDL behaves differently in Aurora DSQL than
PostgreSQL.

• Aurora DSQL throws a concurrency control violation error if you run one transaction while
another transaction updates a resource. Consider the following example.

• Create table foobar in session 1.

• After Aurora DSQL creates the table foobar, you run the statement SELECT * from
foobar in session 2. Aurora DSQL returns with the error SQL Error [40001]: ERROR:
schema has been updated by another transaction, please retry: (OC001).

Note

During preview, there is a known issue that increases the scope of this concurrency
control error to all objects within the same schema/namespace.

• Transactions in Aurora DSQL can contain only one DDL statement and can't have both DDL and
DML statements. For example, you can't create a table and insert data into the same table within
the same transaction.

For example, Aurora DSQL supports the following statements.

BEGIN
CREATE TABLE FOO (ID_col integer);
COMMIT;

Data definition language 49

Amazon Aurora DSQL User Guide

BEGIN
INSERT into FOO VALUES (1);
COMMIT;

Aurora DSQL doesn't support the following.

BEGIN
CREATE TABLE FOO (ID_col integer);
INSERT into FOO VALUES (1);
COMMIT;

• Finally, Aurora DSQL runs DDL statements asynchronously. This means that changes to
large tables, such as adding an index or modifying a column, can run without downtime or
performance impact. For more information about Aurora DSQL's asynchronous job manager, see
the section called “Async indexes”.

Primary keys in Aurora DSQL

In Aurora DSQL, defining a primary key for your table is similar to the CLUSTER operation in
PostgreSQL or a clustered index in other database systems. Aurora DSQL applies an INCLUDE
statement that references all columns, which creates a table organized by an index. This structure
makes it so that any lookup against an Aurora DSQL primary key can access all column values
associated with the key, and the data is always ordered according to the primary key. Unlike the
CLUSTER operation, Aurora DSQL always maintains the order of this index-organized table.

Aurora DSQL uses this main concept to organize distributed data management. Aurora DSQL uses
the primary key to construct a cluster-wide unique key that's assigned to each row in each table
or index. Aurora DSQL uses this key to automatically partition storage. This partition key plays a
central role in Aurora DSQL automatic scaling and concurrency control mechanisms.

Consider the following when you choose a primary key.

• We recommend that you define a primary key when you create a table in Aurora DSQL. While
Aurora DSQL assigns a synthetic hidden ID if you don't define a primary key, this might not
support join operations or fast indexed lookups for larger tables.

• Once you create a table, you can't change the primary key, and you can't add a new primary key
later.

Primary keys 50

Amazon Aurora DSQL User Guide

• For tables with high write volumes, avoid using monotonically increasing integers as primary
keys, which can lead to weaker performance. Randomness in primary keys ensures even
distribution of new writes across storage partitions. Instead, using monotonically increasing
integers as primary keys can lead to all new inserts being directed to a single partition, which
creates a bottleneck.

• If your table doesn't change very often or is read-only, you can use an ascending key, even if
it is a dense key. Doing so is fine because there you don't need a high level of performance for
loading data into the key.

• Generally speaking, if doing a full scan of the table doesn't meet your performance needs,
choose a primary key that represents your most common join and lookup key when you query
the table.

• The maximum combined size of a column that you can use in a primary key is 1 kibibyte. For
more information, see Database limits in Aurora DSQL .

• The maximum number of columns that you can include in a primary key or a secondary index is
8. For more information. see Database limits in Aurora DSQL.

Creating async indexes in Aurora DSQL

The CREATE INDEX ASYNC command lets you create an index on a column of a specified table.
CREATE INDEX ASYNC is an asynchronous DDL operation, so running this command doesn't block
your other transactions, and Aurora DSQL immediately returns a job_id to you. You can see the
status of an asynchronous job at any time with the sys.jobs system view.

Aurora DSQL also supports the procedures sys.wait_for_job(job_id) and
sys.cancel_job(job_id). sys.wait_for_job lets you block the session until the specified
job completes or fails. This procedure returns a Boolean. sys.cancel_job lets you cancel an
asynchronous job that is in progress.

When Aurora DSQL finishes an asynchronous index task, it also updates the system catalog to show
that the index is now active. If any other transactions reference the objects in the same namespace
at this time, you might see a concurrency error.

Note

During Preview, asynchronous task completion might result in concurrency control errors
for all in-progress transactions that reference the same namespace.

Async indexes 51

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_database-limits
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_database-limits

Amazon Aurora DSQL User Guide

Syntax

See the following to learn about the parameters for CREATE INDEX ASYNC.

CREATE [UNIQUE] INDEX ASYNC [IF NOT EXISTS] name ON table_name
 ({ column_name } [NULLS { FIRST | LAST }])
 [INCLUDE (column_name [, ...])]
 [NULLS [NOT] DISTINCT]

Parameters

UNIQUE

Indicates to Aurora DSQL to check for duplicate values in the table when it creates the index
and each time you add data. If you specify this parameter, insert and update operations that
would result in duplicate entries will generate an error.

During Preview, you can only create unique indexes on empty tables. If you try to create a
unique index on a non-empty table, the operation fails. You can see the related error and other
information in the details column of the sys.jobs view.

IF NOT EXISTS

Indicates that Aurora DSQL shouldn't throw an exception if an index with the same name
already exists. If an index with the same name already exists, Aurora DSQL doesn't create the
new index. However, the index you're trying to create could have a very different structure than
the index that already exists. If you specify this parameter, index name is required.

name

The name of the index to create. You can't include the name of your schema in this parameter.
Aurora DSQL always creates the index in the same schema as its parent table. The name of
the index must be distinct from the name of any other object, such as table or index, in the
schema. If you don't specify a name, Aurora DSQL automatically generates a name based on the
name of the parent table and the name of the indexed column. For example, if you run CREATE
INDEX ASYNC on table1 (col1, col2);, Aurora DSQL automatically names the index as
table1_col1_col2_idx.

Syntax 52

Amazon Aurora DSQL User Guide

NULLS FIRST | LAST

Specifies the order of how to sort null columns and non-null columns. FIRST indicates that
Aurora DSQL should sort null columns before non-null columns. LAST indicates that Aurora
DSQL should sort null columns after non-null columns.

INCLUDE

The INCLUDE clause specifies a list of columns to include in the index as non-key columns. You
can't use a non-key column in an index scan search qualification, and Aurora DSQL ignores the
column in terms of uniqueness for an index.

NULLS DISTINCT | NULLS NOT DISTINCT

Specifies whether Aurora DSQL should consider null values as distinct/not equals in a unique
index. Default is DISTINCT, which indicates that null values are distinct, so a unique index can
contain multiple null values in a column. NOT DISTINCT indicates that null values aren't distinct,
so an index can't contain multiple null values in a column.

Examples

The following example demonstrates how to create a schema, a table, and then an index.

CREATE SCHEMA test;

CREATE TABLE test.departments (name varchar(255) primary key not null,
 manager varchar(255),
 size varchar(4));

Add some data into the table.

INSERT INTO test.departments VALUES ('Human Resources', 'John Doe', '10')

Then create the index.

CREATE INDEX ASYNC test_index on test.departments(name, manager, size);

The CREATE INDEX command returns a job_id.

Examples 53

Amazon Aurora DSQL User Guide

job_id

jh2gbtx4mzhgfkbimtgwn5j45y

With this job_id, you can use the procedures sys.wait_for_job or sys.cancel_job to block
the session from other transactions until Aurora DSQL completes the job or cancel the job.

When you receive the job_id, then Aurora DSQL has started to create the new index on a new job.
You can use the procedure sys.wait_for_job(job_id) to block other work on the session until
the job finishes, is canceled, or if the session times out. To cancel an active async index creation job,
use the procedure sys.cancel_job(job_id).

select relname as index_name, indisvalid as is_valid, pg_get_indexdef(indexrelid) as
 index_definition
from pg_index, pg_class
where pg_class.oid = indexrelid and indrelid = 'test.departments'::regclass;

 index_name | is_valid |
 index_definition
------------------+----------
+---
 department_pkey | t | CREATE UNIQUE INDEX department_pkey ON test.departments
 USING remote_btree_index (title) INCLUDE (name, manager, size)
 test_index1 | t | CREATE INDEX test_index1 ON test.departments USING
 remote_btree_index (name, manager, size)

To check the creation status of your index, query the sys.jobs system view.

SELECT * from sys.jobs

Aurora DSQL returns a response similar to the following.

 job_id | status | details
----------------------------+------------+---------
 vs3kcl3rt5ddpk3a6xcq57cmcy | completed |
 yzke2pz3xnhsvol4a3jkmotehq | cancelled |
 ihbyw2aoirfnrdfoc4ojnlamoq | processing |

The status column can be one of the following values:

Examples 54

Amazon Aurora DSQL User Guide

• submitted – The task is submitted, but Aurora DSQL hasn't started to process it yet.

• processing – Aurora DSQL is processing the task.

• failed – the task failed. See the details column for more information. If Aurora DSQL failed
to build the index, Aurora DSQL doesn't automatically remove the index definition. You must
manually remove the index with the DROP INDEX command.

• completed – Aurora DSQL finished the task.

• cancelled – The task is canceled.

Usage notes

When using CREATE INDEX ASYNC, consider the following:

• Running the CREATE INDEX ASYNC command doesn't introduce any locks to your applications
and doesn't affect the base table that Aurora DSQL uses to create the index.

• During schema migration operations, the sys.wait_for_job(job_id) procedure is especially
helpful because you can ensure that subsequent DDL and DML operations all target the newly
created index.

• If you cancel a task, Aurora DSQL automatically updates the corresponding entry in the
sys.jobs system view. As Aurora DSQL runs the task, it also checks the sys.jobs view to see
if the task has been updated to canceled. If it is, Aurora DSQL stops the task. If you encounter an
error that Aurora DSQL is updating your schema with another transaction, try to cancel again.
After you cancel a task to create an async index, we recommend that you also drop the index.

• While Aurora DSQL creates your index, it has an initial status of INVALID. The indisvalid flag
for the index returns FALSE or f, which indicates that the index isn't valid. If the flag returns
TRUE or t, the index is ready.

• If Aurora DSQL fails to build an async index, that index stays INVALID. This invalid index takes
up storage space and can receive updates and inserts from other queries. We recommend that
you drop all invalid indexes and recreate them.

• Every time Aurora DSQL runs a new asynchronous task, it checks the sys.jobs view and
deletes tasks that have the completed, failed, or cancelled statuses for more than 30
minutes. Doing so means sys.jobs primarily shows only in-progress tasks and doesn’t contain
information about old tasks.

Usage notes 55

Amazon Aurora DSQL User Guide

Using system tables and commands in Aurora DSQL

See the following esctions to learn about the supported system tables and catalogs in Aurora
DSQL.

System tables and queries in Aurora DSQL

Aurora DSQL is compatible with PostgreSQL, so many system catalog tables and views from
PostgreSQL also exist in Aurora DSQL.

Important Postgres catalog tables and views

The following table describes the most common tables and views you might use in Aurora DSQL.

Name Description

pg_namespace Information on all schemas

pg_tables Information on the all tables

pg_attribute Information on all attributes

pg_views Information on (pre-)defined views

pg_class Describes all tables, column, indices, and
similar objects

pg_stats A view on the planner statistics

pg_user Information on users

pg_roles Information on users and groups

pg_indexes Lists all indexes

pg_constraint Lists constraints on tables

sys.jobs and sys.iam_pg_role_mappings

Aside from these tables and views, Aurora DSQL also adds the views sys.jobs and
sys.iam_pg_role_mappings for your use cases.

System tables and commands 56

https://www.postgresql.org/docs/current/catalogs-overview.html
https://www.postgresql.org/docs/current/views.html

Amazon Aurora DSQL User Guide

sys.jobs provides status information about asynchronous jobs. For example, after you create an
async index, Aurora DSQL returns a job_uuid. You can use this job_uuid with sys.jobs to look
up the status of the job.

select * from sys.jobs where job_id = 'example_job_uuid';

 job_id | status | details
------------------+------------+---------
 example_job_uuid | processing |
(1 row)

The view sys.iam_pg_role_mappings provides information about the permissions
granted to IAM users. For example, suppose that DQSLDBConnect is an IAM role to give
access of Aurora DSQL to non-admins, and that there's a user named testuser that is
granted the DQSLDBConnect role and corresponding permissions. You can then query the
sys.iam_pg_role_mappings view to see which users are granted which permissions.

select * from sys.iam_pg_role_mappings;

Querying table sizes

To get the approximate count of how many rows are in a table, run the following command.

select reltuples from pg_class where relname = '<table_name>';

 reltuples

 9.993836e+08

If you want the size of bytes of a table, run the following command. Note that 32768 is an internal
parameter that you must include in the query.

select pg_size_pretty(relpages * 32768::bigint) as relbytes from pg_class where relname
 = '<example_table_name>';

Supported and unsupported catalog tables and views in Aurora DSQL

See below for the complete list of which tables and views are supported and unsupported in
Aurora DSQL.

System tables and queries in Aurora DSQL 57

https://docs.aws.amazon.com/working-with-ddl-create-index-async
https://docs.aws.amazon.com/working-with-ddl-create-index-async

Amazon Aurora DSQL User Guide

System catalog tables

Name Applicable to Aurora DSQL

pg_aggregate No

pg_am Yes

pg_amop No

pg_amproc No

pg_attrdef Yes

pg_attribute Yes

pg_authid No (use pg_roles)

pg_auth_members Yes

pg_cast Yes

pg_class Yes

pg_collation Yes

pg_constraint Yes

pg_conversion No

pg_database No

pg_db_role_setting Yes

pg_default_acl Yes

pg_depend Yes

pg_description Yes

pg_enum No

System tables and queries in Aurora DSQL 58

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_event_trigger No

pg_extension No

pg_foreign_data_wrapper No

pg_foreign_server No

pg_foreign_table No

pg_index Yes

pg_inherits Yes

pg_init_privs No

pg_language No

pg_largeobject No

pg_largeobject_metadata Yes

pg_namespace Yes

pg_opclass No

pg_operator Yes

pg_opfamily No

pg_parameter_acl Yes

pg_partitioned_table Yes

pg_policy No

pg_proc No

pg_publication No

System tables and queries in Aurora DSQL 59

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_publication_namespace No

pg_publication_rel No

pg_range Yes

pg_replication_origin No

pg_rewrite No

pg_seclabel No

pg_sequence No

pg_shdepend Yes

pg_shdescription Yes

pg_shseclabel No

pg_statistic Yes

pg_statistic_ext No

pg_statistic_ext_data No

pg_subscription No

pg_subscription_rel No

pg_tablespace Yes

pg_transform No

pg_trigger No

pg_ts_config Yes

pg_ts_config_map Yes

System tables and queries in Aurora DSQL 60

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_ts_dict Yes

pg_ts_parser Yes

pg_ts_template Yes

pg_type Yes

pg_user_mapping No

System views

Name Applicable to Aurora DSQL

pg_available_extensions No

pg_available_extension_versions No

pg_backend_memory_contexts Yes

pg_config No

pg_cursors No

pg_file_settings No

pg_group Yes

pg_hba_file_rules No

pg_ident_file_mappings No

pg_indexes Yes

pg_locks No

pg_matviews No

System tables and queries in Aurora DSQL 61

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_policies No

pg_prepared_statements No

pg_prepared_xacts No

pg_publication_tables No

pg_replication_origin_status No

pg_replication_slots No

pg_roles Yes

pg_rules No

pg_seclabels No

pg_sequences No

pg_settings Yes

pg_shadow Yes

pg_shmem_allocations Yes

pg_stats Yes

pg_stats_ext No

pg_stats_ext_exprs No

pg_tables Yes

pg_timezone_abbrevs Yes

pg_timezone_names Yes

pg_user Yes

System tables and queries in Aurora DSQL 62

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_user_mappings No

pg_views Yes

pg_stat_activity No

pg_stat_replication No

pg_stat_replication_slots No

pg_stat_wal_receiver No

pg_stat_recovery_prefetch No

pg_stat_subscription No

pg_stat_subscription_stats No

pg_stat_ssl Yes

pg_stat_gssapi No

pg_stat_archiver No

pg_stat_io No

pg_stat_bgwriter No

pg_stat_wal No

pg_stat_database No

pg_stat_database_conflicts No

pg_stat_all_tables No

pg_stat_all_indexes No

pg_statio_all_tables No

System tables and queries in Aurora DSQL 63

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_statio_all_indexes No

pg_statio_all_sequences No

pg_stat_slru No

pg_statio_user_tables No

pg_statio_user_sequences No

pg_stat_user_functions No

pg_stat_user_indexes No

pg_stat_progress_analyze No

pg_stat_progress_basebackup No

pg_stat_progress_cluster No

pg_stat_progress_create_index No

pg_stat_progress_vacuum No

pg_stat_sys_indexes No

pg_stat_sys_tables No

pg_stat_xact_all_tables No

pg_stat_xact_sys_tables No

pg_stat_xact_user_functions No

pg_stat_xact_user_tables No

pg_statio_sys_indexes No

pg_statio_sys_sequences No

System tables and queries in Aurora DSQL 64

Amazon Aurora DSQL User Guide

Name Applicable to Aurora DSQL

pg_statio_sys_tables No

pg_statio_user_indexes No

Analyze

ANALYZE collects statistics about the contents of tables in the database, and stores the results
in the pg_stats system view. Subsequently, the query planner uses these statistics to help
determine the most efficient execution plans for queries. In Aurora DSQL, you can't run the
ANALYZE command within an explicit transaction. ANALYZE isn't subject to the database
transaction timeout limit.

Analyze 65

Amazon Aurora DSQL User Guide

Programming with Aurora DSQL

Aside from using the AWS console, you can also use the AWS software development kits (SDK) and
AWS CLI to interact with Aurora DSQL. For more information about the programmatic interfaces
for Aurora DSQL, see the section called “Programmatic access”.

Topics

• Manage clusters in Aurora DSQL with the AWS SDKs

• Manage clusters in Aurora DSQL with the AWS CLI

• Programming with Python

• Programming with Java

• Programming with JavaScript

• Programming with C++

• Programming with Ruby

• Programming with .NET

• Programming with Rust

• Programming with Golang

Manage clusters in Aurora DSQL with the AWS SDKs

See the following sections to learn how to manage your clusters in Aurora DSQL with the AWS
SDKs.

Topics

• Create a cluster in Aurora DSQL in the AWS SDKs

• Get a cluster in Aurora DSQL with the AWS SDKs

• Update a cluster in Aurora DSQL with the AWS SDKs

• Delete cluster in Aurora DSQL with AWS SDKs

Create a cluster in Aurora DSQL in the AWS SDKs

See the following information to learn how to create a cluster in Aurora DSQL.

Manage clusters with the AWS SDKs 66

Amazon Aurora DSQL User Guide

Python

To create a cluster in a single AWS Region, use the following example.

import boto3

def create_cluster(client, tags, deletion_protection):
 try:
 response = client.create_cluster(tags=tags,
 deletionProtectionEnabled=deletion_protection)
 return response
 except:
 print("Unable to create cluster")
 raise

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 tag = {"Name": "FooBar"}
 deletion_protection = True
 response = create_cluster(client, tags=tag,
 deletion_protection=deletion_protection)
 print("Cluster id: " + response['identifier'])

if __name__ == "__main__":
 main()

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 67

Amazon Aurora DSQL User Guide

import boto3

def create_multi_region_clusters(client, linkedRegionList, witnessRegion,
 clusterProperties):
 try:
 response = client.create_multi_region_clusters(
 linkedRegionList=linkedRegionList,
 witnessRegion=witnessRegion,
 clusterProperties=clusterProperties,
)
 return response
 except:
 print("Unable to create multi-region cluster")
 raise

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 linkedRegionList = ["us-east-1", "us-east-2"]
 witnessRegion = "us-west-2"
 clusterProperties = {
 "us-east-1": {"tags": {"Name": "Foo"}},
 "us-east-2": {"tags": {"Name": "Bar"}}
 }
 response = create_multi_region_clusters(client, linkedRegionList, witnessRegion,
 clusterProperties)
 print("Linked Cluster Arns:", response['linkedClusterArns'])

if __name__ == "__main__":
 main()

C++

The following example lets you create a cluster in a single AWS Region.

Create a cluster 68

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/CreateClusterRequest.h>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

String createCluster(DSQLClient& client, bool deletionProtectionEnabled, const
 std::map<Aws::String, Aws::String>& tags){
 CreateClusterRequest request;
 request.SetDeletionProtectionEnabled(deletionProtectionEnabled);
 request.SetTags(tags);
 CreateClusterOutcome outcome = client.CreateCluster(request);

 const auto& clusterResult = outcome.GetResult().GetIdentifier();
 if (outcome.IsSuccess()) {
 std::cout << "Cluster Identifier: " << clusterResult << std::endl;
 } else {
 std::cerr << "Create operation failed: " << outcome.GetError().GetMessage()
 << std::endl;
 }
 return clusterResult;
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);

 DSQLClientConfiguration clientConfig;
 clientConfig.region = "us-east-1";

 DSQLClient client(clientConfig);
 bool deletionProtectionEnabled = true;
 std::map<Aws::String, Aws::String> tags = {
 { "Name", "FooBar" }
 };
 createCluster(client, deletionProtectionEnabled, tags);
 Aws::ShutdownAPI(options);
 return 0;
}

Create a cluster 69

Amazon Aurora DSQL User Guide

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 70

Amazon Aurora DSQL User Guide

#include <aws/core/client/DefaultRetryStrategy.h>
#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/CreateMultiRegionClustersRequest.h>
#include <aws/dsql/model/LinkedClusterProperties.h>

#include <iostream>
#include <vector>
#include <map>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

std::vector<Aws::String> createMultiRegionCluster(DSQLClient& client, const
 std::vector<Aws::String>& linkedRegionList, const Aws::String& witnessRegion, const
 Aws::Map<Aws::String, LinkedClusterProperties>& clusterProperties) {
 CreateMultiRegionClustersRequest request;
 request.SetLinkedRegionList(linkedRegionList);
 request.SetWitnessRegion(witnessRegion);
 request.SetClusterProperties(clusterProperties);

 CreateMultiRegionClustersOutcome outcome =
 client.CreateMultiRegionClusters(request);

 if (outcome.IsSuccess()) {
 const auto& clusterArns = outcome.GetResult().GetLinkedClusterArns();
 return clusterArns;
 } else {
 std::cerr << "Create operation failed: " << outcome.GetError().GetMessage()
 << std::endl;
 return {};
 }
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;

 clientConfig.region = "us-east-1";
 clientConfig.retryStrategy =
 Aws::MakeShared<Aws::Client::DefaultRetryStrategy>("RetryStrategy", 10);
 DSQLClient client(clientConfig);

 std::vector<Aws::String> linkedRegionList = { "us-east-1", "us-east-2" };
 Aws::String witnessRegion = "us-west-2";

 LinkedClusterProperties usEast1Properties;
 usEast1Properties.SetTags({
 { "Name", "Foo" }
 });
 LinkedClusterProperties usEast2Properties;
 usEast2Properties.SetTags({
 { "Name", "Bar" }
 });
 Aws::Map<Aws::String, LinkedClusterProperties> clusterProperties = {
 { "us-east-1", usEast1Properties },
 { "us-east-2", usEast2Properties }
 };
 std::vector<Aws::String> linkedArns = createMultiRegionCluster(client,
 linkedRegionList, witnessRegion, clusterProperties);
 std::cout << "Linked Cluster ARNs: " << std::endl;

 for (const auto& arn : linkedArns) {
 std::cout << arn << std::endl;
 }

 Aws::ShutdownAPI(options);
 return 0;
}

Create a cluster 71

Amazon Aurora DSQL User Guide

JavaScript

To create a cluster in a single AWS Region, use the following example.

import { DSQLClient } from "@aws-sdk/client-dsql";
import { CreateClusterCommand } from "@aws-sdk/client-dsql";

async function createCluster(client, tags, deletionProtectionEnabled) {
 const createClusterCommand = new CreateClusterCommand({
 deletionProtectionEnabled: deletionProtectionEnabled,
 tags,
 });
 try {
 const response = await client.send(createClusterCommand);
 return response;
 } catch (error) {
 console.error("Failed to create cluster: ", error.message);
 }
}

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({ region });
 const tags = { Name: "FooBar"};
 const deletionProtectionEnabled = true;

 const response = await createCluster(client, tags, deletionProtectionEnabled);
 console.log("Cluster Id:", response.identifier);
}

main();

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 72

Amazon Aurora DSQL User Guide

import { DSQLClient } from "@aws-sdk/client-dsql";
import { CreateMultiRegionClustersCommand } from "@aws-sdk/client-dsql";

async function createMultiRegionCluster(client, linkedRegionList, witnessRegion,
 clusterProperties) {
 const createMultiRegionClustersCommand = new CreateMultiRegionClustersCommand({
 linkedRegionList: linkedRegionList,
 witnessRegion: witnessRegion,
 clusterProperties: clusterProperties
 });
 try {
 const response = await client.send(createMultiRegionClustersCommand);
 return response;
 } catch (error) {
 console.error("Failed to create multi-region cluster: ", error.message);
 }
}

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({
 region
 });
 const linkedRegionList = ["us-east-1", "us-east-2"];
 const witnessRegion = "us-west-2";
 const clusterProperties = {
 "us-east-1": { tags: { "Name": "Foo" } },
 "us-east-2": { tags: { "Name": "Bar" } }
 };

 const response = await createMultiRegionCluster(client, linkedRegionList,
 witnessRegion, clusterProperties);
 console.log("Linked Cluster ARNs: ", response.linkedClusterArns);
}

main();

Java

Use the following example to create a cluster in a single AWS Region.

Create a cluster 73

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryMode;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.StandardRetryStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.ClusterStatus;
import software.amazon.awssdk.services.dsql.model.CreateClusterRequest;
import software.amazon.awssdk.services.dsql.model.CreateClusterResponse;

import java.net.URI;
import java.util.HashMap;
import java.util.Map;

public class CreateCluster {
 public static void main(String[] args) throws Exception {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 boolean deletionProtectionEnabled = true;
 Map<String, String> tags = new HashMap<>();
 tags.put("Name", "FooBar");

 String identifier = createCluster(region, client, deletionProtectionEnabled,
 tags);
 System.out.println("Cluster Id: " + identifier);
 }
 public static String createCluster(Region region, DsqlClient client, boolean
 deletionProtectionEnabled, Map<String, String> tags) throws Exception {
 CreateClusterRequest createClusterRequest = CreateClusterRequest
 .builder()
 .deletionProtectionEnabled(deletionProtectionEnabled)
 .tags(tags)
 .build();
 CreateClusterResponse res = client.createCluster(createClusterRequest);
 if (res.status() == ClusterStatus.CREATING) {
 return res.identifier();
 } else {
 throw new Exception("Failed to create cluster");
 }
 }
}

Create a cluster 74

Amazon Aurora DSQL User Guide

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 75

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryMode;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.StandardRetryStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.CreateMultiRegionClustersRequest;
import software.amazon.awssdk.services.dsql.model.CreateMultiRegionClustersResponse;
import software.amazon.awssdk.services.dsql.model.LinkedClusterProperties;

import java.net.URI;
import java.util.Arrays;
import java.util.List;
import java.util.HashMap;
import java.util.Map;

public class CreateMultiRegionCluster {
 public static void main(String[] args) throws Exception {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 List<String> linkedRegionList = Arrays.asList(region.toString(), "us-
east-2");
 String witnessRegion = "us-west-2";
 Map<String, LinkedClusterProperties> clusterProperties = new HashMap<String,
 LinkedClusterProperties>() {{
 put("us-east-1", LinkedClusterProperties.builder()
 .tags(new HashMap<String, String>() {{
 put("Name", "Foo");
 }})
 .build());
 put("us-east-2", LinkedClusterProperties.builder()
 .tags(new HashMap<String, String>() {{
 put("Name", "Bar");
 }})
 .build());
 }};
 List<String> linkedClusterArns = createMultiRegionCluster(client,
 linkedRegionList, witnessRegion, clusterProperties);
 System.out.println("Linked Cluster ARNs: " + linkedClusterArns);
 }

 public static List<String> createMultiRegionCluster(DsqlClient
 client, List<String> linkedRegionList, String witnessRegion, Map<String,
 LinkedClusterProperties> clusterProperties) throws Exception {
 CreateMultiRegionClustersRequest createMultiRegionClustersRequest =
 CreateMultiRegionClustersRequest
 .builder()
 .linkedRegionList(linkedRegionList)
 .witnessRegion(witnessRegion)
 .clusterProperties(clusterProperties)
 .build();

 CreateMultiRegionClustersResponse response =
 client.createMultiRegionClusters(createMultiRegionClustersRequest);

 if (response.linkedClusterArns() != null) {
 return response.linkedClusterArns();
 } else {
 throw new Exception("Failed to create multi-region cluster");
 }
 }
}

Create a cluster 76

Amazon Aurora DSQL User Guide

Rust

Use the following example to create a cluster in a single AWS Region.

Create a cluster 77

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};
use std::collections::HashMap;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Create a cluster without delete protection and a name
pub async fn create_cluster(region: &'static str) -> (String, String) {
 let client = dsql_client(region).await;
 let tags = HashMap::from([
 (String::from("Name"), String::from("FooBar"))
]);

 let create_cluster_output = client
 .create_cluster()
 .set_tags(Some(tags))
 .deletion_protection_enabled(true)
 .send()
 .await
 .unwrap();

 // Response contains cluster identifier, its ARN, status etc.
 let identifier = create_cluster_output.identifier().to_owned();
 let arn = create_cluster_output.arn().to_owned();
 assert_eq!(create_cluster_output.status().as_str(), "CREATING");
 assert!(create_cluster_output.deletion_protection_enabled());
 (identifier, arn)
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";
 let (identifier, arn) = create_cluster(region).await;
 println!("cluster created successfully id: {identifier}, arn: {arn}");
 Ok(())
}

Create a cluster 78

Amazon Aurora DSQL User Guide

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 79

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};
use aws_sdk_dsql::types::LinkedClusterProperties;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Create a multi-region cluster
pub async fn create_multi_region_cluster(region: &'static str) -> Vec<String> {
 let client = dsql_client(region).await;
 let us_east_1_props = LinkedClusterProperties::builder()
 .deletion_protection_enabled(false)
 .tags("Name", "Foo")
 .tags("Usecase", "testing-mr-use1")
 .build();

 let us_east_2_props = LinkedClusterProperties::builder()
 .deletion_protection_enabled(false)
 .tags(String::from("Name"), String::from("Bar"))
 .tags(String::from("Usecase"), String::from("testing-mr-use2"))
 .build();

 let create_mr_cluster_output = client
 .create_multi_region_clusters()
 .linked_region_list("us-east-1")
 .linked_region_list("us-east-2")
 .witness_region("us-west-2")
 .cluster_properties("us-east-1", us_east_1_props)
 .cluster_properties("us-east-2", us_east_2_props)
 .send()
 .await
 .unwrap();

 // Response contains cluster ARNs for each region
 let arns: Vec<String> = create_mr_cluster_output.linked_cluster_arns().into();
 assert_eq!(arns.len(), 2);
 arns
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";
 let arns = create_multi_region_cluster(region).await;
 for arn in arns {
 println!("Created: {arn}");
 }
 Ok(())
}

Create a cluster 80

Amazon Aurora DSQL User Guide

Ruby

Use the following example to create a cluster in a single AWS Region.

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def create_cluster(region)
 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)

 response = client.create_cluster(
 deletion_protection_enabled: true,
 tags: {
 "Name" => "example_cluster_ruby"
 }
)

 # Extract and verify response data
 identifier = response.identifier
 arn = response.arn
 puts arn
 raise "Unexpected status when creating cluster: #{response.status}" unless
 response.status == 'CREATING'
 raise "Deletion protection not enabled" unless
 response.deletion_protection_enabled

 [identifier, arn]
 rescue Aws::Errors::ServiceError => e
 raise "Failed to create cluster: #{e.message}"
 end
end

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 81

Amazon Aurora DSQL User Guide

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def create_multi_region_cluster(region)
 us_east_1_props = {
 deletion_protection_enabled: false,
 tags: {
 'Name' => 'Foo',
 'Usecase' => 'testing-mr-use1'
 }
 }

 us_east_2_props = {
 deletion_protection_enabled: false,
 tags: {
 'Name' => 'Bar',
 'Usecase' => 'testing-mr-use2'
 }
 }

 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)
 response = client.create_multi_region_clusters(
 linked_region_list: ['us-east-1', 'us-east-2'],
 witness_region: 'us-west-2',
 cluster_properties: {
 'us-east-1' => us_east_1_props,
 'us-east-2' => us_east_2_props
 }
)

 # Extract cluster ARNs from the response
 arns = response.linked_cluster_arns
 raise "Expected 2 cluster ARNs, got #{arns.length}" unless arns.length == 2

 arns
 rescue Aws::Errors::ServiceError => e
 raise "Failed to create multi-region clusters: #{e.message}"
 end
end

Create a cluster 82

Amazon Aurora DSQL User Guide

.NET

Use the following example to create a cluster in a single AWS Region.

using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class SingleRegionClusterCreation {
 public static async Task<CreateClusterResponse> Create(RegionEndpoint region)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Create a single region cluster
 CreateClusterRequest createClusterRequest = new()
 {
 DeletionProtectionEnabled = true
 };

 CreateClusterResponse createClusterResponse = await
 client.CreateClusterAsync(createClusterRequest);

 Console.WriteLine(createClusterResponse.Identifier);
 Console.WriteLine(createClusterResponse.Status);

 return createClusterResponse;
 }
}

To create a multi-Region cluster, use the following example. Creating a multi-Region cluster
might take some time.

Create a cluster 83

Amazon Aurora DSQL User Guide

using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class MultiRegionClusterCreation {
 public static async Task<CreateMultiRegionClustersResponse>
 Create(RegionEndpoint region)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Create multi region cluster
 LinkedClusterProperties USEast1Props = new() {
 DeletionProtectionEnabled = false,
 Tags = new Dictionary<string, string>
 {
 { "Name", "Foo" },
 { "Usecase", "testing-mr-use1" }
 }
 };

 LinkedClusterProperties USEast2Props = new() {
 DeletionProtectionEnabled = false,
 Tags = new Dictionary<string, string>
 {
 { "Name", "Bar" },
 { "Usecase", "testing-mr-use2" }
 }
 };

 CreateMultiRegionClustersRequest createMultiRegionClustersRequest = new()
 {
 LinkedRegionList = new List<string> { "us-east-1", "us-east-2" },
 WitnessRegion = "us-west-2",
 ClusterProperties = new Dictionary<string, LinkedClusterProperties>
 {
 { "us-east-1", USEast1Props },
 { "us-east-2", USEast2Props }
 }
 };

 CreateMultiRegionClustersResponse createMultiRegionClustersResponse =
 await
 client.CreateMultiRegionClustersAsync(createMultiRegionClustersRequest);

 foreach (string arn in createMultiRegionClustersResponse.LinkedClusterArns)
 {
 Console.WriteLine(arn);
 }

 return createMultiRegionClustersResponse;
 }
}

Create a cluster 84

Amazon Aurora DSQL User Guide

Get a cluster in Aurora DSQL with the AWS SDKs

See the following information to learn how to return information a a cluster in Aurora DSQL.

Python

To get information about a single or a multi-Region cluster, use the following example.

import boto3

def get_cluster(cluster_id, client):
 try:
 return client.get_cluster(identifier=cluster_id)
 except:
 print("Unable to get cluster")
 raise

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 cluster_id = "foo0bar1baz2quux3quuux4"
 response = get_cluster(cluster_id, client)
 print("Cluster Status: " + response['status'])

if __name__ == "__main__":
 main()

C++

Use the following example to get information about a single or a multi-Region cluster.

Get a cluster 85

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <aws/dsql/model/ClusterStatus.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

ClusterStatus getCluster(const String& clusterId, DSQLClient& client) {
 GetClusterRequest request;
 request.SetIdentifier(clusterId);
 GetClusterOutcome outcome = client.GetCluster(request);
 ClusterStatus status = ClusterStatus::NOT_SET;

 if (outcome.IsSuccess()) {
 const auto& cluster = outcome.GetResult();
 status = cluster.GetStatus();
 } else {
 std::cerr << "Get operation failed: " << outcome.GetError().GetMessage() <<
 std::endl;
 }
 std::cout << "Cluster Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(status) << std::endl;
 return status;
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;

 clientConfig.region = "us-east-1";

 DSQLClient client(clientConfig);
 String clusterId = "foo0bar1baz2quux3quuux4";

 getCluster(clusterId, client);
 Aws::ShutdownAPI(options);
 return 0;
}

Get a cluster 86

Amazon Aurora DSQL User Guide

JavaScript

To get information about a single or multi-Region cluster, use the following example.

import { DSQLClient } from "@aws-sdk/client-dsql";
import { GetClusterCommand } from "@aws-sdk/client-dsql";

async function getCluster(clusterId, client) {
 const getClusterCommand = new GetClusterCommand({
 identifier: clusterId,
 });

 try {
 return await client.send(getClusterCommand);
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Cluster ID not found or deleted");
 } else {
 console.error("Unable to poll cluster status:", error.message);
 }
 throw error;
 }
 }

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({ region });

 const clusterId = "foo0bar1baz2quux3quuux4";

 const response = await getCluster(clusterId, client);
 console.log("Cluster Status:", response.status);

}

main()

Java

The following example lets you get information about a single or multi-Region cluster.

Get a cluster 87

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryMode;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.StandardRetryStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.GetClusterRequest;
import software.amazon.awssdk.services.dsql.model.GetClusterResponse;
import software.amazon.awssdk.services.dsql.model.ResourceNotFoundException;

import java.net.URI;

public class GetCluster {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 String cluster_id = "foo0bar1baz2quux3quuux4";

 GetClusterResponse response = getCluster(cluster_id, client);
 System.out.println("cluster status: " + response.status());
 }

 public static GetClusterResponse getCluster(String cluster_id, DsqlClient
 client) {
 GetClusterRequest getClusterRequest = GetClusterRequest.builder()
 .identifier(cluster_id)
 .build();
 try {
 return client.getCluster(getClusterRequest);
 } catch (ResourceNotFoundException rnfe) {
 System.out.println("Cluster id is not found / deleted");
 throw rnfe;
 } catch (Exception e) {
 System.out.println(("Unable to poll cluster status: " +
 e.getMessage()));
 throw e;
 }
 }
}

Get a cluster 88

Amazon Aurora DSQL User Guide

Rust

The following example lets you get information about a single or multi-Region cluster.

Get a cluster 89

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};
use aws_sdk_dsql::operation::get_cluster::GetClusterOutput;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

// Get a ClusterResource from DSQL cluster identifier
pub async fn get_cluster(
 region: &'static str,
 identifier: String,
) -> GetClusterOutput {
 let client = dsql_client(region).await;
 client
 .get_cluster()
 .identifier(identifier)
 .send()
 .await
 .unwrap()
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 get_cluster(region, "<your cluster id>".to_owned()).await;

 Ok(())
}

Get a cluster 90

Amazon Aurora DSQL User Guide

Ruby

The following example lets you get information about a single or multi-Region cluster.

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def get_cluster(region, identifier)
 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)
 client.get_cluster(
 identifier: identifier
)
 rescue Aws::Errors::ServiceError => e
 raise "Failed to get cluster details: #{e.message}"
 end
end

.NET

The following example lets you get information about a single or multi-Region cluster.

Get a cluster 91

Amazon Aurora DSQL User Guide

using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class GetCluster {
 public static async Task<GetClusterResponse> Get(RegionEndpoint region, string
 clusterId)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Get cluster details
 GetClusterRequest getClusterRequest = new()
 {
 Identifier = clusterId
 };

 // Assert that operation is successful
 GetClusterResponse getClusterResponse = await
 client.GetClusterAsync(getClusterRequest);
 Console.WriteLine(getClusterResponse.Status);

 return getClusterResponse;
 }
}

Update a cluster in Aurora DSQL with the AWS SDKs

See the following information to learn how to update a cluster in Aurora DSQL. Updating a cluster
can take a minute or two. We recommend that you wait some time and then run get cluster to get
the status of the cluster.

Update a cluster 92

https://docs.aws.amazon.com/getting-started-get-cluster

Amazon Aurora DSQL User Guide

Python

To update a single or multi-Region cluster, use the following example.

import boto3

def update_cluster(cluster_id, deletionProtectionEnabled, client):
 try:
 return client.update_cluster(identifier=cluster_id,
 deletionProtectionEnabled=deletionProtectionEnabled)
 except:
 print("Unable to update cluster")
 raise

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 cluster_id = "foo0bar1baz2quux3quuux4"
 deletionProtectionEnabled = True
 response = update_cluster(cluster_id, deletionProtectionEnabled, client)
 print("Deletion Protection Updating to: " + str(deletionProtectionEnabled) + ",
 Cluster Status: " + response['status'])

if __name__ == "__main__":
 main()

C++

Use the following example to update a single or multi-Region cluster.

Update a cluster 93

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/UpdateClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

ClusterStatus updateCluster(const String& clusterId, bool deletionProtection,
 DSQLClient& client) {
 UpdateClusterRequest request;
 request.SetIdentifier(clusterId);
 request.SetDeletionProtectionEnabled(deletionProtection);
 UpdateClusterOutcome outcome = client.UpdateCluster(request);
 ClusterStatus status = ClusterStatus::NOT_SET;

 if (outcome.IsSuccess()) {
 const auto& cluster = outcome.GetResult();
 status = cluster.GetStatus();
 } else {
 std::cerr << "Update operation failed: " << outcome.GetError().GetMessage()
 << std::endl;
 }

 std::cout << "Cluster Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(status) << std::endl;
 return status;
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;

 clientConfig.region = "us-east-1";

 DSQLClient client(clientConfig);

 String clusterId = "foo0bar1baz2quux3quuux4";
 bool deletionProtection = true;

 updateCluster(clusterId, deletionProtection, client);
 Aws::ShutdownAPI(options);

 return 0;
}

Update a cluster 94

Amazon Aurora DSQL User Guide

JavaScript

To update a single or multi-Region cluster, use the following example.

import { DSQLClient } from "@aws-sdk/client-dsql";
import { UpdateClusterCommand } from "@aws-sdk/client-dsql";

async function updateCluster(clusterId, deletionProtectionEnabled, client) {
 const updateClusterCommand = new UpdateClusterCommand({
 identifier: clusterId,
 deletionProtectionEnabled: deletionProtectionEnabled
 });

 try {
 return await client.send(updateClusterCommand);
 } catch (error) {
 console.error("Unable to update cluster", error.message);
 throw error;
 }
 }

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({ region });

 const clusterId = "foo0bar1baz2quux3quuux4";
 const deletionProtectionEnabled = true;

 const response = await updateCluster(clusterId, deletionProtectionEnabled,
 client);
 console.log("Updating deletion protection: " + deletionProtectionEnabled + "-
 Cluster Status: " + response.status);

}

main();

Java

Use the following example to update a single or a multi-Region cluster.

Update a cluster 95

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryMode;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.StandardRetryStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.UpdateClusterRequest;
import software.amazon.awssdk.services.dsql.model.UpdateClusterResponse;

import java.net.URI;

public class UpdateCluster {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 String cluster_id = "foo0bar1baz2quux3quuux4";
 Boolean deletionProtectionEnabled = false;

 UpdateClusterResponse response = updateCluster(cluster_id,
 deletionProtectionEnabled, client);
 System.out.println("Deletion Protection updating to: " +
 deletionProtectionEnabled.toString() + ", Status: " + response.status());
 }

 public static UpdateClusterResponse updateCluster(String cluster_id, boolean
 deletionProtectionEnabled, DsqlClient client){
 UpdateClusterRequest updateClusterRequest = UpdateClusterRequest.builder()
 .identifier(cluster_id)
 .deletionProtectionEnabled(deletionProtectionEnabled)
 .build();
 try {
 return client.updateCluster(updateClusterRequest);
 } catch (Exception e) {
 System.out.println(("Unable to update deletion protection: " +
 e.getMessage()));
 throw e;
 }
 }
}

Update a cluster 96

Amazon Aurora DSQL User Guide

Rust

Use the following example to update a single or a multi-Region cluster.

Update a cluster 97

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};
use aws_sdk_dsql::operation::update_cluster::UpdateClusterOutput;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

// Update a DSQL cluster and set delete protection to false. Also add new tags.
pub async fn update_cluster(region: &'static str, identifier: String) ->
 UpdateClusterOutput {
 let client = dsql_client(region).await;
 // Update delete protection
 let update_response = client
 .update_cluster()
 .identifier(identifier)
 .deletion_protection_enabled(false)
 .send()
 .await
 .unwrap();

 // Add new tags
 client
 .tag_resource()
 .resource_arn(update_response.arn().to_owned())
 .tags(String::from("Function"), String::from("Billing"))
 .tags(String::from("Environment"), String::from("Production"))
 .send()
 .await
 .unwrap();

 update_response
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 update_cluster(region, "<your cluster id>".to_owned()).await;

 Ok(())
}

Update a cluster 98

Amazon Aurora DSQL User Guide

Ruby

Use the following example to update a single or a multi-Region cluster.

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def update_cluster(region, identifier)
 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)

 update_response = client.update_cluster(
 identifier: identifier,
 deletion_protection_enabled: false
)

 client.tag_resource(
 resource_arn: update_response.arn,
 tags: {
 "Function" => "Billing",
 "Environment" => "Production"
 }
)
 raise "Unexpected status when updating cluster: #{update_response.status}"
 unless update_response.status == 'UPDATING'
 update_response
 rescue Aws::Errors::ServiceError => e
 raise "Failed to update cluster details: #{e.message}"
 end
end

.NET

Use the following example to update a single or a multi-Region cluster.

Update a cluster 99

Amazon Aurora DSQL User Guide

using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class UpdateCluster {
 public static async Task Update(RegionEndpoint region, string clusterId)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Update cluster details by setting delete protection to false
 UpdateClusterRequest updateClusterRequest = new UpdateClusterRequest()
 {
 Identifier = clusterId,
 DeletionProtectionEnabled = false
 };

 await client.UpdateClusterAsync(updateClusterRequest);
 }
}

Delete cluster in Aurora DSQL with AWS SDKs

See the following information to learn how to delete a cluster in Aurora DSQL.

Python

To delete a cluster in a single AWS Region, use the following example.

Delete a cluster 100

Amazon Aurora DSQL User Guide

import boto3

def delete_cluster(cluster_id, client):
 try:
 return client.delete_cluster(identifier=cluster_id)
 except:
 print("Unable to delete cluster " + cluster_id)
 raise

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 cluster_id = "foo0bar1baz2quux3quuux4"
 response = delete_cluster(cluster_id, client)
 print("Deleting cluster with ID: " + cluster_id + ", Cluster Status: " +
 response['status'])

if __name__ == "__main__":
 main()

To delete a multi-Region cluster, use the following example.

import boto3

def delete_multi_region_clusters(linkedClusterArns, client):
 client.delete_multi_region_clusters(linkedClusterArns=linkedClusterArns)

def main():
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)
 linkedClusterArns = [
 "arn:aws:dsql:us-east-1:111111999999::cluster/foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111111999999::cluster/bar0foo1baz2quux3quuux4"
]
 delete_multi_region_clusters(linkedClusterArns, client)
 print("Deleting clusters with ARNs:", linkedClusterArns)

if __name__ == "__main__":
 main()

Delete a cluster 101

Amazon Aurora DSQL User Guide

C++

The following example lets you delete a cluster in a single AWS Region.

Delete a cluster 102

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/DeleteClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

ClusterStatus deleteCluster(const String& clusterId, DSQLClient& client) {
 DeleteClusterRequest request;
 request.SetIdentifier(clusterId);

 DeleteClusterOutcome outcome = client.DeleteCluster(request);
 ClusterStatus status = ClusterStatus::NOT_SET;

 if (outcome.IsSuccess()) {
 const auto& cluster = outcome.GetResult();
 status = cluster.GetStatus();
 } else {
 std::cerr << "Delete operation failed: " << outcome.GetError().GetMessage()
 << std::endl;
 }
 std::cout << "Cluster Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(status) << std::endl;
 return status;
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;

 clientConfig.region = "us-east-1";

 DSQLClient client(clientConfig);
 String clusterId = "foo0bar1baz2quux3quuux4";

 deleteCluster(clusterId, client);
 Aws::ShutdownAPI(options);
 return 0;
}

Delete a cluster 103

Amazon Aurora DSQL User Guide

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

Delete a cluster 104

Amazon Aurora DSQL User Guide

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/DeleteMultiRegionClustersRequest.h>

#include <iostream>
#include <vector>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

std::vector<Aws::String> deleteMultiRegionClusters(const std::vector<Aws::String>&
 linkedClusterArns, DSQLClient& client) {
 DeleteMultiRegionClustersRequest request;
 request.SetLinkedClusterArns(linkedClusterArns);

 DeleteMultiRegionClustersOutcome outcome =
 client.DeleteMultiRegionClusters(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted clusters." << std::endl;
 return linkedClusterArns;
 } else {
 std::cerr << "Delete operation failed: " << outcome.GetError().GetMessage()
 << std::endl;
 return {};
 }
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;

 clientConfig.region = "us-east-1";

 DSQLClient client(clientConfig);

 std::vector<Aws::String> linkedClusterArns = {
 "arn:aws:dsql:us-east-1:111111999999::cluster/foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111111999999::cluster/bar0foo1baz2quux3quuux4"
 };

 std::vector<Aws::String> deletedArns =
 deleteMultiRegionClusters(linkedClusterArns, client);

 if (!deletedArns.empty()) {
 std::cout << "Deleted Cluster ARNs: " << std::endl;
 for (const auto& arn : deletedArns) {
 std::cout << arn << std::endl;
 }
 }

 Aws::ShutdownAPI(options);
 return 0;
}

Delete a cluster 105

Amazon Aurora DSQL User Guide

JavaScript

To delete a cluster in a single AWS Region, use the following example.

import { DSQLClient } from "@aws-sdk/client-dsql";
import { DeleteClusterCommand } from "@aws-sdk/client-dsql";

async function deleteCluster(clusterId, client) {
 const deleteClusterCommand = new DeleteClusterCommand({
 identifier: clusterId,
 });

 try {
 const response = await client.send(deleteClusterCommand);
 return response;
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Cluster ID not found or already deleted");
 } else {
 console.error("Unable to delete cluster: ", error.message);
 }
 throw error;
 }
 }

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({ region });

 const clusterId = "foo0bar1baz2quux3quuux4";

 const response = await deleteCluster(clusterId, client);
 console.log("Deleting Cluster with Id:", clusterId, "- Cluster Status:",
 response.status);

}

main();

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

Delete a cluster 106

Amazon Aurora DSQL User Guide

import { DSQLClient } from "@aws-sdk/client-dsql";
import { DeleteMultiRegionClustersCommand } from "@aws-sdk/client-dsql";

async function deleteMultiRegionClusters(linkedClusterArns, client) {
 const deleteMultiRegionClustersCommand = new DeleteMultiRegionClustersCommand({
 linkedClusterArns: linkedClusterArns,
 });
 try {
 const response = await client.send(deleteMultiRegionClustersCommand);
 return response;
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Some or all Cluster ARNs not found or already deleted");
 } else {
 console.error("Unable to delete multi-region clusters: ",
 error.message);
 }
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const client = new DSQLClient({ region });
 const linkedClusterArns = [
 "arn:aws:dsql:us-east-1:111111999999::cluster/foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111111999999::cluster/bar0foo1baz2quux3quuux4"
];

 const response = await deleteMultiRegionClusters(linkedClusterArns, client);
 console.log("Deleting Clusters with ARNs:", linkedClusterArns);
}

main();

Java

To delete a cluster in a single AWS Region, use the following example.

Delete a cluster 107

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryMode;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.StandardRetryStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.DeleteClusterRequest;
import software.amazon.awssdk.services.dsql.model.DeleteClusterResponse;
import software.amazon.awssdk.services.dsql.model.ResourceNotFoundException;

import java.net.URI;

public class DeleteCluster {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 String cluster_id = "foo0bar1baz2quux3quuux4";

 DeleteClusterResponse response = deleteCluster(cluster_id, client);
 System.out.println("Deleting Cluster with ID: " + cluster_id + ", Status: "
 + response.status());
 }

 public static DeleteClusterResponse deleteCluster(String cluster_id, DsqlClient
 client) {
 DeleteClusterRequest deleteClusterRequest = DeleteClusterRequest.builder()
 .identifier(cluster_id)
 .build();
 try {
 return client.deleteCluster(deleteClusterRequest);
 } catch (ResourceNotFoundException rnfe) {
 System.out.println("Cluster id is not found / deleted");
 throw rnfe;
 } catch (Exception e) {
 System.out.println("Unable to poll cluster status: " + e.getMessage());
 throw e;
 }
 }
}

Delete a cluster 108

Amazon Aurora DSQL User Guide

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

Delete a cluster 109

Amazon Aurora DSQL User Guide

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryPolicy;
import software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.DeleteMultiRegionClustersRequest;
import software.amazon.awssdk.services.dsql.model.DeleteMultiRegionClustersResponse;

import java.net.URI;
import java.util.Arrays;
import java.util.List;

public class DeleteMultiRegionClusters {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

 ClientOverrideConfiguration clientOverrideConfiguration =
 ClientOverrideConfiguration.builder()
 .retryStrategy(StandardRetryStrategy.builder().build())
 .build();

 DsqlClient client = DsqlClient.builder()
 .httpClient(UrlConnectionHttpClient.create())
 .overrideConfiguration(clientOverrideConfiguration)
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 List<String> linkedClusterArns = Arrays.asList(
 "arn:aws:dsql:us-east-1:111111999999::cluster/
foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111111999999::cluster/
bar0foo1baz2quux3quuux4"
);

 deleteMultiRegionClusters(linkedClusterArns, client);
 System.out.println("Deleting Clusters with ARNs: " + linkedClusterArns);
 }
 public static void deleteMultiRegionClusters(List<String> linkedClusterArns,
 DsqlClient client) {
 DeleteMultiRegionClustersRequest deleteMultiRegionClustersRequest =
 DeleteMultiRegionClustersRequest.builder()
 .linkedClusterArns(linkedClusterArns)
 .build();

 try {
 client.deleteMultiRegionClusters(deleteMultiRegionClustersRequest);
 } catch (Exception e) {
 System.out.println("Unable to delete multi-region clusters: " +
 e.getMessage());
 throw e;
 }
 }
}

Delete a cluster 110

Amazon Aurora DSQL User Guide

Rust

To delete a cluster in a single AWS Region, use the following example.

Delete a cluster 111

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

// Delete a DSQL cluster
pub async fn delete_cluster(region: &'static str, identifier: String) {
 let client = dsql_client(region).await;
 let delete_response = client
 .delete_cluster()
 .identifier(identifier)
 .send()
 .await
 .unwrap();
 assert_eq!(delete_response.status().as_str(), "DELETING");
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";
 delete_cluster(region, "<cluster to be deleted>".to_owned()).await;
 Ok(())
}

Delete a cluster 112

Amazon Aurora DSQL User Guide

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

Delete a cluster 113

Amazon Aurora DSQL User Guide

use aws_config::load_defaults;
use aws_sdk_dsql::{config::{BehaviorVersion, Region}, Client, Config};
use aws_sdk_dsql::operation::RequestId;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults
 .credentials_provider()
 .unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

// Delete a Multi region DSQL cluster
pub async fn delete_multi_region_cluster(region: &'static str, arns: Vec<String>) {
 let client = dsql_client(region).await;
 let delete_response = client
 .delete_multi_region_clusters()
 .set_linked_cluster_arns(Some(arns))
 .send()
 .await
 .unwrap();
 assert!(delete_response.request_id().is_some());
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";
 let arns = vec![
 "<cluster arn from us-east-1>".to_owned(),
 "<cluster arn from us-east-2>".to_owned()
];
 delete_multi_region_cluster(region, arns).await;
 Ok(())
}

Delete a cluster 114

Amazon Aurora DSQL User Guide

Ruby

To delete a cluster in a single AWS Region, use the following example.

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def delete_cluster(region, identifier)
 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)

 delete_response = client.delete_cluster(
 identifier: identifier
)
 raise "Unexpected status when deleting cluster: #{delete_response.status}"
 unless delete_response.status == 'DELETING'
 delete_response
 rescue Aws::Errors::ServiceError => e
 raise "Failed to delete cluster: #{e.message}"
 end
end

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

require 'aws-sdk-core'
require 'aws-sdk-dsql'

def delete_multi_region_cluster(region, arns)
 begin
 # Create client with default configuration and credentials
 client = Aws::DSQL::Client.new(region: region)
 client.delete_multi_region_clusters(
 linked_cluster_arns: arns
)
 rescue Aws::Errors::ServiceError => e
 raise "Failed to delete multi-region cluster: #{e.message}"
 end
end

Delete a cluster 115

Amazon Aurora DSQL User Guide

.NET

To delete a cluster in a single AWS Region, use the following example.

using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class SingleRegionClusterDeletion {
 public static async Task<DeleteClusterResponse> Delete(RegionEndpoint region,
 string clusterId)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Delete a single region cluster
 DeleteClusterRequest deleteClusterRequest = new()
 {
 Identifier = clusterId
 };
 DeleteClusterResponse deleteClusterResponse = await
 client.DeleteClusterAsync(deleteClusterRequest);
 Console.WriteLine(deleteClusterResponse.Status);

 return deleteClusterResponse;
 }
}

To delete a multi-Region cluster, use the following example. Deleting a multi-Region cluster
might take some time.

Delete a cluster 116

Amazon Aurora DSQL User Guide

using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;

class MultiRegionClusterDeletion {
 public static async Task Delete(RegionEndpoint region, List<string> arns)
 {
 // Create the sdk client
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();
 AmazonDSQLConfig clientConfig = new()
 {
 AuthenticationServiceName = "dsql",
 RegionEndpoint = region
 };
 AmazonDSQLClient client = new(awsCredentials, clientConfig);

 // Delete a multi region clusters
 DeleteMultiRegionClustersRequest deleteMultiRegionClustersRequest = new()
 {
 LinkedClusterArns = arns
 };
 DeleteMultiRegionClustersResponse deleteMultiRegionClustersResponse =
 await
 client.DeleteMultiRegionClustersAsync(deleteMultiRegionClustersRequest);

 Console.WriteLine(deleteMultiRegionClustersResponse.ResponseMetadata.RequestId);
 }
}

Manage clusters in Aurora DSQL with the AWS CLI

See the following sections to learn how to manage your clusters with the AWS CLI.

CreateCluster

To create a cluster, use the create-cluster command.

Manage clusters with the AWS CLI 117

Amazon Aurora DSQL User Guide

Note

Cluster creation happens asynchronously. Call the GetCluster API until the status is
ACTIVE. You can connect to a cluster once it becomes ACTIVE.

Sample command

aws dsql create-cluster --region us-east-1

Note

If you want to disable deletion protection upon creation, include the --no-deletion-
protection-enabled flag.

Sample response

{
 "identifier": "foo0bar1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "status": "CREATING",
 "creationTime": "2024-05-25T16:56:49.784000-07:00",
 "deletionProtectionEnabled": true
}

GetCluster

To describe an cluster, use the get-cluster command.

Sample command

aws dsql get-cluster \
--region us-east-1 \
--identifier <your_cluster_id>

Sample response

{

GetCluster 118

Amazon Aurora DSQL User Guide

 "identifier": "foo0bar1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "status": "ACTIVE",
 "creationTime": "2024-05-24T09:15:32.708000-07:00",
 "deletionProtectionEnabled": false
}

UpdateCluster

To update an existing cluster, use the update-cluster command.

Note

Updates happen asynchronously. Call the GetCluster API until the status is ACTIVE and
you'll observe the changes.

Sample command

aws dsql update-cluster \
--region us-east-1 \
--no-deletion-protection-enabled \
--identifier your_cluster_id

Sample response

{
 "identifier": "foo0bar1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "status": "UPDATING",
 "creationTime": "2024-05-24T09:15:32.708000-07:00",
 "deletionProtectionEnabled": true
}

DeleteCluster

To delete an existing cluster, use the delete-cluster command.

UpdateCluster 119

Amazon Aurora DSQL User Guide

Note

You can only delete a cluster which has deletion protection disabled. Deletion protection is
enabled by default when creating new clusters.

Sample command

aws dsql delete-cluster \
--region us-east-1 \
--identifier your_cluster_id

Sample response

{
 "identifier": "foo0bar1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "status": "DELETING",
 "creationTime": "2024-05-24T09:16:43.778000-07:00",
 "deletionProtectionEnabled": false
}

ListClusters

To get the a of clusters, use the list-clusters command.

Sample command

aws dsql list-clusters --region us-east-1

Sample response

{
 "clusters": [
 {
 "identifier": "foo0bar1baz2quux3quux4quuux",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quux4quuux"

ListClusters 120

Amazon Aurora DSQL User Guide

 },
 {
 "identifier": "foo0bar1baz2quux3quux4quuuux",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quux4quuuux"
 },
 {
 "identifier": "foo0bar1baz2quux3quux4quuuuux",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quux4quuuuux"
 }
]
}

CreateMultiRegionClusters

To create multi-Region linked clusters, use the create-multi-region-clusters command. You
can issue the command from either Read-Write region in the linked cluster pair.

Sample command

aws dsql create-multi-region-clusters \
 --region us-east-1 \
 --linked-region-list us-east-1 us-east-2 \
 --witness-region us-west-2 \
 --client-token test-1

If the API operation succeeds, both linked clusters enter the CREATING state and cluster creation
will proceed asynchronously. To monitor progress you can call the GetCluster API in each Region
until the return status shows ACTIVE. You can connect to a cluster once both linked clusters
become ACTIVE.

Note

During preview, if you encounter a scenario where one cluster is ACTIVE and other FAILED,
we recommend you delete the linked clusters and create them again.

{
 "linkedClusterArns": [

CreateMultiRegionClusters 121

Amazon Aurora DSQL User Guide

 "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111122223333:cluster/bar0foo1baz2quux3quuux4"
]
}

GetCluster on multi-Region clusters

To get information about a multi-Region cluster, use the get-cluster command. For multi-
Region clusters the response will include the linked cluster ARNs.

Sample command

aws dsql get-cluster \
--region us-east-1 \
--identifier your_cluster_id

Sample response

{
 "identifier": "aaabtjp7shql6wz7w5xqzpxtem",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "status": "ACTIVE",
 "creationTime": "2024-07-17T10:24:23.325000-07:00",
 "deletionProtectionEnabled": true,
 "witnessRegion": "us-west-2",
 "linkedClusterArns": [
 "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuux4",
 "arn:aws:dsql:us-east-2:111122223333:cluster/bar0foo1baz2quux3quuux4"
]
}

DeleteMultiRegionClusters

To delete multi-Region clusters, use the delete-multi-region-clusters operation from any
of the linked cluster Regions.

Note that you can't delete only one Region of a linked cluster pair.

GetCluster on multi-Region clusters 122

Amazon Aurora DSQL User Guide

Sample AWS CLI command

aws dsql delete-multi-region-clusters \
 --region us-east-1 --linked-cluster-arns "arn:aws:dsql:us-east-2:111122223333:cluster/
bar0foo1baz2quux3quuux4" "arn:aws:dsql:us-east-1:111122223333:cluster/
foo0bar1baz2quux3quuux4"

If this API operation succeeds, both clusters enter the DELETING state. To determine the exact
status of the clusters, use the get-cluster API operation on each linked cluster in their
corresponding Region.

Sample response

{ }

Programming with Python

Topics

• Using Aurora DSQL to build an application with Django

• Using Aurora DSQL to build an application with SQLAlchemy

• Using Psycopg2 to interact with Aurora DSQL

• Using Psycopg3 to interact with Aurora DSQL

Using Aurora DSQL to build an application with Django

This section describes how how to create a pet clinic web application with Django that uses Aurora
DSQL as a database. This clinic has pets, owners, veterinarians, and specialties

Before you begin, make sure that you have created a cluster in Aurora DSQL. You need the cluster
endpoint to build the web application. You must also have installed Python 3.8 or higher and latest
AWS SDK for Python (Boto3)

Bootstrap the Django application

1. Create a new directory named django_aurora_dsql_example.

Programming with Python 123

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL User Guide

mkdir django_aurora_dsql_example
cd django_aurora_dsql_example

2. Install Django and other dependencies. Create a file named requirements.txt and add in
the following contents.

boto3
botocore
aurora_dsql_django
django
psycopg[binary]

3. Use the following commands to create and activate a Python virtual environment.

python3 -m venv venv
source venv/bin/activate

4. Install the requirements that you defined.

pip install --force-reinstall -r requirements.txt

5. Verify that you have installed Django. You should see the version of Django that you insalled.

python3 -m django --version

5.1.2 # Your version could be different

6. Create a Django project and change your directory to that location.

django-admin startproject project
cd project

7. Create an application named pet_clinic.

python3 manage.py startapp pet_clinic

8. Django comes installed with default authentication and admin apps, but they don't work with
Aurora DSQL. Find the variables in django_aurora_dsql_example/project/project/
settings.py and set the values like below.

ALLOWED_HOSTS = ['*']

Build with Django 124

Amazon Aurora DSQL User Guide

INSTALLED_APPS = ['pet_clinic'] # Make sure that you have the pet_clinic app
 defined here.
MIDDLEWARE = []
TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
],
 },
 },
]

9. Remove the references to the admin application in the Django project. From
django_aurora_dsql_example/project/project/urls.py, remove the path to the
admin page.

remove the following line
from django.contrib import admin

make sure that urlpatterns variable is empty
urlpatterns = []

From django_aurora_dsql_example/project/pet_clinic, delete the admin.py file.

10. Change the database settings so that the application uses the Aurora DSQL cluster instead of
the default of SQLite 3.

DATABASES = {
 'default': {
 # Provide the endpoint of the cluster
 'HOST': <cluster endpoint>,
 'USER': 'admin',
 'NAME': 'postgres',
 'ENGINE': 'aurora_dsql_django', # This is the custom database adapter for
 Aurora DSQL
 'OPTIONS': {
 'sslmode': 'require',
 'region': 'us-east-2',

Build with Django 125

Amazon Aurora DSQL User Guide

 # Setting password token expirty time is optional. Default is 900s
 'expires_in': 30
 # Setting `aws_profile` name is optional. Default is `default` profile
 # Setting `sslrootcert` is needed if you set 'sslmode': 'verify-full'
 }
 }
}

Create the application

Now that you've bootstrapped the Django pet clinic application, you can add models, create views,
and run the server.

Important

To run the code, you must have valid AWS credentials.

Create models

As a pet clinic, it needs to account for pets, owners of pets, and veterinarians and their specialties.
An owner can visit the veterinarian in the clinic with the pet. The clinic has the following
relationships.

• One owner can have many pets.

• A veterinarian can have any number of specialties, and one specialty can be associated with any
number of veternarians.

Note

Aurora DSQL doesn't support automatically incrementing the SERIAL type primary key. In
these examples, we instead use a UUIDField with a default uuid value as the primary key.

from django.db import models
import uuid

Create your models here.

Build with Django 126

Amazon Aurora DSQL User Guide

class Owner(models.Model):
 # SERIAL Auto incrementing primary keys are not supported. Using UUID instead.
 id = models.UUIDField(
 primary_key=True,
 default=uuid.uuid4,
 editable=False
)
 name = models.CharField(max_length=30, blank=False)
 # This is many to one relation
 city = models.CharField(max_length=80, blank=False)
 telephone = models.CharField(max_length=20, blank=True, null=True, default=None)

 def __str__(self):
 return f'{self.name}'

class Pet(models.Model):
 id = models.UUIDField(
 primary_key=True,
 default=uuid.uuid4,
 editable=False
)
 name = models.CharField(max_length=30, blank=False)
 birth_date = models.DateField()
 owner = models.ForeignKey(Owner, on_delete=models.CASCADE, db_constraint=False,
 null=True)

Create the associated tables in your cluster by running the following commands in the
django_aurora_dsql_example/project directory.

This command generates a file named 0001_Initial.py in django_aurora_dsql_example/
project/pet_clinic directory
python3 manage.py makemigrations pet_clinic
python3 manage.py migrage pet_clinic 0001

Create views

Now that we have models and tables, we can create views for each model, and then run CRUD
operations with each model.

Note that we do not want to give up upon error immediately. For example, the transaction may
fail because of a Optimistic Concurrency Control (OCC) error. Instead of giving up immediately, we

Build with Django 127

Amazon Aurora DSQL User Guide

can retry N times. In this example, we are attempting the operation 3 times by default. In order to
achieve this a sample `with_retry` method is provided here.

from django.shortcuts import render, redirect
from django.views import generic
from django.views.generic import View
from django.http import JsonResponse, HttpResponse, HttpResponseBadRequest
from django.utils.decorators import method_decorator
from django.views.generic import View
from django.views.decorators.csrf import csrf_exempt
from django.db.transaction import atomic
from psycopg import errors
from django.db import Error, IntegrityError
import json, time, datetime

from pet_clinic.models import *

##
If there is an error, we want to retry instead of giving up immediately.
initial_wait is the amount of time after with the operation is retried
delay_factor is the pace at which the retries slow down upon each failure.
For example an initial_wait of 1 and delay_factor of 2 implies,
First retry occurs after 1 second, second one after 1*2 = 2 seconds,
Third one after 2*2 = 4 seconds, forth one after 4*2 = 8 seconds and so on.
##
def with_retries(retries = 3, failed_response = HttpResponse(status=500), initial_wait
 = 1, delay_factor = 2):
 def handle(view):
 def retry_fn(*args, **kwargs):
 delay = initial_wait
 for i in range(retries):
 print(("attempt: %s/%s") % (i+1, retries))
 try:
 return view(*args, **kwargs)
 except Error as e:
 print(f"Error: {e}, retrying...")
 time.sleep(delay)
 delay *= delay_factor
 return failed_response
 return retry_fn
 return handle

@method_decorator(csrf_exempt, name='dispatch')

Build with Django 128

Amazon Aurora DSQL User Guide

class OwnerView(View):
 @with_retries()
 def get(self, request, id=None, *args, **kwargs):
 owners = Owner.objects
 # Apply filter if specific id is requested.
 if id is not None:
 owners = owners.filter(id=id)
 return JsonResponse(list(owners.values()), safe=False)

 @with_retries()
 @atomic
 def post(self, request, *args, **kwargs):
 data = json.loads(request.body.decode())

 # If id is provided we try updating the existing object
 id = data.get('id', None)
 try:
 owner = Owner.objects.get(id=id) if id is not None else None
 except:
 return HttpResponseBadRequest(("error: check if owner with id `%s` exists")
 % (id))

 name = data.get('name', owner.name if owner else None)
 # Either the name or id must be provided.
 if owner is None and name is None:
 return HttpResponseBadRequest()

 telephone = data.get('telephone', owner.telephone if owner else None)
 city = data.get('city', owner.city if owner else None)

 if owner is None:
 # Owner _not_ present, creating new one
 print(("owner: %s is not present; adding") % (name))
 owner = Owner(name=name, telephone=telephone, city=city)
 else:
 # Owner present, update existing
 print(("owner: %s is present; updating") % (name))
 owner.name = name
 owner.telephone = telephone
 owner.city = city

 owner.save()
 return JsonResponse(list(Owner.objects.filter(id=owner.id).values()),
 safe=False)

Build with Django 129

Amazon Aurora DSQL User Guide

 @with_retries()
 @atomic
 def delete(self, request, id=None, *args, **kwargs):
 if id is not None:
 Owner.objects.filter(id=id).delete()
 return HttpResponse(status=200)

@method_decorator(csrf_exempt, name='dispatch')
class PetView(View):
 @with_retries()
 def get(self, request=None, id=None, *args, **kwargs):
 pets = Pet.objects
 # Apply filter if specific id is requested.
 if id is not None:
 pets = pets.filter(id=id)
 return JsonResponse(list(pets.values()), safe=False)

 @with_retries()
 @atomic
 def post(self, request, *args, **kwargs):
 data = json.loads(request.body.decode())

 # If id is provided we try updating the existing object
 id = data.get('id', None)
 try:
 pet = Pet.objects.get(id=id) if id is not None else None
 except:
 return HttpResponseBadRequest(("error: check if pet with id `%s` exists") %
 (id))

 name = data.get('name', pet.name if pet else None)
 # Either the name or id must be provided.
 if pet is None and name is None:
 return HttpResponseBadRequest()

 birth_date = data.get('birth_date', pet.birth_date if pet else None)
 owner_id = data.get('owner_id', pet.owner.id if pet and pet.owner else None)
 try:
 owner = Owner.objects.get(id=owner_id) if owner_id else None
 except:
 return HttpResponseBadRequest(("error: check if owner with id `%s` exists")
 % (owner_id))

Build with Django 130

Amazon Aurora DSQL User Guide

 if pet is None:
 # Pet _not_ present, creating new one
 print(("pet name: %s is not present; adding") % (name))
 pet = Pet(name=name, birth_date=birth_date, owner=owner)
 else:
 # Pet present, update existing
 print(("pet name: %s is present; updating") % (name))
 pet.name = name
 pet.birth_date = birth_date
 pet.owner = owner

 pet.save()
 return JsonResponse(list(Pet.objects.filter(id=pet.id).values()), safe=False)

 @with_retries()
 @atomic
 def delete(self, request=None, id=None, *args, **kwargs):
 if id is not None:
 Pet.objects.filter(id=id).delete()
 return HttpResponse(status=200)

Create paths

We can then create paths so that we can run CRUD operations on the data.

from django.contrib import admin
from django.urls import path
from pet_clinic.views import *

urlpatterns = [
 path('owner/', OwnerView.as_view(), name='owner'),
 path('owner/<id>', OwnerView.as_view(), name='owner'),
 path('pet/', PetView.as_view(), name='pet'),
 path('pet/<id>', PetView.as_view(), name='pet'),
]

Finally, start the Django application by running the following command.

python3 manage.py runserver

Build with Django 131

Amazon Aurora DSQL User Guide

CRUD operations

Test that your application works by testing the CRUD operations. The following examples
demonstrate how to create Owner and Pet objects

curl --request POST --data '{"name":"Joe", "city":"Seattle"}' http://0.0.0.0:8000/
owner/
curl --request POST --data '{"name":"Mary", "telephone":"93209753297", "city":"New
 York"}' http://0.0.0.0:8000/owner/
curl --request POST --data '{"name":"Dennis", "city":"Chicago"}' http://0.0.0.0:8000/
owner/

curl --request POST --data '{"name":"Tom", "birth_date":"2006-10-25"}'
 http://0.0.0.0:8000/pet/
curl --request POST --data '{"name":"luna", "birth_date":"2020-10-10"}'
 http://0.0.0.0:8000/pet/
curl --request POST --data '{"name":"Myna", "birth_date":"2021-09-11"}'
 http://0.0.0.0:8000/pet/

Run the following commands to retrieve all of the owners and pets.

curl --request GET http://0.0.0.0:8000/owner/

curl --request GET http://0.0.0.0:8000/pet/

The following example demonstrates how to update a specific owner or pet.

curl --request POST --data '{"id":"44ca64ed-0264-450b-817b-14386c7df277",
 "city":"Vancouver"}' http://0.0.0.0:8000/owner/

curl --request POST --data '{"id":"f397b51b-2fdd-441d-b0ac-f115acd74725",
 "birth_date":"2016-09-11"}' http://0.0.0.0:8000/pet/

Finally, you can delete an owner or a pet.

curl --request DELETE http://0.0.0.0:8000/owner/44ca64ed-0264-450b-817b-14386c7df277

curl --request DELETE http://0.0.0.0:8000/pet/f397b51b-2fdd-441d-b0ac-f115acd74725

Build with Django 132

Amazon Aurora DSQL User Guide

Relationships

One-to-many / Many-to-one

These relationships can be achieved by having the foreign key constraint on the field. For example,
an owner can have any number of pets. A pet can have only one owner.

An owner can adopt a pet
curl --request POST --data '{"id":"d52b4b69-b5f7-49a9-90af-adfdf10ecc03",
 "owner_id":"0f7cd839-c8ee-436e-baf3-e52aaa51fa65"}' http://0.0.0.0:8000/pet/

Same owner can have another pet
curl --request POST --data '{"id":"485c8818-d7c1-4965-a024-0e133896c72d",
 "owner_id":"0f7cd839-c8ee-436e-baf3-e52aaa51fa65"}' http://0.0.0.0:8000/pet/

Deleting the owner deletes pets as ForeignKey is configured with on_delete.CASCADE
curl --request DELETE http://0.0.0.0:8000/owner/0f7cd839-c8ee-436e-baf3-e52aaa51fa65

Confirm that owner is deleted
curl --request GET http://0.0.0.0:8000/owner/12154d97-0f4c-4fed-b560-6578d46aff6d

Confirm corresponding pets are deleted
curl --request GET http://0.0.0.0:8000/pet/d52b4b69-b5f7-49a9-90af-adfdf10ecc03
curl --request GET http://0.0.0.0:8000/pet/485c8818-d7c1-4965-a024-0e133896c72d

Many-to-Many

To illustrate Many-to-many we can imagine having a list of specialties and a list of veterinarian. A
specialty can be attributed to any number of veterinarians and a veterinarian can have any number
of specialties. In order to achieve this we will create ManyToMany mapping. As our primary keys are
non integer UUIDs, we cannot directly use ManyToMany. We need to define a mapping via custom
intermediate table with explicit UUID as the primary key.

One-to-One

To illustrate One-to-One let's imagine that Vet can also be a owner. This imposes one-to-one
relationship between the Vet and the owner. Also, not all Vets are owners. We define this by having
a OneToOne field named owner in the Vet model and flagging it can be blank or null but it must be
unique.

Build with Django 133

Amazon Aurora DSQL User Guide

Note

Django treats all AutoFields as integers internally. And Django automatically creates an
intermediate table to manage many-to-many mapping with a Auto increment column
as primary key. Aurora DSQL does not support this; we will create an intermediate table
ourselves instead of letting Django do it automatically.

Define models

class Specialty(models.Model):
 name = models.CharField(max_length=80, blank=False, primary_key=True)
 def __str__(self):
 return self.name

class Vet(models.Model):
 id = models.UUIDField(
 primary_key=True,
 default=uuid.uuid4,
 editable=False
)
 name = models.CharField(max_length=30, blank=False)
 specialties = models.ManyToManyField(Specialty, through='VetSpecialties')
 owner = models.OneToOneField(Owner, on_delete=models.SET_DEFAULT,
 db_constraint=False, null=True, blank=True, default=None)
 def __str__(self):
 return f'{self.name}'

Need to use custom intermediate table because Django considers default primary
keys as integers. We use UUID as default primary key which is not an integer.
class VetSpecialties(models.Model):
 id = models.UUIDField(
 primary_key=True,
 default=uuid.uuid4,
 editable=False
)
 vet = models.ForeignKey(Vet, on_delete=models.CASCADE, db_constraint=False)
 specialty = models.ForeignKey(Specialty, on_delete=models.CASCADE,
 db_constraint=False)

Define views

Build with Django 134

Amazon Aurora DSQL User Guide

Like the views we have created for Owners and Pets, we define the views for Specialties and and
Vets. Also, we follow the similar CRUD pattern that we followed for Owners and pets.

@method_decorator(csrf_exempt, name='dispatch')
class SpecialtyView(View):
 @with_retries()
 def get(self, request=None, name=None, *args, **kwargs):
 specialties = Specialty.objects
 # Apply filter if specific name is requested.
 if name is not None:
 specialties = specialties.filter(name=name)
 return JsonResponse(list(specialties.values()), safe=False)

 @with_retries()
 @atomic
 def post(self, request=None, *args, **kwargs):
 data = json.loads(request.body.decode())
 name = data.get('name', None)
 if name is None:
 return HttpResponseBadRequest()

 specialty = Specialty(name=name)
 specialty.save()
 return
 JsonResponse(list(Specialty.objects.filter(name=specialty.name).values()), safe=False)

 @with_retries()
 @atomic
 def delete(self, request=None, name=None, *args, **kwargs):
 if id is not None:
 Specialty.objects.filter(name=name).delete()
 return HttpResponse(status=200)

@method_decorator(csrf_exempt, name='dispatch')
class VetView(View):
 @with_retries()
 def get(self, request=None, id=None, *args, **kwargs):
 vets = Vet.objects
 # Apply filter if specific id is requested.
 if id is not None:
 vets = vets.filter(id=id)
 return JsonResponse(list(vets.values()), safe=False)

Build with Django 135

Amazon Aurora DSQL User Guide

 @with_retries()
 @atomic
 def post(self, request, *args, **kwargs):
 data = json.loads(request.body.decode())
 # If id is provided we try updating the existing object
 id = data.get('id', None)
 try:
 vet = Vet.objects.get(id=id) if id is not None else None
 except:
 return HttpResponseBadRequest(("error: check if vet with id `%s` exists") %
 (id))

 name = data.get('name', vet.name if vet else None)

 # Either the name or id must be provided.
 if vet is None and name is None:
 return HttpResponseBadRequest()

 owner_id = data.get('owner_id', vet.owner.id if vet and vet.owner else None)
 try:
 owner = Owner.objects.get(id=owner_id) if owner_id else None
 except:
 return HttpResponseBadRequest(("error: check if owner with id `%s` exists")
 % (id))

 specialties_list = data.get('specialties', vet.specialties if vet and
 vet.specialties else [])
 specialties = []
 for specialty in specialties_list:
 try:
 specialties_obj = Specialty.objects.get(name=specialty)
 except Exception:
 return HttpResponseBadRequest(("error: check if specialty `%s` exists")
 % (specialty))
 specialties.append(specialties_obj)

 if vet is None:
 print(("vet name: %s, not present, adding") % (name))
 vet = Vet(name=name, owner_id=owner_id)
 else:
 print(("vet name: %s, present, updating") % (name))
 vet.name = name
 vet.owner = owner

Build with Django 136

Amazon Aurora DSQL User Guide

 # First save the vet so that we have an id. Then we can add specialties.
 # Django needs the id primary key of the parent object before adding relations
 vet.save()

 # Add any specialties provided
 vet.specialties.add(*specialties)
 return JsonResponse(
 {
 'Veterinarian': list(Vet.objects.filter(id=vet.id).values()),
 'Specialties': list(VetSpecialties.objects.filter(vet=vet.id).values())
 }, safe=False)

 @with_retries()
 @atomic
 def delete(self, request, id=None, *args, **kwargs):
 if id is not None:
 Vet.objects.filter(id=id).delete()
 return HttpResponse(status=200)

@method_decorator(csrf_exempt, name='dispatch')
class VetSpecialtiesView(View):
 @with_retries()
 def get(self, request=None, *args, **kwargs):
 data = json.loads(request.body.decode())
 vet_id = data.get('vet_id', None)
 specialty_id = data.get('specialty_id', None)
 specialties = VetSpecialties.objects
 # Apply filter if specific name is requested.
 if vet_id is not None:
 specialties = specialties.filter(vet_id=vet_id)
 if specialty_id is not None:
 specialties = specialties.filter(specialty_id=specialty_id)
 return JsonResponse(list(specialties.values()), safe=False)

Update routes

Modify the django_aurora_dsql_example/project/project/urls.py and ensure that
urlpatterns variable is set like below

urlpatterns = [
 path('owner/', OwnerView.as_view(), name='owner'),
 path('owner/<id>', OwnerView.as_view(), name='owner'),
 path('pet/', PetView.as_view(), name='pet'),

Build with Django 137

Amazon Aurora DSQL User Guide

 path('pet/<id>', PetView.as_view(), name='pet'),
 path('vet/', VetView.as_view(), name='vet'),
 path('vet/<id>', VetView.as_view(), name='vet'),
 path('specialty/', SpecialtyView.as_view(), name='specialty'),
 path('specialty/<name>', SpecialtyView.as_view(), name='specialty'),
 path('vet-specialties/<vet_id>', VetSpecialtiesView.as_view(), name='vet-
specialties'),
 path('specialty-vets/<specialty_id>', VetSpecialtiesView.as_view(), name='vet-
specialties'),
]

Test many-to-many

Create some specialties
curl --request POST --data '{"name":"Exotic"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Dogs"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Cats"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Pandas"}' http://0.0.0.0:8000/specialty/

We can have vets with many specialties and same specialty can be attributed to many vets. If you
try adding a specialty that does not exit, an error will be returned.

curl --request POST --data '{"name":"Jake", "specialties": ["Dogs", "Cats"]}'
 http://0.0.0.0:8000/vet/
curl --request POST --data '{"name":"Vince", "specialties": ["Dogs"]}'
 http://0.0.0.0:8000/vet/
curl --request POST --data '{"name":"Matt"}' http://0.0.0.0:8000/vet/
Update Matt to have specialization in Cats and Exotic animals
curl --request POST --data '{"id":"2843be51-a26b-42b6-9e20-c3f2eba6e949",
 "specialties": ["Dogs", "Cats"]}' http://0.0.0.0:8000/vet/

Delete

Deleting the specialty will update list of specialties associated with the veterinarian because we
have setup the CASCADE delete constraint.

Check the list of vets who has the Dogs specialty attributed
curl --request GET --data '{"specialty_id":"Dogs"}' http://0.0.0.0:8000/vet-
specialties/

Build with Django 138

Amazon Aurora DSQL User Guide

Delete dogs specialty, in our sample queries there are two vets who has this
 specialty
curl --request DELETE http://0.0.0.0:8000/specialty/Dogs
We can now check that vets specialties are updated. The Dogs specialty must have been
 removed from the vet's specialties.
curl --request GET --data '{"vet_id":"2843be51-a26b-42b6-9e20-c3f2eba6e949"}'
 http://0.0.0.0:8000/vet-specialties/

Test one-to-one

Crate few owners
curl --request POST --data '{"name":"Paul", "city":"Seattle"}' http://0.0.0.0:8000/
owner/
curl --request POST --data '{"name":"Pablo", "city":"New York"}' http://0.0.0.0:8000/
owner/
Note down owner ids

 # Create some specialties
curl --request POST --data '{"name":"Exotic"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Dogs"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Cats"}' http://0.0.0.0:8000/specialty/
curl --request POST --data '{"name":"Pandas"}' http://0.0.0.0:8000/specialty/

 # Create veterinarians
 # We can create vet who is also a owner
curl --request POST --data '{"name":"Pablo", "specialties": ["Dogs", "Cats"],
 "owner_id": "b60bbdda-6aae-4b82-9711-5743b3667334"}' http://0.0.0.0:8000/vet/
We can create vets who are not owners
curl --request POST --data '{"name":"Vince", "specialties": ["Exotic"]}'
 http://0.0.0.0:8000/vet/
curl --request POST --data '{"name":"Matt"}' http://0.0.0.0:8000/vet/

Trying to add a new vet with an already associated owner id will cause integrity
 error
curl --request POST --data '{"name":"Jenny", "owner_id":
 "b60bbdda-6aae-4b82-9711-5743b3667334"}' http://0.0.0.0:8000/vet/

Deleting the owner will lead to updating of owner field in vet to Null.
curl --request DELETE http://0.0.0.0:8000/owner/b60bbdda-6aae-4b82-9711-5743b3667334

curl --request GET http://0.0.0.0:8000/vet/603e44b1-cf3a-4180-8df3-2c73fac507bd

Build with Django 139

Amazon Aurora DSQL User Guide

Using Aurora DSQL to build an application with SQLAlchemy

This section describes how how to create a pet clinic web application with SQLAlchemy that uses
Aurora DSQL as a database. This clinic has pets, owners, veterinarians, and specialties.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL.

• Installed Python. You must be running version 3.8 or higher.

• Created an AWS account and configured the credentials and AWS Region.

• Installed the AWS SDK for Python (Boto3).

Setup

See the following steps to set up your environment.

1. In your local environment, create and activate the Python virtual environment with the
following commands.

python3 -m venv sqlalchemy_venv
source sqlalchemy_venv/bin/activate

2. Install the required dependencies.

pip install sqlalchemy
pip install "psycopg2-binary>=2.9"

Note

Note that SqlAlchemy with Psycopg3 does not work with Aurora DSQL. SqlAlchemy with
Psycopg3 uses nested transactions which rely on savepoints as part of the connection
setup. Savepoints are not supported by Aurora DSQL

Connect to an Aurora DSQL cluster

The following example demonstrates how to create an Aurora DSQL engine with SQLAlchemy and
connect to a cluster in Aurora DSQL.

Build with SQLAlchemy 140

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Aurora DSQL User Guide

import boto3
from sqlalchemy import create_engine
from sqlalchemy.engine import URL

def create_dsql_engine():
 hostname = "foo0bar1baz2quux3quuux4.c0001.us-east-1.prod.sql.axdb.aws.dev"
 region = "us-east-1"
 client = boto3.client("dsql", region_name=region)

 # The token expiration time is optional, and the default value 900 seconds
 # Use `generate_db_connect_auth_token` instead if you are not connecting as `admin`
 user
 password_token = client.generate_db_connect_admin_auth_token(hostname, region)

 # Example on how to create engine for SQLAlchemy
 url = URL.create("postgresql", username="admin", password=password_token,
 host=hostname, database="postgres")
 # Prefer sslmode = verify-full for production usecases
 engine = create_engine(url, connect_args={"sslmode": "require"})

 return engine

Create models

One owner can have many pets, thus creating a one-to-many relationship. A veterinarian can have
many specialties, so that is a many-to-many relationship. The following example creates all of
these tables and relationships. Aurora DSQL doesn't support SERIAL, so all unique identifiers are
based on a universal unique identifier (UUID).

Dependencies for Model class
from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import relationship
from sqlalchemy import Column, Date
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import text

class Base(DeclarativeBase):
 pass

Define a Owner table
class Owner(Base):

Build with SQLAlchemy 141

Amazon Aurora DSQL User Guide

 __tablename__ = "owner"

 id = Column(
 "id", UUID, primary_key=True, default=text('gen_random_uuid()')
)
 name = Column("name", String(30), nullable=False)
 city = Column("city", String(80), nullable=False)
 telephone = Column("telephone", String(20), nullable=True, default=None)

Define a Pet table
class Pet(Base):
 __tablename__ = "pet"

 id = Column(
 "id", UUID, primary_key=True, default=text('gen_random_uuid()')
)
 name = Column("name", String(30), nullable=False)
 birth_date = Column("birth_date", Date(), nullable=False)
 owner_id = Column(
 "owner_id", UUID, nullable=True
)
 owner = relationship("Owner", foreign_keys=[owner_id], primaryjoin="Owner.id ==
 Pet.owner_id")

Define an association table for Vet and Speacialty
class VetSpecialties(Base):
 __tablename__ = "vetSpecialties"

 id = Column(
 "id", UUID, primary_key=True, default=text('gen_random_uuid()')
)
 vet_id = Column(
 "vet_id", UUID, nullable=True
)
 specialty_id = Column(
 "specialty_id", String(80), nullable=True
)

Define a Specialty table
class Specialty(Base):
 __tablename__ = "specialty"
 id = Column(
 "name", String(80), primary_key=True
)

Build with SQLAlchemy 142

Amazon Aurora DSQL User Guide

Define a Vet table
class Vet(Base):
 __tablename__ = "vet"

 id = Column(
 "id", UUID, primary_key=True, default=text('gen_random_uuid()')
)
 name = Column("name", String(30), nullable=False)
 specialties = relationship("Specialty", secondary=VetSpecialties.__table__,
 primaryjoin="foreign(VetSpecialties.vet_id)==Vet.id",
 secondaryjoin="foreign(VetSpecialties.specialty_id)==Specialty.id")

CRUD examples

You can now run CRUD operations to add, read, update, and delete data. Note that to run these
examples, you must have configured AWS credentials.

Run the following example to create all of the necessary tables and modify data inside them.

from sqlalchemy.orm import Session
from sqlalchemy import select

def example():
 # Create the engine
 engine = create_dsql_engine()

 # Drop all tables if any
 for table in Base.metadata.tables.values():
 table.drop(engine, checkfirst=True)

 # Create all tables
 for table in Base.metadata.tables.values():
 table.create(engine, checkfirst=True)

 session = Session(engine)
 # Owner-Pet relationship is one to many.
 ## Insert owners
 john_doe = Owner(name="John Doe", city="Anytown")
 mary_major = Owner(name="Mary Major", telephone="555-555-0123", city="Anytown")

 ## Add two pets.
 pet_1 = Pet(name="Pet-1", birth_date="2006-10-25", owner=john_doe)

Build with SQLAlchemy 143

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html

Amazon Aurora DSQL User Guide

 pet_2 = Pet(name="Pet-2", birth_date="2021-7-23", owner=mary_major)

 session.add_all([john_doe, mary_major, pet_1, pet_2])
 session.commit()

 # Read back data for the pet.
 pet_query = select(Pet).where(Pet.name == "Pet-1")
 pet_1 = session.execute(pet_query).fetchone()[0]

 # Get the corresponding owner
 owner_query = select(Owner).where(Owner.id == pet_1.owner_id)
 john_doe = session.execute(owner_query).fetchone()[0]

 # Test: check read values
 assert pet_1.name == "Pet-1"
 assert str(pet_1.birth_date) == "2006-10-25"
 # Owner must be what we have inserted
 assert john_doe.name == "John Doe"
 assert john_doe.city == "Anytown"

 # Vet-Specialty relationship is many to many.
 dogs = Specialty(id="Dogs")
 cats = Specialty(id="Cats")

 ## Insert two vets with specialties, one vet without any specialty
 akua_mansa = Vet(name="Akua Mansa",specialties=[dogs])
 carlos_salazar = Vet(name="Carlos Salazar", specialties=[dogs, cats])

 session.add_all([dogs, cats, akua_mansa, carlos_salazar])
 session.commit()

 # Read back data for the vets.
 vet_query = select(Vet).where(Vet.name == "Akua Mansa")
 akua_mansa = session.execute(vet_query).fetchone()[0]

 vet_query = select(Vet).where(Vet.name == "Carlos Salazar")
 carlos_salazar = session.execute(vet_query).fetchone()[0]

 # Test: check read value
 assert akua_mansa.name == "Akua Mansa"
 assert akua_mansa.specialties[0].id == "Dogs"

 assert carlos_salazar.name == "Carlos Salazar"
 assert carlos_salazar.specialties[0].id == "Cats"

Build with SQLAlchemy 144

Amazon Aurora DSQL User Guide

 assert carlos_salazar.specialties[1].id == "Dogs"

Using Psycopg2 to interact with Aurora DSQL

This section describes how to use Psycopg2 to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL.

• Installed Python. You must be running version 3.8 or higher.

• Created an AWS account and configured the credentials and AWS Region.

• Installed the AWS SDK for Python (Boto3).

Before you get started, install the required dependency.

pip install "psycopg2-binary>=2.9"

Connect to an Aurora DSQL cluster and run queries

import psycopg2
import boto3
import os, sys

def main(cluster_endpoint):
 region = 'us-east-1'

 # Generate a password token
 client = boto3.client("dsql", region_name=region)
 password_token = client.generate_db_connect_admin_auth_token(cluster_endpoint,
 region)

 # connection parameters
 dbname = "dbname=postgres"
 user = "user=admin"
 host = f'host={cluster_endpoint}'
 sslmode = "sslmode=verify-full"
 sslrootcert = "sslrootcert=system"
 password = f'password={password_token}'

 # Make a connection to the cluster

Using Psycopg2 145

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Aurora DSQL User Guide

 conn = psycopg2.connect('%s %s %s %s %s %s' % (dbname, user, host, sslmode,
 sslrootcert, password))

 conn.set_session(autocommit=True)

 cur = conn.cursor()

 cur.execute(b"""
 CREATE TABLE IF NOT EXISTS owner(
 id uuid NOT NULL DEFAULT gen_random_uuid(),
 name varchar(30) NOT NULL,
 city varchar(80) NOT NULL,
 telephone varchar(20) DEFAULT NULL,
 PRIMARY KEY (id))"""
)

 # Insert some rows
 cur.execute("INSERT INTO owner(name, city, telephone) VALUES('John Doe', 'Anytown',
 '555-555-1999')")

 # Read back what we have inserted
 cur.execute("SELECT * FROM owner WHERE name='John Doe'")
 row = cur.fetchone()

 # Verify that the result we got is what we inserted before
 assert row[0] != None
 assert row[1] == "John Doe"
 assert row[2] == "Anytown"
 assert row[3] == "555-555-1999"

 # Placing this cleanup the table after the example. If we run the example
 # again we do not have to worry about data inserted by previous runs
 cur.execute("DELETE FROM owner where name = 'John Doe'")

if __name__ == "__main__":
 # Replace with your own cluster's endpoint
 cluster_endpoint = "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws"
 main(cluster_endpoint)

Using Psycopg3 to interact with Aurora DSQL

This section describes how to use Psycopg3 to interact with Aurora DSQL.

Using Psycopg3 146

Amazon Aurora DSQL User Guide

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL.

• Installed Python. You must be running version 3.8 or higher.

• Created an AWS account and configured the credentials and AWS Region.

• Installed the AWS SDK for Python (Boto3).

Before you get started, install the required dependency.

pip install "psycopg[binary]>=3"

Connect to an Aurora DSQL cluster and run queries

import psycopg
import boto3
import os, sys

def main(cluster_endpoint):
 region = 'us-east-1'

 # Generate a password token
 client = boto3.client("dsql", region_name=region)
 password_token = client.generate_db_connect_admin_auth_token(cluster_endpoint,
 region)

 # connection parameters
 dbname = "dbname=postgres"
 user = "user=admin"
 host = f'host={cluster_endpoint}'
 sslmode = "sslmode=verify-full"
 sslrootcert = "sslrootcert=system"
 password = f'password={password_token}'

 # Make a connection to the cluster
 conn = psycopg.connect('%s %s %s %s %s %s' % (dbname, user, host, sslmode,
 sslrootcert, password))

 conn.set_autocommit(True)

 cur = conn.cursor()

Using Psycopg3 147

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Aurora DSQL User Guide

 cur.execute(b"""
 CREATE TABLE IF NOT EXISTS owner(
 id uuid NOT NULL DEFAULT gen_random_uuid(),
 name varchar(30) NOT NULL,
 city varchar(80) NOT NULL,
 telephone varchar(20) DEFAULT NULL,
 PRIMARY KEY (id))"""
)

 # Insert some rows
 cur.execute("INSERT INTO owner(name, city, telephone) VALUES('John Doe', 'Anytown',
 '555-555-1999')")

 cur.execute("SELECT * FROM owner WHERE name='John Doe'")
 row = cur.fetchone()

 # Verify that the result we got is what we inserted before
 assert row[0] != None
 assert row[1] == "John Doe"
 assert row[2] == "Anytown"
 assert row[3] == "555-555-1999"

 # Placing this cleanup the table after the example. If we run the example
 # again we do not have to worry about data inserted by previous runs
 cur.execute("DELETE FROM owner where name = 'John Doe'")

if __name__ == "__main__":
 # Replace with your own cluster's endpoint
 cluster_endpoint = "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws"
 main(cluster_endpoint)

Programming with Java

Topics

• Using Aurora DSQL to build applications with JDBC, Hibernate, and HikariCP

• Using pgJDBC to interact with Amazon Aurora DSQL

Programming with Java 148

Amazon Aurora DSQL User Guide

Using Aurora DSQL to build applications with JDBC, Hibernate, and
HikariCP

This section describes how how to create a web application with JDBC, Hibernate, and HikariCP
that uses Aurora DSQL as a database. This example doesn't cover how to implement @OneToMany
or @ManyToMany relationships, but these relationships in Aurora DSQL work similarly to standard
Hibernate implementations. You can use these relationships to model associations between
entities in your database. To learn more about how to use these relationships with Hibernate, see
Associations in the official Hibernate documentation. As you work with Aurora DSQL, you can
follow these guidelines to set up your entity relationships. Note that Aurora DSQL doesn't support
foreign keys, so you must use a universally unique identifier (UUID) instead.

Before you begin, make sure that you have completed the following prerequisites:

• Created a cluster in Aurora DSQL.

• Installed Java. You must be running version 1.8 or higher.

• Installed the AWS SDK for Java.

• Configured your AWS credentials.

Setup

To connect to the Aurora DSQL server, you must configure the username, URL endpoint, and
password by setting the properties. The following is an example configuration. This example also
generates an authentication token, which you can use to connect to your cluster in Aurora DSQL.

import org.springframework.boot.autoconfigure.jdbc.DataSourceProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import com.zaxxer.hikari.HikariDataSource;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlUtilities;

@Configuration(proxyBeanMethods = false)
public class DsqlDataSourceConfig {

 @Bean

Build with JDBC, Hibernate, and HikariCP 149

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#associations
https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#associations
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-configure.html#configure-precedence
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html

Amazon Aurora DSQL User Guide

 public HikariDataSource dataSource() {
 final DataSourceProperties properties = new DataSourceProperties();

 // Set the username
 properties.setUsername("admin");

 // Set the URL and endpoint
 properties.setUrl("jdbc:postgresql://foo0bar1baz2quux3quuux4.dsql.us-
east-1.on.aws/postgres?ssl=require");

 final HikariDataSource hds =
 properties.initializeDataSourceBuilder().type(HikariDataSource.class).build();

 // Set additional properties
 hds.setMaxLifetime(1500*1000); // pool connection expiration time in milli
 seconds

 // Generate and set the DSQL token
 final DsqlUtilities utilities = DsqlUtilities.builder()
 .region(Region.US_EAST_1)
 .credentialsProvider(ProfileCredentialsProvider.create())
 .build();

 // Use generateDbConnectAuthToken when _not_ connecting as `admin` user
 final String token = utilities.generateDbConnectAdminAuthToken(builder ->
 builder.hostname(hds.getJdbcUrl().split("/")[2])
 .region(Region.US_EAST_1)
 .expiresIn(Duration.ofMillis(30*1000)) // Token expiration
 time, default is 900 seconds
);

 hds.setPassword(token);

 return hds;
 }
}

Using a UUID as a primary key

Aurora DSQL doesn't support serialized primary keys or identity columns that automatically
increment integers that you might find in other relational databases. Instead, we recommend that
you use a universally unique identifier (UUID) as the primary key for your identities. To define a
primary key, first import the UUID class.

Build with JDBC, Hibernate, and HikariCP 150

Amazon Aurora DSQL User Guide

import java.util.UUID;

You can then define a UUId primary key in your entity class.

@Id
@Column(name = "id", updatable = false, nullable = false, columnDefinition = "UUID
 DEFAULT gen_random_uuid()")
private UUID id;

Define entity classes

Hibernate can automatically create and validate databases tables based on your entity class
definitions. The following example demonstrates how to define an entity class.

import java.io.Serializable;
import java.util.UUID;

import jakarta.persistence.Column;
import org.hibernate.annotations.Generated;

import jakarta.persistence.Id;
import jakarta.persistence.MappedSuperclass;

@MappedSuperclass
public class Person implements Serializable {

 @Generated
 @Id
 @Column(name = "id", updatable = false, nullable = false, columnDefinition = "UUID
 DEFAULT gen_random_uuid()")
 private UUID id;

 @Column(name = "first_name")
 @NotBlank
 private String firstName;

 // Getters and setters
 public String getId() {
 return id;
 }

 public void setId(UUID id) {

Build with JDBC, Hibernate, and HikariCP 151

Amazon Aurora DSQL User Guide

 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String id) {
 this.firstName = firstName;
 }
}

Handle SQL exceptions

To handle specific SQL exceptions, such as 0C001 or 0C000, implement a custom
SQLExceptionOverride class. We do not want to evict the connection immediately if we encounter
an OCC error.

public class DsqlExceptionOverride implements SQLExceptionOverride {
 @Override
 public Override adjudicate(SQLException ex) {
 final String sqlState = ex.getSQLState();

 if ("0C000".equalsIgnoreCase(sqlState) || "0C001".equalsIgnoreCase(sqlState) ||
 (sqlState).matches("0A\\d{3}")) {
 return SQLExceptionOverride.Override.DO_NOT_EVICT;
 }

 return Override.CONTINUE_EVICT;
 }
}

Now set the following class in your HikariCP configuration.

@Configuration(proxyBeanMethods = false)
public class DsqlDataSourceConfig {

 @Bean
 public HikariDataSource dataSource() {
 final DataSourceProperties properties = new DataSourceProperties();

Build with JDBC, Hibernate, and HikariCP 152

Amazon Aurora DSQL User Guide

 final HikariDataSource hds =
 properties.initializeDataSourceBuilder().type(HikariDataSource.class).build();

 // handle the connection eviction for known exception types.
 hds.setExceptionOverrideClassName(DsqlExceptionOverride.class.getName());

 return hds;
 }
}

Using pgJDBC to interact with Amazon Aurora DSQL

This section describes how to use pgJDBC to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL.

• Installed the Java Development Kit (JDK). Make sure that you have version 8 or higher. You can
download it from AWS Coretto or use OpenJDK. To verify that you've installed Java and see what
version you have, run java -version.

• Download and install Maven.

• Installed the AWS SDK for Java 2.x.

Connect to an Aurora DSQL cluster and run queries

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.services.dsql.DsqlUtilities;
import software.amazon.awssdk.regions.Region;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.time.Duration;
import java.util.Properties;
import java.util.UUID;

public class Example {

Using pgJDBC 153

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://maven.apache.org/download.cgi
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html

Amazon Aurora DSQL User Guide

 // Get a connection to Aurora DSQL.
 public static Connection getConnection(String clusterEndpoint, String region)
 throws SQLException {
 Properties props = new Properties();

 // Use the DefaultJavaSSLFactory so that Java's default trust store can be used
 // to verify the server's root cert.
 String url = "jdbc:postgresql://" + clusterEndpoint + ":5432/postgres?
sslmode=verify-full&sslfactory=org.postgresql.ssl.DefaultJavaSSLFactory";

 DsqlUtilities utilities = DsqlUtilities.builder()
 .region(Region.of(region))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 String password = utilities.generateDbConnectAdminAuthToken(builder ->
 builder.hostname(clusterEndpoint)
 .region(Region.of(region)));

 props.setProperty("user", "admin");
 props.setProperty("password", password);
 return DriverManager.getConnection(url, props);
 }

 public static void main(String[] args) {
 // Replace the cluster endpoint with your own
 String clusterEndpoint = "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws";
 String region = "us-east-1";
 try (Connection conn = Example.getConnection(clusterEndpoint, region)) {

 // Create a new table named owner
 Statement create = conn.createStatement();
 create.executeUpdate("CREATE TABLE IF NOT EXISTS owner (id UUID PRIMARY
 KEY, name VARCHAR(255), city VARCHAR(255), telephone VARCHAR(255))");
 create.close();

 // Insert some data
 UUID uuid = UUID.randomUUID();
 String insertSql = String.format("INSERT INTO owner (id, name, city,
 telephone) VALUES ('%s', 'John Doe', 'Anytown', '555-555-1999')", uuid);
 Statement insert = conn.createStatement();
 insert.executeUpdate(insertSql);
 insert.close();

Using pgJDBC 154

Amazon Aurora DSQL User Guide

 // Read back the data and assert they are present
 String selectSQL = "SELECT * FROM owner";
 Statement read = conn.createStatement();
 ResultSet rs = read.executeQuery(selectSQL);
 while (rs.next()) {
 assert rs.getString("id") != null;
 assert rs.getString("name").equals("John Doe");
 assert rs.getString("city").equals("Anytown");
 assert rs.getString("telephone").equals("555-555-1999");
 }

 // Delete some data
 String deleteSql = String.format("DELETE FROM owner where name='John
 Doe'");
 Statement delete = conn.createStatement();
 delete.executeUpdate(deleteSql);
 delete.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Programming with JavaScript

Topics

• Using Node.js to interact with Amazon Aurora DSQL

Using Node.js to interact with Amazon Aurora DSQL

This section describes how to use Node.js to interact with Aurora DSQL.

Before you begin, make sure that you have created a cluster in Aurora DSQL. Also make sure that
you have installed Node. You must have installed version 18 or higher. Use the following command
to check which version you have.

node --version

Programming with JavaScript 155

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL User Guide

Connect to your Aurora DSQL cluster and run queries

Use the following JavaScript to connect to your cluster in Aurora DSQL.

import { DsqlSigner } from "@aws-sdk/dsql-signer";
import pg from "pg";
import assert from "node:assert";
const { Client } = pg;

async function example(clusterEndpoint) {
 let client;
 const region = "us-east-1";
 try {
 // The token expiration time is optional, and the default value 900 seconds
 const signer = new DsqlSigner({
 hostname: clusterEndpoint,
 region,
 });
 const token = await signer.getDbConnectAdminAuthToken();
 client = new Client({
 host: clusterEndpoint,
 user: "admin",
 password: token,
 database: "postgres",
 port: 5432,
 // <https://node-postgres.com/announcements> for version 8.0
 ssl: true
 });

 // Connect
 await client.connect();

 // Create a new table
 await client.query(`CREATE TABLE IF NOT EXISTS owner (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 name VARCHAR(30) NOT NULL,
 city VARCHAR(80) NOT NULL,
 telephone VARCHAR(20)
)`);

 // Insert some data
 await client.query("INSERT INTO owner(name, city, telephone) VALUES($1, $2, $3)",
 ["John Doe", "Anytown", "555-555-1900"]
);

Using node-postgres 156

Amazon Aurora DSQL User Guide

 // Check that data is inserted by reading it back
 const result = await client.query("SELECT id, city FROM owner where name='John
 Doe'");
 assert.deepEqual(result.rows[0].city, "Anytown")
 assert.notEqual(result.rows[0].id, null)

 await client.query("DELETE FROM owner where name='John Doe'");

 } catch (error) {
 console.error(error);
 raise
 } finally {
 client?.end()
 }
 Promise.resolve()
}

export { example }

Programming with C++

Topics

• Using Libpq to interact with Amazon Aurora DSQL

Using Libpq to interact with Amazon Aurora DSQL

This section describes how how to use Libpq to interact with Aurora DSQL.

The example assumes that you are on a linux machine.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL

• Installed the AWS SDK for C++

• Obtained the Libpq library. If you installed postgres, then Libpq is in the paths ../
postgres_install_dir/lib and ../postgres_install_dir/include. You might have
also installed it if you installed the psql client. If you need to get it, you can install it through the
package manager.

Programming with C++ 157

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/getting-started.html

Amazon Aurora DSQL User Guide

sudo yum install libpq-devel

You can also download psql through the official PostgreSQL website, , which includes Libpq.

• Installed the SSL libraries. For example, if you're on Amazon Linux, run the following commands
to install the libraries.

sudo yum install -y openssl-devel
sudo yum install -y openssl11-libs

You can also download them from the official OpenSSL website.

• Configured your AWS credentials. For more information, see Set and view configuration settings
using commands.

Connect to your Aurora DSQL cluster and run queries

Use the following example to generate an authentication token and connect to your Aurora DSQL
cluster.

#include <libpq-fe.h>
#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

std::string generateDBAuthToken(const std::string endpoint, const std::string region) {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQLClient client{clientConfig};
 std::string token = "";

 // The token expiration time is optional, and the default value 900 seconds
 // If you aren't using an admin role to connect, use GenerateDBConnectAuthToken
 instead

Using Libpq 158

https://www.postgresql.org/download/
https://openssl-library.org/source/index.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html#cli-configure-files-methods

Amazon Aurora DSQL User Guide

 const auto presignedString = client.GenerateDBConnectAdminAuthToken(endpoint,
 region);
 if (presignedString.IsSuccess()) {
 token = presignedString.GetResult();
 } else {
 std::cerr << "Token generation failed." << std::endl;
 }

 Aws::ShutdownAPI(options);
 return token;
}

PGconn* connectToCluster(std::string clusterEndpoint, std::string region) {
 std::string password = generateDBAuthToken(clusterEndpoint, region);

 std::string dbname = "postgres";
 std::string user = "admin";
 std::string sslmode = "require";
 int port = 5432;

 if (password.empty()) {
 std::cerr << "Failed to generate token." << std::endl;
 return NULL;
 }

 char conninfo[4096];
 sprintf(conninfo, "dbname=%s user=%s host=%s port=%i sslmode=%s password=%s",
 dbname.c_str(), user.c_str(), clusterEndpoint.c_str(), port,
 sslmode.c_str(), password.c_str());

 PGconn *conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK) {
 std::cerr << "Error while connecting to the database server: " <<
 PQerrorMessage(conn) << std::endl;
 PQfinish(conn);
 return NULL;
 }

 std::cout << std::endl << "Connection Established: " << std::endl;
 std::cout << "Port: " << PQport(conn) << std::endl;
 std::cout << "Host: " << PQhost(conn) << std::endl;
 std::cout << "DBName: " << PQdb(conn) << std::endl;

Using Libpq 159

Amazon Aurora DSQL User Guide

 return conn;
}

void example(PGconn *conn) {

 // Create a table
 std::string create = "CREATE TABLE IF NOT EXISTS owner (id UUID PRIMARY KEY DEFAULT
 gen_random_uuid(), name VARCHAR(30) NOT NULL, city VARCHAR(80) NOT NULL, telephone
 VARCHAR(20))";

 PGresult *createResponse = PQexec(conn, create.c_str());
 ExecStatusType createStatus = PQresultStatus(createResponse);
 PQclear(createResponse);

 if (createStatus != PGRES_COMMAND_OK) {
 std::cerr << "Create Table failed - " << PQerrorMessage(conn) << std::endl;

 }

 // Insert data into the table
 std::string insert = "INSERT INTO owner(name, city, telephone) VALUES('John Doe',
 'Anytown', '555-555-1999')";

 PGresult *insertResponse = PQexec(conn, insert.c_str());
 ExecStatusType insertStatus = PQresultStatus(insertResponse);
 PQclear(insertResponse);

 if (insertStatus != PGRES_COMMAND_OK) {
 std::cerr << "Insert failed - " << PQerrorMessage(conn) << std::endl;
 }

 // Read the data we inserted
 std::string select = "SELECT * FROM owner";

 PGresult *selectResponse = PQexec(conn, select.c_str());
 ExecStatusType selectStatus = PQresultStatus(selectResponse);

 if (selectStatus != PGRES_TUPLES_OK) {
 std::cerr << "Select failed - " << PQerrorMessage(conn) << std::endl;
 PQclear(selectResponse);
 return;
 }

 // Retrieve the number of rows and columns in the result

Using Libpq 160

Amazon Aurora DSQL User Guide

 int rows = PQntuples(selectResponse);
 int cols = PQnfields(selectResponse);
 std::cout << "Number of rows: " << rows << std::endl;
 std::cout << "Number of columns: " << cols << std::endl;

 // Output the column names
 for (int i = 0; i < cols; i++) {
 std::cout << PQfname(selectResponse, i) << " \t\t\t ";
 }
 std::cout << std::endl;

 // Output all the rows and column values
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 std::cout << PQgetvalue(selectResponse, i, j) << "\t";
 }
 std::cout << std::endl;
 }
 PQclear(selectResponse);
}

int main(int argc, char *argv[]) {
 std::string region = "us-east-1";
 // Replace with your own cluster endpoint
 std::string clusterEndpoint = "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws";

 PGconn *conn = connectToCluster(clusterEndpoint, region);

 if (conn == NULL) {
 std::cerr << "Failed to get connection. Exiting." << std::endl;
 return -1;
 }

 example(conn);

 return 0;
}

Programming with Ruby

Topics

• Using Ruby-pg to interact with Amazon Aurora DSQL

Programming with Ruby 161

Amazon Aurora DSQL User Guide

• Using Ruby on Rails to interact with Amazon Aurora DSQL

Using Ruby-pg to interact with Amazon Aurora DSQL

This section describes how how to use Ruby-pg to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Configured a default profile that contains your AWS credentials that uses the following
variables.

• aws_access_key_id=<your_access_key_id>

• aws_secret_access_key=<your_secret_access_key>

• aws_session_token=<your_session_token>

Your ~/.aws/credentials file should look like the following.

[default]
aws_access_key_id=<your_access_key_id>
aws_secret_access_key=<your_secret_access_key>
aws_session_token=<your_session_token>

• Created a cluster in Aurora DSQL.

• Installed Ruby. You must have version 2.5 or higher. To check which version you have, run ruby
--version.

• Installed the required dependencies that are in the Gemfile. To install them, run bundle
install.

Connect to your Aurora DSQL cluster and run queries

require 'pg'
require 'aws-sdk-dsql'

def example()
 cluster_endpoint = 'foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws'
 region = 'us-east-1'
 credentials = Aws::SharedCredentials.new()

 begin
 token_generator = Aws::DSQL::AuthTokenGenerator.new({

Using pg 162

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://www.ruby-lang.org/en/documentation/installation/

Amazon Aurora DSQL User Guide

 :credentials => credentials
 })

 # The token expiration time is optional, and the default value 900 seconds
 # if you are not using admin role, use generate_db_connect_auth_token instead
 token = token_generator.generate_db_connect_admin_auth_token({
 :endpoint => cluster_endpoint,
 :region => region
 })

 conn = PG.connect(
 host: cluster_endpoint,
 user: 'admin',
 password: token,
 dbname: 'postgres',
 port: 5432,
 sslmode: 'verify-full',
 sslrootcert: "./root.pem"
)
 rescue => _error
 raise
 end

 # Create the owner table
 conn.exec('CREATE TABLE IF NOT EXISTS owner (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 name VARCHAR(30) NOT NULL,
 city VARCHAR(80) NOT NULL,
 telephone VARCHAR(20)
)')

 # Insert an owner
 conn.exec_params('INSERT INTO owner(name, city, telephone) VALUES($1, $2, $3)',
 ['John Doe', 'Anytown', '555-555-0055'])

 # Read the result back
 result = conn.exec("SELECT city FROM owner where name='John Doe'")

 # Raise error if we are unable to read
 raise "must have fetched a row" unless result.ntuples == 1
 raise "must have fetched right city" unless result[0]["city"] == 'Anytown'

 # Delete data we just inserted
 conn.exec("DELETE FROM owner where name='John Doe'")

Using pg 163

Amazon Aurora DSQL User Guide

rescue => error
 puts error.full_message
ensure
 unless conn.nil?
 conn.finish()
 end
end

Run the example
example()

Using Ruby on Rails to interact with Amazon Aurora DSQL

This section describes how how to use Ruby on Rails to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL.

• Rails requires Ruby 3.1.0 or higher. You can download Ruby from the official Ruby website. To
check which version of Ruby you have, run ruby --version.

• Installed Ruby on Rails. To check which version you have, run rails --version. Then run
bundle install to install the required gems.

Install a connection to Aurora DSQL

Aurora DSQL uses IAM as authentication to establish a connection. You can't provide a password
directly to rails through the configuration in the {root-directory}/config/database.yml
file. Instead, use the aws_rds_iam adapter to use an authentication token to connect to Aurora
DSQL. The steps below demonstrate how to do so.

Create a file named {app root directory}/config/initializers/adapter.rb with the
following content.

PG::AWS_RDS_IAM.auth_token_generators.add :dsql do
 DsqlAuthTokenGenerator.new
end

require "aws-sigv4"
require 'aws-sdk-dsql'

Using Ruby on Rails 164

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://www.ruby-lang.org/en/downloads/
https://gorails.com/setup

Amazon Aurora DSQL User Guide

This is our custom DB auth token generator
use the ruby sdk to generate token instead.
class DsqlAuthTokenGenerator
 def call(host:, port:, user:)
 region = "us-east-1"
 credentials = Aws::SharedCredentials.new()

 token_generator = Aws::DSQL::AuthTokenGenerator.new({
 :credentials => credentials
 })

 # The token expiration time is optional, and the default value 900 seconds
 # if you are not logging in as admin, use generate_db_connect_auth_token instead
 token = token_generator.generate_db_connect_admin_auth_token({
 :endpoint => host,
 :region => region
 })

 end
end

Monkey-patches to disable unsupported features

require "active_record/connection_adapters/postgresql/schema_statements"

module ActiveRecord::ConnectionAdapters::PostgreSQL::SchemaStatements
 # Aurora DSQL does not support setting min_messages in the connection parameters
 def client_min_messages=(level); end
end

require "active_record/connection_adapters/postgresql_adapter"

class ActiveRecord::ConnectionAdapters::PostgreSQLAdapter

 def set_standard_conforming_strings; end

 # Aurora DSQL does not support running multiple DDL or DDL + DML statements in the
 same transaction
 def supports_ddl_transactions?
 false
 end
end

Using Ruby on Rails 165

Amazon Aurora DSQL User Guide

Create the following configuration in the {app root directory}/config/database.yml
file. The following is an example configuration. You might create a similar configuration for testing
purposes or production databases. This configuration automatically creates a new authentication
token so you can connect to your database.

development:
 <<: *default
 database: postgres

 # The specified database role being used to connect to PostgreSQL.
 # To create additional roles in PostgreSQL see `$ createuser --help`.
 # When left blank, PostgreSQL will use the default role. This is
 # the same name as the operating system user running Rails.
 username: <postgres username> # eg: admin or other postgres users

 # Connect on a TCP socket. Omitted by default since the client uses a
 # domain socket that doesn't need configuration. Windows does not have
 # domain sockets, so uncomment these lines.
 # host: localhost
 # Set to Aurora DSQL cluster endpoint
 # host: <clusterId>.dsql.<region>.on.aws
 host: <cluster endpoint>
 # prefer verify-full for production usecases
 sslmode: require
 # Remember that we defined dsql token generator in the `{app root directory}/config/
initializers/adapter.rb`
 # We are providing it as the token generator to the adapter here.
 aws_rds_iam_auth_token_generator: dsql
 advisory_locks: false
 prepared_statements: false

Now you can create a data model. The following example creates a model and a migration file.
Change the the model file to explicitly define the primary key of the table.

Execute in the app root directory
bin/rails generate model Owner name:string city:string telephone:string

Note

Unlike postgres, Aurora DSQL creates a primary key index by including all columns of the
table. This means that active record to search uses all columns of the table instead of just

Using Ruby on Rails 166

Amazon Aurora DSQL User Guide

the primary key. So So the <Entity>.find(<primary key>) won't work because the active
record tries to search by using all columns in the primary key index.

To make active record search only using primary keys, set the primary key column explicitly in the
model.

class Owner < ApplicationRecord
 self.primary_key = "id"
end

Generate the schema from the model files in db/migrate.

bin/rails db:migrate

Finally, disable the plpgsql extension by modifying the {app root directory}/db/
schema.rb. In order to disable the plpgsql extension, remove the enable_extension
"plgsql" line.

CRUD examples

You can now perform CRUD operations on your database. Run the following example to add owner
data to your database.

owner = Owner.new(name: "John Smith", city: "Seattle", telephone: "123-456-7890")
owner.save
owner

Run the following example to retrieve the data.

Owner.find("<owner id>")

To update the data, use the following example.

Owner.find("<owner id>").update(telephone: "123-456-7891")

Finally, you can delete the data.

Owner.find("<owner id>").destroy

Using Ruby on Rails 167

Amazon Aurora DSQL User Guide

Programming with .NET

Topics

• Using .NET to interact with Amazon Aurora DSQL

Using .NET to interact with Amazon Aurora DSQL

This section describes how how to use .NET to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL

• Installed .NET. You must have version 8 or higher. To see what version you have, run dotnet --
version.

• Installed the .NET Npgsql driver.

Connect to your Aurora DSQL cluster

First define a TokenGenerator class. This class generates an authentication token, which you can
use to connect to your Aurora DSQL cluster.

using Amazon.Runtime;
using Amazon.Runtime.Internal;
using Amazon.Runtime.Internal.Auth;
using Amazon.Runtime.Internal.Util;

public static class TokenGenerator
{
 public static string GenerateAuthToken(string? hostname, Amazon.RegionEndpoint
 region)
 {
 AWSCredentials awsCredentials = FallbackCredentialsFactory.GetCredentials();

 string accessKey = awsCredentials.GetCredentials().AccessKey;
 string secretKey = awsCredentials.GetCredentials().SecretKey;
 string token = awsCredentials.GetCredentials().Token;

 const string DsqlServiceName = "dsql";
 const string HTTPGet = "GET";

Programming with .NET 168

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://learn.microsoft.com/en-us/dotnet/core/install/
https://www.nuget.org/packages/Npgsql/8.0.5

Amazon Aurora DSQL User Guide

 const string HTTPS = "https";
 const string URISchemeDelimiter = "://";
 const string ActionKey = "Action";
 const string ActionValue = "DbConnectAdmin";
 const string XAmzSecurityToken = "X-Amz-Security-Token";

 ImmutableCredentials immutableCredentials = new ImmutableCredentials(accessKey,
 secretKey, token) ?? throw new ArgumentNullException("immutableCredentials");
 ArgumentNullException.ThrowIfNull(region);

 hostname = hostname?.Trim();
 if (string.IsNullOrEmpty(hostname))
 throw new ArgumentException("Hostname must not be null or empty.");

 GenerateDsqlAuthTokenRequest authTokenRequest = new
 GenerateDsqlAuthTokenRequest();
 IRequest request = new DefaultRequest(authTokenRequest, DsqlServiceName)
 {
 UseQueryString = true,
 HttpMethod = HTTPGet
 };
 request.Parameters.Add(ActionKey, ActionValue);
 request.Endpoint = new UriBuilder(HTTPS, hostname).Uri;

 if (immutableCredentials.UseToken)
 {
 request.Parameters[XAmzSecurityToken] = immutableCredentials.Token;
 }

 var signingResult = AWS4PreSignedUrlSigner.SignRequest(request, null, new
 RequestMetrics(), immutableCredentials.AccessKey,
 immutableCredentials.SecretKey, DsqlServiceName, region.SystemName);

 var authorization = "&" + signingResult.ForQueryParameters;
 var url = AmazonServiceClient.ComposeUrl(request);

 // remove the https:// and append the authorization
 return url.AbsoluteUri[(HTTPS.Length + URISchemeDelimiter.Length)..] +
 authorization;
 }

 private class GenerateDsqlAuthTokenRequest : AmazonWebServiceRequest
 {
 public GenerateDsqlAuthTokenRequest()

Using Npgsql 169

Amazon Aurora DSQL User Guide

 {
 ((IAmazonWebServiceRequest)this).SignatureVersion = SignatureVersion.SigV4;
 }
 }
}

CRUD examples

Now you can run queries in your Aurora DSQL cluster.

using Npgsql;
using Amazon;

class Example
{
 public static async Task Run(string clusterEndpoint)
 {
 RegionEndpoint region = RegionEndpoint.USEast1;

 // Connect to a PostgreSQL database.
 const string username = "admin";
 // The token expiration time is optional, and the default value 900 seconds
 string password = TokenGenerator.GenerateAuthToken(clusterEndpoint, region);
 const string database = "postgres";
 var connString = "Host=" + clusterEndpoint + ";Username=" + username
 + ";Password=" + password + ";Database=" + database + ";Port=" + 5432 +
 ";SSLMode=VerifyFull;";

 var conn = new NpgsqlConnection(connString);
 await conn.OpenAsync();

 // Create a table.
 using var create = new NpgsqlCommand("CREATE TABLE IF NOT EXISTS owner (id
 UUID PRIMARY KEY, name VARCHAR(30) NOT NULL, city VARCHAR(80) NOT NULL, telephone
 VARCHAR(20))", conn);
 create.ExecuteNonQuery();

 // Create an owner.
 var uuid = Guid.NewGuid();
 using var insert = new NpgsqlCommand("INSERT INTO owner(id, name, city,
 telephone) VALUES(@id, @name, @city, @telephone)", conn);
 insert.Parameters.AddWithValue("id", uuid);
 insert.Parameters.AddWithValue("name", "John Doe");

Using Npgsql 170

Amazon Aurora DSQL User Guide

 insert.Parameters.AddWithValue("city", "Anytown");

 insert.Parameters.AddWithValue("telephone", "555-555-0190");

 insert.ExecuteNonQuery();

 // Read the owner.
 using var select = new NpgsqlCommand("SELECT * FROM owner where id=@id", conn);
 select.Parameters.AddWithValue("id", uuid);
 using var reader = await select.ExecuteReaderAsync();
 System.Diagnostics.Debug.Assert(reader.HasRows, "no owner found");

 System.Diagnostics.Debug.WriteLine(reader.Read());

 reader.Close();

 using var delete = new NpgsqlCommand("DELETE FROM owner where id=@id", conn);
 select.Parameters.AddWithValue("id", uuid);
 select.ExecuteNonQuery();

 // Close the connection.
 conn.Close();
 }

 public static async Task Main(string[] args)
 {
 await Run();
 }
}

Programming with Rust

Topics

• Using Rust to interact with Amazon Aurora DSQL

Using Rust to interact with Amazon Aurora DSQL

This section describes how how to use Rust to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

Programming with Rust 171

Amazon Aurora DSQL User Guide

• Created a cluster in Aurora DSQL

• Configured your AWS credentials. For more information, see Set and view configuration settings
using commands.

• Installed Rust. You must have version 1.8.0 or higher. To verify your version, run rustc --
version.

• Added sqlx to your Cargo.toml dependencies. For example, add the following configuration to
your dependencies.

sqlx = { version = "0.8", features = ["runtime-tokio", "tls-native-tls" ,
 "postgres"] }

• Added the AWS SDK for Rust to your Cargo.toml file.

Connect to your Aurora DSQL cluster and run queries

use aws_config::{BehaviorVersion, Region};
use aws_sdk_dsql::auth_token::{AuthTokenGenerator, Config};
use rand::Rng;
use sqlx::Row;
use sqlx::postgres::{PgConnectOptions, PgPoolOptions};
use uuid::Uuid;

async fn example(cluster_endpoint: String) -> anyhow::Result<()> {
 let region = "us-east-1";

 // Generate auth token
 let sdk_config = aws_config::load_defaults(BehaviorVersion::latest()).await;
 let signer = AuthTokenGenerator::new(
 Config::builder()
 .hostname(&cluster_endpoint)
 .region(Region::new(region))
 .build()
 .unwrap(),
);
 let password_token =
 signer.db_connect_admin_auth_token(&sdk_config).await.unwrap();

 // Setup connections
 let connection_options = PgConnectOptions::new()
 .host(cluster_endpoint.as_str())

Using sqlx 172

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html#cli-configure-files-methods
https://www.rust-lang.org/tools/install

Amazon Aurora DSQL User Guide

 .port(5432)
 .database("postgres")
 .username("admin")
 .password(password_token.as_str())
 .ssl_mode(sqlx::postgres::PgSslMode::VerifyFull);

 let pool = PgPoolOptions::new()
 .max_connections(10)
 .connect_with(connection_options.clone())
 .await?;

 // Create owners table
 // To avoid Optimistic concurrency control (OCC) conflicts
 // Have this table created already.
 sqlx::query(
 "CREATE TABLE IF NOT EXISTS owner (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 name VARCHAR(255),
 city VARCHAR(255),
 telephone VARCHAR(255)
)").execute(&pool).await?;

 // Insert some data
 let id = Uuid::new_v4();
 let telephone = rand::thread_rng()
 .gen_range(123456..987654)
 .to_string();
 let result = sqlx::query("INSERT INTO owner (id, name, city, telephone) VALUES ($1,
 $2, $3, $4)")
 .bind(id)
 .bind("John Doe")
 .bind("Anytown")
 .bind(telephone.as_str())
 .execute(&pool)
 .await?;
 assert_eq!(result.rows_affected(), 1);

 // Read data back
 let rows = sqlx::query("SELECT * FROM owner WHERE id=
$1").bind(id).fetch_all(&pool).await?;
 println!("{:?}", rows);

 assert_eq!(rows.len(), 1);
 let row = &rows[0];

Using sqlx 173

Amazon Aurora DSQL User Guide

 assert_eq!(row.try_get::<&str, _>("name")?, "John Doe");
 assert_eq!(row.try_get::<&str, _>("city")?, "Anytown");
 assert_eq!(row.try_get::<&str, _>("telephone")?, telephone);

 // Delete some data
 sqlx::query("DELETE FROM owner WHERE name='John Doe'")
 .execute(&pool).await?;

 pool.close().await;
 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
 let cluster_endpoint = "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws";
 Ok(example(cluster_endpoint).await?)
}

Programming with Golang

Topics

• Using Go with Amazon Aurora DSQL

Using Go with Amazon Aurora DSQL

This section describes how how to use Go to interact with Aurora DSQL.

Before you begin, make sure that you have completed the following prerequisites.

• Created a cluster in Aurora DSQL

• Installed Go. To verify that you have installed Go, run go version.

• Installed the latest version of AWS SDK for Go.

• Installed the PostgreSQL Go driver with go get.

go get github.com/jackc/pgx/v5

Programming with Golang 174

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html
https://go.dev/dl/
https://aws.github.io/aws-sdk-go-v2/docs/

Amazon Aurora DSQL User Guide

Connect to your Aurora DSQL cluster

Use the following example to generate password token to connect to your Aurora DSQL cluster.

import (
 "context"
 "fmt"
 "net/http"
 "os"
 "strings"
 "time"

 _ "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/aws/session"
 v4 "github.com/aws/aws-sdk-go/aws/signer/v4"
 "github.com/google/uuid"
 "github.com/jackc/pgx/v5"
 _ "github.com/jackc/pgx/v5/stdlib"
)

type Owner struct {
 Id string `json:"id"`
 Name string `json:"name"`
 City string `json:"city"`
 Telephone string `json:"telephone"`
}

const (
 REGION = "us-east-1"
)

func GenerateDbConnectAdminAuthToken(creds *credentials.Credentials, clusterEndpoint
 string) (string, error) {
 // the scheme is arbitrary and is only needed because validation of the URL requires
 one.
 endpoint := "https://" + clusterEndpoint
 req, err := http.NewRequest("GET", endpoint, nil)
 if err != nil {
 return "", err
 }
 values := req.URL.Query()
 values.Set("Action", "DbConnectAdmin")
 req.URL.RawQuery = values.Encode()

Using pgx 175

Amazon Aurora DSQL User Guide

 signer := v4.Signer{
 Credentials: creds,
 }
 _, err = signer.Presign(req, nil, "dsql", REGION, 15*time.Minute, time.Now())
 if err != nil {
 return "", err
 }

 url := req.URL.String()[len("https://"):]

 return url, nil
}

Now we can write code to connect to your Aurora DSQL cluster.

func getConnection(ctx context.Context, clusterEndpoint string) (*pgx.Conn, error) {
 // Build connection URL
 var sb strings.Builder
 sb.WriteString("postgres://")
 sb.WriteString(clusterEndpoint)
 sb.WriteString(":5432/postgres?user=admin&sslmode=verify-full")
 url := sb.String()

 sess, err := session.NewSession()
 if err != nil {
 return nil, err
 }

 creds, err := sess.Config.Credentials.Get()
 if err != nil {
 return nil, err
 }
 staticCredentials := credentials.NewStaticCredentials(
 creds.AccessKeyID,
 creds.SecretAccessKey,
 creds.SessionToken,
)

 // The token expiration time is optional, and the default value 900 seconds
 // If you are not connecting as admin, use DbConnect action instead
 token, err := GenerateDbConnectAdminAuthToken(staticCredentials, clusterEndpoint)
 if err != nil {

Using pgx 176

Amazon Aurora DSQL User Guide

 return nil, err
 }

 connConfig, err := pgx.ParseConfig(url)
 // To avoid issues with parse config set the password directly in config
 connConfig.Password = token
 if err != nil {
 fmt.Fprintf(os.Stderr, "Unable to parse config: %v\n", err)
 os.Exit(1)
 }

 conn, err := pgx.ConnectConfig(ctx, connConfig)

 return conn, err
}

CRUD examples

Now you can run queries in your Aurora DSQL cluster.

func example(clusterEndpoint string) error {
 ctx := context.Background()

 // Establish connection
 conn, err := getConnection(ctx, clusterEndpoint)
 if err != nil {
 return err
 }

 // Create owner table
 _, err = conn.Exec(ctx, `
 CREATE TABLE IF NOT EXISTS owner (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 name VARCHAR(255),
 city VARCHAR(255),
 telephone VARCHAR(255)
)
 `)
 if err != nil {
 return err
 }

 // insert data

Using pgx 177

Amazon Aurora DSQL User Guide

 query := `INSERT INTO owner (id, name, city, telephone) VALUES ($1, $2, $3, $4)`
 _, err = conn.Exec(ctx, query, uuid.New(), "John Doe", "Anytown", "555-555-0150")

 if err != nil {
 return err
 }

 owners := []Owner{}
 // Define the SQL query to insert a new owner record.
 query = `SELECT id, name, city, telephone FROM owner where name='John Doe'`

 rows, err := conn.Query(ctx, query)
 defer rows.Close()

 owners, err = pgx.CollectRows(rows, pgx.RowToStructByName[Owner])
 fmt.Println(owners)
 if err != nil || owners[0].Name != "John Doe" || owners[0].City != "Anytown" {
 panic("Error retrieving data")
 }

 // Delete some data
 _, err = conn.Exec(ctx, `DELETE FROM owner where name='John Doe'`)
 if err != nil {
 return err
 }

 defer conn.Close(ctx)

 return nil
}

func main() {
 cluster_endpoint := "foo0bar1baz2quux3quuux4.dsql.us-east-1.on.aws";
 err := example(cluster_endpoint)
 if err != nil {
 fmt.Fprintf(os.Stderr, "Unable to run example: %v\n", err)
 os.Exit(1)
 }
}

Using pgx 178

Amazon Aurora DSQL User Guide

Utilities, tutorials, and sample code in Amazon Aurora
DSQL

AWS documentation includes several tutorials that guide you through common Aurora DSQL
use cases. Many of these tutorials show you how to use Aurora DSQL with other tools and AWS
services. Many of these examples contain sample code that you can access on GitHub.

Note

You can find more tutorials at AWS Database Blog and re:Post.

Tutorials and sample code on GitHub

Note

The links to GitHub repositories might not work until December 4, 2024.

The following tutorials and sample code on GitHub help you performance common tasks in Aurora
DSQL.

• Using Benchbase with Aurora DSQL – a branch of the Benchbase open-source benchmarking
utility that is verified to work with Aurora DSQL.

• Aurora DSQL loader – this open-source Python script makes it easier for you to load data into
Aurora DSQL for your use cases, such as populating tables for testing or transferring data into
Aurora DSQL.

• Aurora DSQL samples – aws-samples/aurora-dsql-samples repository on GitHub contains
code examples of how to connect and use Aurora DSQL in various programming languages
using the AWS SDKs, object-relational mappers (ORMs), and web frameworks. The examples
demonstrate how to perform common tasks, such as install clients, handle authentication, and
perform CRUD operations.

Tutorials and sample code on GitHub 179

https://aws.amazon.com/blogs/database/
https://repost.aws/
https://github.com/amazon-contributing/aurora-dsql-benchbase-benchmarking
https://github.com/aws-samples/aurora-dsql-loader
https://github.com/aws-samples/aurora-dsql-samples

Amazon Aurora DSQL User Guide

Using Aurora DSQL with the AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for you to build
applications as a developer in your preferred language.

• AWS CLI

• AWS SDK for Python (Boto3)

• AWS SDK for JavaScript

• AWS SDK for Java 2.x

• AWS SDK for C++

Using AWS Lambda with Amazon Aurora DSQL

The following sections describe how to use Lambda with Aurora DSQL

Prerequisites

• Authorization to create Lambda functions. For more information, see Getting started with
Lambda.

• Authorization to create or modify IAM policy created by Lambda. You need to permissions
iam:CreatePolicy and iam:AttachRolePolicy. For more information, see Actions,
resources, and condition keys for IAM .

• You must have installed npm v8.5.3 or higher.

• You must have installed zip v3.0 or higher.

Create a new function in AWS Lambda.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Provide a name, such as dsql-sample.

4. Don't edit the default settings to make sure that Lambda creates a new role with basic Lambda
permissions.

5. Choose Create function.

Using the AWS SDK 180

https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/pythonsdk/
https://docs.aws.amazon.com/sdk-for-javascript/
https://docs.aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentityandaccessmanagementiam.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentityandaccessmanagementiam.html
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Aurora DSQL User Guide

Authorize your Lambda execution role to connect to your cluster

1. In your Lambda function, choose Configuration > Permissions.

2. Choose the role name to open the execution role in the IAM console.

3. Choose Add Permissions > Create inline policy, and use the JSON editor.

4. In Action paste in the following action to authorize your IAM identity to connect using the
admin database role.

"Action": ["dsql:DbConnectAdmin"],

Note

We're using an admin role to minimize prerequisite steps to get started. You shouldn't
use a admin database role for your production applications. See Using database roles
with IAM roles to learn how to create custom database roles with authorization that
has the fewest permissions to your database.

5. In Resource, add your cluster’s Amazon Resource Name (ARN). You can also use a wildcard.

"Resource": ["*"]

6. Choose Next.

7. Enter a name for the policy, such as dsql-sample-dbconnect.

8. Choose Create policy.

Create a package to upload to Lambda.

1. Create a folder named myfunction.

2. In the folder, create a new file named package.json with the following content.

{
 "dependencies": {
 "@aws-sdk/core": "^3.587.0",
 "@aws-sdk/credential-providers": "^3.587.0",
 "@smithy/protocol-http": "^4.0.0",
 "@smithy/signature-v4": "^3.0.0",
 "pg": "^8.11.5"
 }

Using AWS Lambda 181

Amazon Aurora DSQL User Guide

}

3. In the folder, create a file named index.mjs in the directory with the following content.

import { formatUrl } from "@aws-sdk/util-format-url";
import { HttpRequest } from "@smithy/protocol-http";
import { SignatureV4 } from "@smithy/signature-v4";
import { fromNodeProviderChain } from "@aws-sdk/credential-providers";
import { NODE_REGION_CONFIG_FILE_OPTIONS, NODE_REGION_CONFIG_OPTIONS } from
 "@smithy/config-resolver";
import { Hash } from "@smithy/hash-node";
import { loadConfig } from "@smithy/node-config-provider";
import pg from "pg";
const { Client } = pg;

export const getRuntimeConfig = (config) => {
 return {
 runtime: "node",
 sha256: config?.sha256 ?? Hash.bind(null, "sha256"),
 credentials: config?.credentials ?? fromNodeProviderChain(),
 region: config?.region ?? loadConfig(NODE_REGION_CONFIG_OPTIONS,
 NODE_REGION_CONFIG_FILE_OPTIONS),
 ...config,
 };
};

// Aurora DSQL requires IAM authentication
// This class generates auth tokens signed using AWS Signature Version 4
export class Signer {
 constructor(hostname) {
 const runtimeConfiguration = getRuntimeConfig({});

 this.credentials = runtimeConfiguration.credentials;
 this.hostname = hostname;
 this.region = runtimeConfiguration.region;

 this.sha256 = runtimeConfiguration.sha256;
 this.service = "dsql";
 this.protocol = "https:";
 }

 async getAuthToken() {
 const signer = new SignatureV4({
 service: this.service,

Using AWS Lambda 182

Amazon Aurora DSQL User Guide

 region: this.region,
 credentials: this.credentials,
 sha256: this.sha256,
 });

 // To connect with a custom database role, set Action as "DbConnect"
 const request = new HttpRequest({
 method: "GET",
 protocol: this.protocol,
 hostname: this.hostname,
 query: {
 Action: "DbConnectAdmin",
 },
 headers: {
 host: this.hostname,
 },
 });

 const presigned = await signer.presign(request, {
 expiresIn: 3600,
 });

 // RDS requires the scheme to be removed
 // https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
UsingWithRDS.IAMDBAuth.Connecting.html
 return formatUrl(presigned).replace(`${this.protocol}//`, "");
 }
}

// To connect with a custom database role, set user as the database role name
async function dsql_sample(token, endpoint) {
 const client = new Client({
 user: "admin",
 database: "postgres",
 host: endpoint,
 password: token,
 ssl: {
 rejectUnauthorized: false
 },
 });

 await client.connect();
 console.log("[dsql_sample] connected to Aurora DSQL!");

Using AWS Lambda 183

Amazon Aurora DSQL User Guide

 try {
 console.log("[dsql_sample] attempting transaction.");
 await client.query("BEGIN; SELECT txid_current_if_assigned(); COMMIT;");
 return 200;
 } catch (err) {
 console.log("[dsql_sample] transaction attempt failed!");
 console.error(err);
 return 500;
 } finally {
 await client.end();
 }
}

// https://docs.aws.amazon.com/lambda/latest/dg/nodejs-handler.html
export const handler = async (event) => {
 const endpoint = event.endpoint;
 const s = new Signer(endpoint);
 const token = await s.getAuthToken();
 const responseCode = await dsql_sample(token, endpoint);

 const response = {
 statusCode: responseCode,
 endpoint: endpoint,
 };
 return response;
};

4. Use the following commands to create a package.

npm install
zip -r pkg.zip .

Upload the code package and test your Lambda function

1. In your Lambda function’s Code tab, choose Upload from > .zip file

2. Upload the pkg.zip you created. For more information, see Deploy Node.js Lambda functions
with .zip file archives.

3. In your Lambda function’s Test tab, paste in the following JSON payload, and modify it to use
your cluster ID.

Using AWS Lambda 184

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html

Amazon Aurora DSQL User Guide

4. In your Lambda function’s Test tab, use the following Event JSON modified to specify your
cluster’s endpoint.

{"endpoint": "replace_with_your_cluster_endpoint"}

5. Enter an Event name, such as dsql-sample-test. Choose Save.

6. Choose Test.

7. Choose Details to expand the execution response and log output.

8. If it succeeded, the Lambda function execution response should return a 200 status code:

{statusCode": 200, "endpoint": "your_cluster_endpoint"}

If the database returns an error or if the connection to the database fails, the Lambda function
execution response returns a 500 status code.

{"statusCode": 500,"endpoint": "your_cluster_endpoint"}

Using AWS Lambda 185

Amazon Aurora DSQL User Guide

Security in Amazon Aurora DSQL

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Aurora
DSQL, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Aurora DSQL. The following topics show you how to configure Aurora DSQL to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Aurora DSQL resources.

Topics

• AWS managed policies for Amazon Aurora DSQL

• Data protection in Amazon Aurora DSQL

• Identity and access management for Amazon Aurora DSQL

• Using service-linked roles in Aurora DSQL

• Using IAM condition keys with Amazon Aurora DSQL

• Incident response in Amazon Aurora DSQL

• Compliance validation for Amazon Aurora DSQL

• Resilience in Amazon Aurora DSQL

• Infrastructure Security in Amazon Aurora DSQL

• Configuration and vulnerability analysis in Amazon Aurora DSQL

186

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora DSQL User Guide

• Cross-service confused deputy prevention

• Security best practices for Amazon Aurora DSQL

AWS managed policies for Amazon Aurora DSQL

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonAuroraDSQLFullAccess

You can attach AmazonAuroraDSQLFullAccess to your users, groups, and roles.

This policy grants permissions that allows full administrative access to Aurora DSQL. Principals with
these permissions can create, delete, and update Aurora DSQL clusters, including multi-Region
clusters. They can add and remove tags from clusters. They can list clusters and view information
about individual clusters. They can see tags attached to Aurora DSQL clusters. They can connect
to the database as any user, including admin. They can see any metrics from CloudWatch on your
account. They also have permissions to create service-linked roles for the dsql.amazonaws.com
service, which is required for creating clusters.

AWS managed policies 187

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Aurora DSQL User Guide

Permissions details

This policy includes the following permissions.

• dsql – grants principals full access to Aurora DSQL.

• cloudwatch – grants permission to publish metric data points to Amazon CloudWatch.

• iam – grants permission to create a service-linked role.

You can find the AmazonAuroraDSQLFullAccess policy on the IAM console and
AmazonAuroraDSQLFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonAuroraDSQLReadOnlyAccess

You can attach AmazonAuroraDSQLReadOnlyAccess to your users, groups, and roles.

Allows read access to Aurora DSQL. Principals with these permissions can list clusters and view
information about individual clusters. They can see the tags attached to Aurora DSQL clusters.
They can retrieve and see any metrics from CloudWatch on your account.

Permissions details

This policy includes the following permissions.

• dsql – grants read only permissions to all resources in Aurora DSQL.

• cloudwatch – grants permission to retrieve batch amounts of CloudWatch metric data and
perform metric math on retrieved data

You can find the AmazonAuroraDSQLReadOnlyAccess policy on the IAM console and
AmazonAuroraDSQLReadOnlyAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonAuroraDSQLConsoleFullAccess

AmazonAuroraDSQLReadOnlyAccess 188

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLReadOnlyAccess.html

Amazon Aurora DSQL User Guide

You can attach AmazonAuroraDSQLConsoleFullAccess to your users, groups, and roles.

Allows full administrative access to Amazon Aurora DSQL via the AWS Management Console.
Principals with these permissions can create, delete, and update Aurora DSQL clusters, including
multi-Region clusters, with the console. They can list clusters, view information about individual
clusters. They can see tags on any resource on your account. They can connect to the database as
any user, including the admin. They can see any metrics from CloudWatch on your account. They
also have permissions to create service linked roles for the dsql.amazonaws.com service, which is
required for creating clusters.

You can find the AmazonAuroraDSQLConsoleFullAccess policy on the IAM console and
AmazonAuroraDSQLConsoleFullAccess in the AWS Managed Policy Reference Guide.

Permissions details

This policy includes the following permissions.

• dsql – grants full administrative permissions to all resources in Aurora DSQL via the AWS
Management Console.

• cloudwatch – grants permission to retrieve batch amounts of CloudWatch metric data and
perform metric math on retrieved data

• tag – grants permission to returns tag keys and values currently in use in the specified AWS
Region for the calling account

You can find the AmazonAuroraDSQLReadOnlyAccess policy on the IAM console and
AmazonAuroraDSQLReadOnlyAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AuroraDSQLServiceRolePolicy

You can't attach AuroraDSQLServiceRolePolicy to your IAM entities. This policy is attached to a
service-linked role that allows Aurora DSQL to access account resources.

You can find the AuroraDSQLServiceRolePolicy policy on the IAM console and
AuroraDSQLServiceRolePolicy in the AWS Managed Policy Reference Guide.

AuroraDSQLServiceRolePolicy 189

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLConsoleFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDSQLServiceRolePolicy.html

Amazon Aurora DSQL User Guide

Aurora DSQL updates to AWS managed policies

View details about updates to AWS managed policies for Aurora DSQL since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Aurora DSQL Document history page.

Change Description Date

Page created Started tracking managed
policies for AWS managed
policies related to Amazon
Aurora DSQL

December 3, 2024

Data protection in Amazon Aurora DSQL

The AWS shared responsibility model applies to data protection in Amazon Aurora DSQL. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

Policy updates 190

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html

Amazon Aurora DSQL User Guide

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Aurora DSQL or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data encryption

Amazon Aurora DSQL provides a highly durable storage infrastructure designed for mission-critical
and primary data storage. Data is redundantly stored on multiple devices across multiple facilities
in a Aurora DSQL Region.

Encryption at rest

By default, Aurora DSQL configures encryption at rest for you.

Aurora DSQL owned keys

Aurora DSQL owned keys are not stored in your AWS account. They are part of a collection of KMS
keys that Aurora DSQL owns and manages for encrypting data in your clusters. Aurora DSQL uses
envelop encryption to encrypt data. These keys are rotated every year (approximately 365 days).

You are not charged a monthly fee or a usage fee for use of AWS owned keys, and they do not
count against AWS KMS quotas for your account.

Customer managed keys

Aurora DSQL doesn't support customer-managed keys for encrypting data in your clusters.

Data encryption 191

https://aws.amazon.com/compliance/fips/

Amazon Aurora DSQL User Guide

Encryption in transit

By default, encryption in transit is configured for you. Aurora DSQL uses mutual TLS (mTLS) to
encrypt all traffic between your SQL client and Aurora DSQL.

Encryption and signing of data in transit between AWS CLI, SDK, or API clients and Aurora DSQL
endpoints:

• Aurora DSQL provides HTTPS endpoints for encrypting data in transit.

• To protect the integrity of API requests to Aurora DSQL, API calls must be signed by the caller.
Calls are signed by an X.509 certificate or the customer's AWS secret access key according to
the Signature Version 4 Signing Process (Sigv4). For more information, see Signature Version 4
Signing Process in the AWS General Reference.

• Use the AWS CLI or one of the AWS SDKs to make requests to AWS. These tools automatically
sign the requests for you with the access key that you specify when you configure the tools.

Inter-network traffic privacy

Connections are protected both between Aurora DSQL and on-premises applications and between
Aurora DSQL and other AWS resources within the same AWS Region.

You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

You get access to Aurora DSQL through the network by using AWS-published API operations.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Data encryption 192

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Aurora DSQL User Guide

Identity and access management for Amazon Aurora DSQL

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Aurora DSQL resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Aurora DSQL works with IAM

• Identity-based policy examples for Amazon Aurora DSQL

• Troubleshooting Amazon Aurora DSQL identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Aurora DSQL.

Service user – If you use the Aurora DSQL service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Aurora DSQL features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Aurora DSQL, see Troubleshooting Amazon Aurora DSQL identity and access.

Service administrator – If you're in charge of Aurora DSQL resources at your company, you
probably have full access to Aurora DSQL. It's your job to determine which Aurora DSQL features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Aurora DSQL, see How Amazon Aurora DSQL works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Aurora DSQL. To view example Aurora DSQL identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon Aurora DSQL.

Identity and access management 193

Amazon Aurora DSQL User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 194

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon Aurora DSQL User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a

Authenticating with identities 195

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Amazon Aurora DSQL User Guide

role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

Authenticating with identities 196

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora DSQL User Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing access using policies 197

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Aurora DSQL User Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user

Managing access using policies 198

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

Amazon Aurora DSQL User Guide

or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Aurora DSQL works with IAM

Before you use IAM to manage access to Aurora DSQL, learn what IAM features are available to use
with Aurora DSQL.

How Aurora DSQL works with IAM 199

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Aurora DSQL User Guide

IAM features you can use with Amazon Aurora DSQL

IAM feature Aurora DSQL support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Aurora DSQL and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Aurora DSQL

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all

How Aurora DSQL works with IAM 200

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Aurora DSQL User Guide

of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Aurora DSQL

To view examples of Aurora DSQL identity-based policies, see Identity-based policy examples for
Amazon Aurora DSQL.

Resource-based policies within Aurora DSQL

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Aurora DSQL

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API

How Aurora DSQL works with IAM 201

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Aurora DSQL User Guide

operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Aurora DSQL actions, see Actions Defined by Amazon Aurora DSQL in the Service
Authorization Reference.

Policy actions in Aurora DSQL use the following prefix before the action:

dsql

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "dsql:action1",
 "dsql:action2"
]

To view examples of Aurora DSQL identity-based policies, see Identity-based policy examples for
Amazon Aurora DSQL.

Policy resources for Aurora DSQL

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

How Aurora DSQL works with IAM 202

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

Amazon Aurora DSQL User Guide

To see a list of Aurora DSQL resource types and their ARNs, see Resources Defined by Amazon
Aurora DSQL in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions Defined by Amazon Aurora DSQL .

To view examples of Aurora DSQL identity-based policies, see Identity-based policy examples for
Amazon Aurora DSQL.

Policy condition keys for Aurora DSQL

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Aurora DSQL condition keys, see Condition Keys for Amazon Aurora DSQL in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions Defined by Amazon Aurora DSQL .

To view examples of Aurora DSQL identity-based policies, see Identity-based policy examples for
Amazon Aurora DSQL.

ACLs in Aurora DSQL

Supports ACLs: No

How Aurora DSQL works with IAM 203

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

Amazon Aurora DSQL User Guide

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Aurora DSQL

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with Aurora DSQL

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your

How Aurora DSQL works with IAM 204

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora DSQL User Guide

company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Aurora DSQL

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Aurora DSQL

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Aurora DSQL functionality. Edit
service roles only when Aurora DSQL provides guidance to do so.

Service-linked roles for Aurora DSQL

Supports service-linked roles: No

How Aurora DSQL works with IAM 205

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora DSQL User Guide

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Aurora DSQL

By default, users and roles don't have permission to create or modify Aurora DSQL resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Aurora DSQL, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon Aurora
DSQL in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Aurora DSQL console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Aurora DSQL
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We

Identity-based policy examples 206

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html

Amazon Aurora DSQL User Guide

recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Aurora DSQL console

To access the Amazon Aurora DSQL console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Aurora DSQL resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples 207

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Aurora DSQL User Guide

To ensure that users and roles can still use the Aurora DSQL console, also attach the Aurora DSQL
AmazonAuroraDSQLConsoleFullAccess or AmazonAuroraDSQLReadOnlyAccess AWS
managed policy to the entities. For more information, see Adding permissions to a user in the IAM
User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]

Identity-based policy examples 208

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Aurora DSQL User Guide

}

Troubleshooting Amazon Aurora DSQL identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Aurora DSQL and IAM.

Topics

• I am not authorized to perform an action in Aurora DSQL

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Aurora DSQL resources

I am not authorized to perform an action in Aurora DSQL

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
dsql:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 dsql:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the dsql:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Aurora DSQL.

Troubleshooting 209

Amazon Aurora DSQL User Guide

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Aurora DSQL. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Aurora DSQL
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Aurora DSQL supports these features, see How Amazon Aurora DSQL works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 210

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Aurora DSQL User Guide

Using service-linked roles in Aurora DSQL

Aurora DSQL uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to Aurora DSQL. Service-linked roles
are predefined by Aurora DSQL and include all the permissions that the service requires to call AWS
services on behalf of your Aurora DSQL cluster.

Service-linked roles make the setup process easier because you don't have to manually add the
necessary permissions to use Aurora DSQL. When you create a cluster, Aurora DSQL automatically
creates a service-linked role for you. You can delete the service-linked role only after you delete all
of your clusters. This protects your Aurora DSQL resources because you can't inadvertently remove
permissions needed for access to the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked roles are available in all supported Aurora DSQL Regions.

Service-linked role permissions for Aurora DSQL

Aurora DSQL uses the service-linked role named AWSServiceRoleForAuroraDsql – Allows
Amazon Aurora DSQL to create and manage AWS resources on your behalf. This service-linked role
is attached to the following managed policy: AuroraDSQLServiceRolePolicy.

Create a service-linked role

You don't need to manually create an AuroraDSQLServiceRolePolicy service-linked role. Aurora
DSQL creates the service-linked role for you. If the AmazonAuroraDSQLServiceRolePolicy service-
linked role has been deleted from your account, Aurora DSQL creates the role when you create a
new Aurora DSQL cluster.

Edit a service-linked role

Aurora DSQL doesn't allow you to edit the AuroraDSQLServiceRolePolicy service-linked role. After
you create a service-linked role, you can't change the name of the role because various entities
might reference the role. However, you can edit the description of the role using the IAM console,
the AWS Command Line Interface (AWS CLI), or IAM API.

Using a service-linked role 211

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDSQLServiceRolePolicy.html

Amazon Aurora DSQL User Guide

Delete a service-linked role

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way, you don't have an unused entity that is not actively monitored
or maintained.

Before you can delete a service-linked role for an account, you must delete any clusters in the
account.

You can use the IAM console, the AWS CLI, or the IAM API to delete a service-linked role. For more
information, see Create a service-linked role in the IAM User Guide.

Supported Regions for Aurora DSQL service-linked roles

Aurora DSQL supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and endpoints.

Using IAM condition keys with Amazon Aurora DSQL

When you grant permissions in Aurora DSQL you can specify conditions that determine how a
permissions policy takes effect. The following are examples of how you can use condition keys in
Aurora DSQL permissions policies.

Example 1: Grant permission to create a cluster in a specific AWS
Region

The following policy grants permission to create clusters in the US East (N. Virginia) and US East
(Ohio) Regions. This policy uses the resource ARN to limit the allowed Regions, so Aurora DSQL can
only create clusters only if that ARN is specified in the Resource section of the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 # Control where clusters can be created
 "Action": ["CreateCluster"],
 "Resource": [
 "arn:aws:dsql:us-east-1:*:cluster/*",

Delete a service-linked role 212

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Aurora DSQL User Guide

 "arn:aws:dsql:us-east-2:*:cluster/*"
],
 "Effect": "Allow"
 }
]
}

Example 2: Grant permission to create a multi-Region cluster in specific
AWS Regions

The following policy grants permission to create multi-Region clusters in the US East (N. Virginia)
and US East (Ohio) Regions. This policy uses the resource ARN to limit the allowed Regions, so
Aurora DSQL can only create multi-Region clusters only if that ARN is specified in the Resource
section of the policy. Note that creating multi-Region clusters also requires CreateCluster
permission in each specified Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Action": ["CreateMultiRegionClusters"],
 "Resource": [
 "arn:aws:dsql:us-east-1:*:cluster/*",
 "arn:aws:dsql:us-east-2:*:cluster/*"
],
 "Effect": "Allow"
 },
 {
 "Action": ["CreateCluster"],
 "Resource": [
 "arn:aws:dsql:us-east-1:*:cluster/*",
 "arn:aws:dsql:us-east-2:*:cluster/*"
],
 "Effect": "Allow"
 }
]
}

Create a multi-Region cluster in specific Regions 213

Amazon Aurora DSQL User Guide

Example 3: Grant permission to create a multi-Region cluster with a
specific witness Region

The following policy uses an Aurora DSQL dsql:WitnessRegion condition key and lets a user
create multi-Region clusters with a witness Region in US West (Oregon). If you don't specify the
dsql:WitnessRegion condition, you can use any Region as the witness Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["CreateMultiRegionClusters"],
 "Resource": "*",
 "Effect": "Allow",
 "Condition": {
 "StringEquals": {
 "dsql:WitnessRegion": ["us-west-2"]
 }
 }
 },
 {
 "Action": ["CreateCluster"],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Incident response in Amazon Aurora DSQL

Security is the highest priority at AWS. As part of the AWS Cloud shared responsibility model, AWS
manages a data center, network, and software architecture that meets the requirements of the
most security-sensitive organizations. AWS is responsible for any incident response with respect
to the Amazon Aurora DSQL service itself. Also, as an AWS customer, you share a responsibility
for maintaining security in the cloud. This means that you control the security you choose to
implement from the AWS tools and features you have access to. In addition, you’re responsible for
incident response on your side of the shared responsibility model.

By establishing a security baseline that meets the objectives for your applications running in the
cloud, you're able to detect deviations that you can respond to. To help you understand the impact

Create a multi-Region cluster with specific witness Region 214

Amazon Aurora DSQL User Guide

that incident response and your choices have on your corporate goals, we encourage you to review
the following resources:

• AWS Security Incident Response Guide

• AWS Best Practices for Security, Identity, and Compliance

• Security Perspective of the AWS Cloud Adoption Framework (CAF) whitepaper

Amazon GuardDuty is a managed threat detection service continuously monitoring malicious
or unauthorized behavior to help customers protect AWS accounts and workloads and identify
suspicious activity potentially before it escalates into an incident. It monitors activity such as
unusual API calls or potentially unauthorized deployments indicating possible account or resource
compromise or reconnaissance by bad actors. For example, Amazon GuardDuty is able to detect
suspicious activity in Amazon Aurora DSQL APIs, such as a user logging in from a new location and
creating a new cluster.

Compliance validation for Amazon Aurora DSQL

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

Compliance validation 215

https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/aws-security-incident-response-guide.html
https://aws.amazon.com/architecture/security-identity-compliance/
https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-adoption-framework/security-perspective.html
https://aws.amazon.com/guardduty/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/

Amazon Aurora DSQL User Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Aurora DSQL

The AWS global infrastructure is built around AWS Regions and Availability Zones (AZ). AWS
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures. Aurora DSQL is designed so that you can
take advantage of AWS Regional infrastructure while providing the highest database availability.
By default, single-Region clusters in Aurora DSQL have Multi-AZ availability, providing tolerance
to major component failures and infrastructure disruptions that might impact access to a full AZ.
Multi-Region clusters provide all of the benefits from Multi-AZ resiliency while still providing the
strongly consistent database availability, even in cases in which AWS Region is inaccessible to
application clients.

Resilience 216

https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

Amazon Aurora DSQL User Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Aurora DSQL offers several features to help support
your data resiliency and backup needs.

Backup and restore

During preview, Aurora DSQL doesn't support backup and restore.

Aurora DSQL plans to support backup and restore with AWS Backup console, so you can perform a
full backup and restore for your single-Region and multi-Region clusters. What is AWS Backup.

Replication

By design, Aurora DSQL commits all write transactions to a distributed transaction log and
synchronously replicates all committed log data to user storage replicas in three AZs. Multi-
Region clusters provide full cross-Region replication capabilities between read and write Regions.
A designated witness Region supports transaction log-only writes and doesn't use any storage.
Witness Regions don't have an endpoint. This means that witness Regions store only encrypted
transaction logs, require no administration or configuration, and aren't accessible by users.

Aurora DSQL transaction logs and user storage are distributed across with all data presented
to Aurora DSQL query processors as a single logical volume. Aurora DSQL automatically splits,
merges, and replicates data based on database primary key range and access patterns. Aurora
DSQL automatically scales read replicas, both up and down, based on read access frequency.

Cluster storage replicas are distributed across a multi-tenant storage fleet. If a component or
AZ becomes impaired, Aurora DSQL automatically redirects access to surviving components and
asynchronously repairs missing replicas. Once Aurora DSQL fixes the impaired replicas, Aurora
DSQL automatically adds them back to the storage quorum and makes them available to your
cluster.

High availability

By default, single-Region and multi-Region clusters in Aurora DSQL are active-active, and you don't
need to manually provision, configure, or reconfigure any clusters. Aurora DSQL fully automates
cluster recovery, which eliminates the need for traditional primary-secondary failover operations.
Replication is always synchronous and done in multiple AZs, so there is no risk of data loss due to
replication lag or failover to an asynchronous secondary database during failure recovery.

Backup and restore 217

https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html

Amazon Aurora DSQL User Guide

Single-Region clusters provide a Multi-AZ redundant endpoint that automatically enables
concurrent access with strong data consistency across three AZs. This means that user storage
replicas on any of these three AZs always return the same result to one or more readers and are
always available to receive writes. This strong consistency and Multi-AZ resiliency is available
across all Regions for Aurora DSQL multi-Region clusters. This means that multi-Region clusters
provide two strongly consistent Regional endpoints, so clients can read or write indiscriminately to
either Region with zero replication lag on commit. Aurora DSQL doesn't provide a managed global
endpoint for multi-Region clusters, but you can use Amazon Route 53 as a substitute.

Aurora DSQL provides 99.99% availability for single-Region clusters and 99.999% for multi-Region
clusters.

Infrastructure Security in Amazon Aurora DSQL

As a managed service, Amazon Aurora DSQL is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Aurora DSQL through the network. Clients must support
Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with perfect
forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral
Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and vulnerability analysis in Amazon Aurora
DSQL

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Shared responsibility model

• Amazon Web Services: Overview of security processes (whitepaper)

Infrastructure Security 218

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon Aurora DSQL User Guide

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Amazon Aurora DSQL gives another service to
the resource. Use aws:SourceArn if you want only one resource to be associated with the cross-
service access. Use aws:SourceAccount if you want to allow any resource in that account to be
associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

The value of aws:SourceArn must be ResourceDescription.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Aurora DSQL to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "servicename.amazonaws.com"
 },
 "Action": "servicename:ActionName",

Cross-service confused deputy prevention 219

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Aurora DSQL User Guide

 "Resource": [
 "arn:aws:servicename:::ResourceName/*"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:servicename:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Security best practices for Amazon Aurora DSQL

Aurora DSQL provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

Use IAM roles to authenticate access to Aurora DSQL

Any users, applications, and other AWS services that access Aurora DSQL must include valid AWS
credentials in AWS API and AWS CLI requests. You shouldn't store AWS credentials directly in the
application or EC2 instances. These are long-term credentials that aren't automatically rotated.
There is significant business impact if these credentials are compromised. An IAM role lets you
obtain temporary access keys that you can use to access AWS services and resources.

For more information, see Understanding authentication and authorization for Aurora DSQL.

Use IAM policies for Aurora DSQL base authorization

When you grant permissions, you decide who is getting them, which Aurora DSQL API operations
they are getting permissions for, and the specific actions you want to allow on those resources.
Implementing least privilege is key in reducing security risk and the impact that can result from
errors or malicious intent.

Attach permissions policies to IAM roles and grant permissions to perform operations on Aurora
DSQL resources. Also available arepermissions boundaries for IAM entities, which let you set the
maximum permissions that an identity-based policy can grant to an IAM entity.

Security best practices 220

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html

Amazon Aurora DSQL User Guide

Similar to the root user best practices for your AWS account, don't use the admin role in Aurora
DSQL to perform everyday operations. Instead, we recommend that you create custom database
roles to manage and connect to your cluster. For more information, see Accessing Aurora DSQL
and Understanding authentication and authorization for Aurora DSQL.

Tag your Aurora DSQL resources for identification and automation

You can assign metadata to your AWS resources in the form of tags. Each tag is a simple label
consisting of a customer-defined key and an optional value that can make it easier to manage,
search for, and filter resources.

Tagging allows for grouped controls to be implemented. Although there are no inherent types
of tags, they let you categorize resources by purpose, owner, environment, or other criteria. The
following are some examples.

• Security – used to determine requirements such as encryption.

• Confidentiality – an identifier for the specific data-confidentiality level a resource supports.

• Environment – used to distinguish between development, test, and production infrastructure.

For more information, see Best Practices for Tagging AWS Resources.

Topics

• Detective security best practices for Aurora DSQL

• Preventative security best practices for Aurora DSQL

Detective security best practices for Aurora DSQL

In addition to the following ways to securely use Aurora DSQL, see Security in AWS Well-
Architected Tool to learn about how cloud technologies improve your security.

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you
specify. If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic
or AWS Auto Scaling policy. CloudWatch alarms do not invoke actions because they are in
a particular state. Rather the state must have changed and been maintained for a specified
number of periods.

Detective security best practices 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-best-practices.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html

Amazon Aurora DSQL User Guide

Tag your Aurora DSQL resources for identification and automation

You can assign metadata to your AWS resources in the form of tags. Each tag is a simple label
consisting of a customer-defined key and an optional value that can make it easier to manage,
search for, and filter resources.

Tagging allows for grouped controls to be implemented. Although there are no inherent types
of tags, they enable you to categorize resources by purpose, owner, environment, or other
criteria. The following are some examples:

• Security – Used to determine requirements such as encryption.

• Confidentiality – An identifier for the specific data-confidentiality level a resource supports.

• Environment – Used to distinguish between development, test, and production infrastructure.

For more information, see AWS Tagging Strategies.

Preventative security best practices for Aurora DSQL

In addition to the following ways to securely use Aurora DSQL, see Security in AWS Well-
Architected Tool to learn about how cloud technologies improve your security.

Use IAM roles to authenticate access to Aurora DSQL

For users, applications, and other AWS services to access Aurora DSQL, they must include valid
AWS credentials in their AWS API requests. You should not store AWS credentials directly in the
application or EC2 instance. These are long-term credentials that are not automatically rotated,
and therefore could have significant business impact if they are compromised. An IAM role lets
you obtain temporary access keys that can be used to access AWS services and resources.

For more information, see Understanding authentication and authorization for Aurora DSQL.

Use IAM policies for Aurora DSQL base authorization

When granting permissions, you decide who is getting them, which Aurora DSQL API operations
they are getting permissions for, and the specific actions you want to allow on those resources.
Implementing least privilege is key in reducing security risk and the impact that can result from
errors or malicious intent.

Attach permissions policies to IAM roles and thereby grant permissions to perform operations
on Aurora DSQL resources. Also available are permissions boundaries for IAM entities, which let
you set the maximum permissions that an identity-based policy can grant to an IAM entity.

Preventative security best practices 222

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Aurora DSQL User Guide

Similar to the root user best practices for your AWS account, don't use the admin role in
Aurora DSQL to perform everyday operations. Instead, we recommend that you create custom
database roles to manage and connect to your cluster. For more information, see Accessing
Aurora DSQL and Authentication and authorization.

Preventative security best practices 223

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-best-practices.html

Amazon Aurora DSQL User Guide

Tagging resources in Aurora DSQL

In AWS, tags are user-defined key-value pairs that you define and associate with Aurora DSQL
resources such as clusters. Tags are optional. If you provide a key, the value is optional.

You can use the AWS Management Console, the AWS CLI, or the AWS SDKs to add, list, and delete
tags on Aurora DSQL clusters. You can add tags during and after cluster creation using the AWS
console. To tag a cluster after creation with the AWS CLI use the TagResource operation.

Tagging clusters with a Name

Aurora DSQL creates clusters with a globally unique identifier assigned as the Amazon Resource
Name (ARN). If you want to assign a user friendly name to your cluster, we recommend that you
use a Tag.

If you create a console with the Aurora DSQL console, Aurora DSQL automatically creates a tag.
This tag has a key of Name and an automatically generated value that represents the name of
the cluster. This value is configurable, so you can assign a more friendly name to your cluster. If
a cluster has a Name tag with an associated value, you can see the value throughout the Aurora
DSQL console.

Tagging requirements

Tags have the following requirements:

• Keys can't be prefixed with aws:.

• Keys must be unique per tag set.

• A key must be between 1 and 128 allowed characters.

• A value must be between 0 and 256 allowed characters.

• Values do not need to be unique per tag set.

• Allowed characters for keys and values are Unicode letters, digits, white space, and any of the
following symbols: _ . : / = + - @.

• Keys and values are case sensitive.

Name tag 224

Amazon Aurora DSQL User Guide

Tagging usage notes

When using tags in Aurora DSQL, consider the following.

• When using the AWS CLI or Aurora DSQL API operations, make sure to provide the Amazon
Resource Name (ARN) for the Aurora DSQL resource to work with. For more information, see
Amazon Resource Name (ARNs) format for Aurora DSQL resources.

• Each resource has one tag set, which is a collection of one or more tags assigned to the resource.

• Each resource can have up to 50 tags per tag set.

• If you delete a resource, any associated tags are deleted.

• You can add tags when you create a resource, you can view and modify tags using the following
API operations: TagResource, UntagResource, and ListTagsForResource.

• You can use tags with IAM policies. You can use them to manage access to Aurora DSQL clusters
and to control what actions can be applied to those resources. To learn more, see Controlling
access to AWS resources using tags.

• You can use tags for various other activities across AWS. To learn more, see Common tagging
strategies.

Tagging usage notes 225

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-arn-format
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-arn-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

Amazon Aurora DSQL User Guide

Known issues in Amazon Aurora DSQL

The following list contains known issues with Amazon Aurora DSQL

• Aurora DSQL doesn't complete COUNT(*) operations before transaction timeout for large tables.
To retrieve table row count from the system catalog, see Using systems tables and commands in
Aurora DSQL.

• While you can run the CREATE INDEX command without the ASYNC option and insert data
before index creation and commit the transaction, doing so might result in missing index entries.
We recommend that you use the ASYNC option when you create indices. If you use CREATE
INDEX, confirm that Aurora DSQL has finished creating the index before you INSERT into the
table.

• Aurora DSQL doesn't currently let you run GRANT [permission] ON DATABASE. If you
attempt to run that statement, Aurora DSQL returns the error message ERROR: unsupported
object type in GRANT.

• Aurora DSQL doesn't let non-admin user roles to run the CREATE SCHEMA command. You can't
run the GRANT [permission] on DATABASE command and grant CREATE permissions on the
database. If a non-admin user role tries to create a schema, Aurora DSQL returns with the error
message ERROR: permission denied for database postgres.

• Aurora DSQL doesn't support the FLUSH command. Aurora DSQL returns transaction errors to
any client using the FLUSH command. For example, Aurora DSQL doesn't complete queries that
use FLUSH to run pipelined queries. Most clients use the SYNC command to get results over a
synchronization point, but not every client does. For example, psycopg3 driver uses FLUSH to
pipeline queries. The pipelined querying mode from psycopg3 doesn't work with Aurora DSQL.

• Drivers calling PG_PREPARED_STATEMENTS might provide an inconsistent view of cached
prepared statements for the cluster. You might see more than the expected number of prepared
statements per connection for the same cluster and IAM role. Aurora DSQL doesn't preserve
statement names that you prepare.

• Clients running on IPv4 only instances might see an incorrect error if connection establishment
fails. Some PostgreSQL clients resolve a hostname to both the IPv4 and IPv6 addresses if
the server supports dualstack mode and supports connecting to both addresses if the first
connection fails. For example, if connecting to the IPv4 address fails because of throttling errors,
clients might use IPv6 to connect. If the host doesn't support IPv6 connections, it returns a
NetworkUnreachable error. However, the underlying cause of the error might be that the host
doesn't support IPv6.

226

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-systems-tables.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-systems-tables.html
https://www.postgresql.org/docs/current/protocol-message-formats.html#PROTOCOL-MESSAGE-FORMATS-FLUSH

Amazon Aurora DSQL User Guide

• After an Aurora DSQL admin user creates a new schema, it's possible that subsequent GRANT
and REVOKE commands from non-admin users don't reflect for existing cluster connections. This
issue can last for the maximum duration of a connection of one hour.

• In rare multi-Region linked-cluster impairment scenarios, it might take longer than expected for
transaction commit availability to resume. In general, automated cluster recovery operations
can result in transient concurrency control or ocnnection errors. In most cases, you will only
see the effects for a percentage of your workload. When you see these transit errors, retry your
transaction or reconnect with your client.

• Some SQL clients, such as Datagrip, make expansive calls to system metadata to populate
schema information. Aurora DSQL doesn't support all of this information and returns errors. This
issue doesn't affect SQL query functionality, but it might affect schema display.

• Aurora DSQL doesn't support nested transactions that rely on savepoints. This impacts the
PsycoPG3 driver and tools that utilize nested transactions. We recommend that you use the
PsycoPG2 driver.

• You might see the error Schema Already Exists if you try to create a schema, but you
recently dropped the schema in another transaction. This error occurs because of a stale catalog
cache. The workaround is to disconnect and reconnect.

• Queries might fail to recognize newly created schemas and tables and incorrectly report that
they don't exist. This error occurs because of a stale catalog cache. The workaround is the
disconnect and reconnect.

• An obsolete search path can make it so that Aurora DSQL doesn't discover new objects. Setting a
search path to a schema that doesn't exist prevents Aurora DSQL from discovering that schema
if you created it in another connection. The workaround is to set the search path again after you
create the schema.

• Transactions that contain a query plan with a nested loop join above a merge join can consume
more memory than intended and result in an out-of-memory condition.

• Non-admin users can't create objects in the public schema. Only admin users can crete objects
in the public schema. The admin user role has permissions to grant read, write, and modify
access to these objects to non-admin users, but it cannot grant CREATE permissions to the public
schema itself. Non-admin users must use different, user-created schemas for object creation.

• Aurora DSQL doesn't support the command ALTER ROLE [] CONNECTION LIMIT. Contact
AWS support if you need a connection limit increase.

• The admin role has a set of permissions related to database management tasks. By default, these
permissions don't extend to objects that other users create. The admin role can't grant or revoke

227

Amazon Aurora DSQL User Guide

permissions on these user-created objects to other users. The admin user can grant itself any
other role to get the necessary permissions on these objects.

• Aurora DSQL creates the admin role with all new Aurora DSQL clusters. Currently, this role lacks
permissions on objects that other users create. This limitation prevents the admin role from
granting or revoking permissions on objects that the admin role didn't create.

228

Amazon Aurora DSQL User Guide

Cluster quotas and database limits in Amazon Aurora
DSQL

The following sections describe the cluster quotas and database limits relevant to Aurora DSQL.

Cluster quotas

Your AWS account has the following cluster quotas in Aurora DSQL.

Description Default Limit Configurable? Aurora DSQL
error code

Error message

Maximum
single-Region
clusters per AWS
account.

20 Yes N/A You have
reached the
cluster limit.

Maximum
multi-Region
clusters per AWS
account.

5 Yes N/A N/A

Maximum
storage GB per
cluster.

100GB Yes DISK_FULL
(53100)

Current cluster
size exceeds
cluster size limit.

Maximum
connections per
cluster.

1000 Yes TOO_MANY_
CONNECTIO
NS(53300)

Unable to accept
connection,
too many open
connections.

Maximum
connection rate
per cluster.

(10, 100) Yes CONFIGURE
D_LIMIT_E
XCEEDED(5
3400)

Unable to accept
connection, rate
exceeded.

Cluster quotas 229

Amazon Aurora DSQL User Guide

Description Default Limit Configurable? Aurora DSQL
error code

Error message

Maximum
connection
duration

60 minutes No N/A N/A

Database limits in Aurora DSQL

The following table describes all database limits in Aurora DSQL.

Description Default Limit Configurable? Aurora DSQL
error code

Error message

Maximum
combined
size of the
columns used in
a primary key

1 Kibibyte No 54000 ERROR: key size
too large

Maximum
combined size of
the columns in a
secondary index

1 Kibibyte No 54000 ERROR: key size
too large

Maximum size of
a row in a table

2 Mebibytes No 54000 ERROR:
maximum row
size exceeded

Maximum size of
a column used in
a primary key or
secondary index

255 Bytes No 54000 ERROR:
maximum key
column size
exceeded

Maximum size
of a column that

1 Mebibyte No 54000 ERROR:
maximum

Database limits 230

Amazon Aurora DSQL User Guide

Description Default Limit Configurable? Aurora DSQL
error code

Error message

is not part of an
index

column size
exceeded

Maximum
number of
columns that
can be used by
included in a
primary key or a
secondary index

8 Column Keys
per Primary Key
or Index

No 54011 ERROR: more
than 8 column
keys in an
index are not
supported

Maximum
number of
columns in a
table

255 Columns
per Table

No 54011 ERROR: tables
can have at most
255 columns

Maximum
number of
indexes that can
be created for a
single table

24 No 54000 ERROR: more
than 24 indexes
per table are not
allowed

Maximum size of
all data modified
within a write
transaction

10 MiB Transacti
on Size

No 54000 ERROR: transacti
on size limit
10mb exceeded
DETAIL: Current
transaction size
<sizemb> 10mb

Database limits 231

Amazon Aurora DSQL User Guide

Description Default Limit Configurable? Aurora DSQL
error code

Error message

Maximum
number of table
and index rows
that can be
mutated in a
single transacti
on block

10K rows per
transaction,
modified by
number of
secondary
indexes

No 54000 ERROR: transacti
on row limit
exceeded

The base
maximum
amount of
memory to be
used by a query
operation.

128 MiB per
Transaction

No 53200 ERROR: query
requires too
much temp
space, out of
memory.

Maximum
number of
schemas
defined within a
database

10 Schemas No 54000 ERROR: more
than 10 schemas
not allowed

Maximum
number of
tables that
can be created
within a
database

1000 Tables No 54000 ERROR: creating
more than
1000 tables not
allowed

Maximum
databases per
cluster.

1 No ERROR:
unsupported
statement

Maximum
transaction time

5 minutes No 54000 ERROR: transacti
on age limit of
300s exceeded

Database limits 232

Amazon Aurora DSQL User Guide

Description Default Limit Configurable? Aurora DSQL
error code

Error message

Maximum
connection
duration

1 hour No

Database limits 233

Amazon Aurora DSQL User Guide

Aurora DSQL API reference

In addition to the AWS Management Console and the AWS Command Line Interface (AWS CLI),
Aurora DSQL also provides an API interface. You can use the API operations to manage your
resources in Aurora DSQL.

For an alphabetical list of API operations, see Actions.

For an alphabetical list of data types, see Data types.

For a list of common query parameters, see Common parameters.

For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Aurora
DSQL.

234

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/CommonErrors.html

Amazon Aurora DSQL User Guide

Troubleshooting issues in Aurora DSQL

Note

The following topics provide troubleshooting advice for errors and issues that you might
encounter when using Aurora DSQL. If you find an issue that is not listed here, reach out to
AWS support

Topics

• Troubleshooting authentication errors

• Troubleshooting authorization errors

• Troubleshooting SQL errors

• Troubleshooting OCC errors

Troubleshooting authentication errors

IAM authentication failed for user "..."

When you generate an Aurora DSQL IAM authentication token, the maximum duration you can set
is 1 week. After one week, you can't authenticate with that token.

Additionally, Aurora DSQL rejects your connection request if your assumed role has expired. For
example, if you try to connect with a temporary IAM role even if your authentication token hasn't
expired, Aurora DSQL will reject the connection request.

To learn more about how IAM works with Aurora DSQL, see Understanding authentication and
authorization for Aurora DSQL and AWS Identity and Access Management in Aurora DSQL.

An error occurred (InvalidAccessKeyId) when calling the GetObject operation: The AWS Access
Key ID you provided does not exist in our records

IAM rejected your request. For more information, see Why requests are signed.

IAM role <role> does not exist

Aurora DSQL couldn't find your IAM role. For more information, see IAM roles.

Authentication errors 235

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html#why-requests-are-signed
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Aurora DSQL User Guide

IAM role must look like an IAM ARN

See IAM Identifiers - IAM ARNs for more information.

Troubleshooting authorization errors

Role <role> not supported

Aurora DSQL doesn't support the GRANT operation. See Supported subsets of PostgreSQL
commands in Aurora DSQL.

Cannot establish trust with role <role>

Aurora DSQL doesn't support the GRANT operation. See Supported subsets of PostgreSQL
commands in Aurora DSQL.

Role <role> does not exist

Aurora DSQL couldn't find specified database user. See Authorize custom database roles to
connect to a cluster.

ERROR: permission denied to grant IAM trust with role <role>

To grant access to a database role, you must be connected to your cluster with the admin role. To
learn more, see Authorize database roles to use SQL in a database.

ERROR: role <role> must have the LOGIN attribute

Any database roles you create must have the LOGIN permission.

To address this error, make sure that you’ve created the PostgreSQL Role with the LOGIN
permission. For more information, see CREATE ROLE and ALTER ROLE in the PostgreSQL
documentation.

ERROR: role <role> cannot be dropped because some objects depend on it

Aurora DSQL returns an error if you drop a database role with an IAM relationship until you revoke
the relationship using AWS IAM REVOKE. To learn more, see Revoking authorization.

Troubleshooting SQL errors

Error: Not supported

Authorization errors 236

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles-sql
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-alterrole.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-revoke

Amazon Aurora DSQL User Guide

Aurora DSQL doesn't support all PostgreSQL-based dialect. To learn about what is supported, see
Supported PostgreSQL features in Aurora DSQL .

Error: SELECT FOR UPDATE in a read-only transaction is a no-op

You are attempting an operation that isn't allowed in a read-only transaction. To learn more, see
Understanding concurrency control in Aurora DSQL.

Error: use CREATE INDEX ASYNC instead

To create an index on a table with existing rows, you must use the CREATE INDEX ASYNC
command. To learn more, see Creating indexes asynchronously in Aurora DSQL.

Troubleshooting OCC errors

OC000 “ERROR: mutation conflicts with another transaction, retry as needed”

OC001 “ERROR: schema has been updated by another transaction, retry as needed”

Your PostgreSQL session had a cached copy of the schema catalog. That cached copy was valid at
the time was loaded. Let’s call the time T1 and the version V1.

Another transaction updates the catalog at time T2. Let’s call this V2.

When the original session attempts to read from storage at time T2 it’s still using catalog version
V1. Aurora DSQL’s storage layer rejects the request because the latest catalog version at T2 is V2.

When you retry at time T3 from the original session, Aurora DSQL refreshes the catalog cache. The
transaction at T3 is using catalog V2. Aurora DSQL will finish the transaction as long as no other
catalog changes came through since time T2.

OCC errors 237

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-features.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-features.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-concurrency-control.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-concurrency-control.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html

Amazon Aurora DSQL User Guide

Document history for the Amazon Aurora DSQL User
Guide

The following table describes the documentation releases for Aurora DSQL.

Change Description Date

Initial release Initial release of the Amazon
Aurora DSQL User Guide.

December 3, 2024

238

	Amazon Aurora DSQL
	Table of Contents
	
	What is Amazon Aurora DSQL?
	Understanding core components in Amazon Aurora DSQL

	Getting started with Aurora DSQL
	Prerequisites
	Create a cluster and connect with IAM authentication
	Run SQL commands in Aurora DSQL
	Create a multi-Region linked cluster

	Understanding authentication and authorization for Aurora DSQL
	Manage your clusters using IAM
	Connect to your cluster using IAM
	Interact with your database using PostgreSQL database roles and IAM roles
	Revoking authorization using IAM and PostgreSQL
	Using IAM policy actions to manage clusters in Aurora DSQL
	Using IAM policy actions to connect to clusters
	Amazon Resource Name (ARN) format for Aurora DSQL resources
	Generating an authentication token in Amazon Aurora DSQL
	Use the AWS console to generate a token in Aurora DSQL
	Use AWS CloudShell to generate a token in Aurora DSQL
	Use the AWS CLI to generate a token in Aurora DSQL
	Use the Python SDK to generate a token in Aurora DSQL
	Use the C++ SDK to generate a token in Aurora DSQL
	Use the JavaScript SDK to generate a token in Aurora DSQL
	Use the Java SDK to generate a token in Aurora DSQL
	Use the Rust SDK to generate a token in Aurora DSQL
	Use the Ruby SDK to generate a token in Aurora DSQL
	Use the .NET to generate a token in Aurora DSQL
	Use the Golang to generate a token in Aurora DSQL

	Using database roles with IAM roles
	Authorize custom database roles to connect to a cluster
	Authorize database roles to use SQL in a database
	Revoke database authorization from an IAM role

	Accessing Aurora DSQL
	Using the PostgreSQL protocol with Aurora DSQL
	Access Aurora DSQL through the AWS Management Console
	Using SQL clients with Aurora DSQL
	Access Aurora DSQL with psql (PostgreSQL interactive terminal)
	Access Aurora DSQL with DBeaver
	Access Aurora DSQL with JetBrains DataGrip

	Understanding programmatic access to Amazon Aurora DSQL

	Working with Amazon Aurora DSQL
	Understanding PostgreSQL compatibility
	Supported data types in Aurora DSQL
	Date time precision
	Types supported during query runtime

	Supported PostgreSQL features in Aurora DSQL
	Supported subsets of PostgreSQL commands in Aurora DSQL
	Unsupported PostgreSQL features in Aurora DSQL
	Unsupported objects
	Unsupported constraints
	Unsupported operations
	Unsupported extensions
	Unsupported SQL expressions
	Limitations

	Understanding connections in Aurora DSQL
	Understanding concurrency control in Aurora DSQL
	Understanding data definition language (DDL) in Aurora DSQL
	Primary keys in Aurora DSQL
	Creating async indexes in Aurora DSQL
	Syntax
	Parameters
	Examples
	Usage notes

	Using system tables and commands in Aurora DSQL
	System tables and queries in Aurora DSQL
	Analyze

	Programming with Aurora DSQL
	Manage clusters in Aurora DSQL with the AWS SDKs
	Create a cluster in Aurora DSQL in the AWS SDKs
	Get a cluster in Aurora DSQL with the AWS SDKs
	Update a cluster in Aurora DSQL with the AWS SDKs
	Delete cluster in Aurora DSQL with AWS SDKs

	Manage clusters in Aurora DSQL with the AWS CLI
	CreateCluster
	GetCluster
	UpdateCluster
	DeleteCluster
	ListClusters
	CreateMultiRegionClusters
	GetCluster on multi-Region clusters
	DeleteMultiRegionClusters

	Programming with Python
	Using Aurora DSQL to build an application with Django
	Bootstrap the Django application
	Create the application
	CRUD operations
	Relationships

	Using Aurora DSQL to build an application with SQLAlchemy
	Setup
	Connect to an Aurora DSQL cluster
	Create models
	CRUD examples

	Using Psycopg2 to interact with Aurora DSQL
	Connect to an Aurora DSQL cluster and run queries

	Using Psycopg3 to interact with Aurora DSQL
	Connect to an Aurora DSQL cluster and run queries

	Programming with Java
	Using Aurora DSQL to build applications with JDBC, Hibernate, and HikariCP
	Setup
	Using a UUID as a primary key
	Define entity classes
	Handle SQL exceptions

	Using pgJDBC to interact with Amazon Aurora DSQL
	Connect to an Aurora DSQL cluster and run queries

	Programming with JavaScript
	Using Node.js to interact with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster and run queries

	Programming with C++
	Using Libpq to interact with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster and run queries

	Programming with Ruby
	Using Ruby-pg to interact with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster and run queries

	Using Ruby on Rails to interact with Amazon Aurora DSQL
	Install a connection to Aurora DSQL
	CRUD examples

	Programming with .NET
	Using .NET to interact with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster
	CRUD examples

	Programming with Rust
	Using Rust to interact with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster and run queries

	Programming with Golang
	Using Go with Amazon Aurora DSQL
	Connect to your Aurora DSQL cluster
	CRUD examples

	Utilities, tutorials, and sample code in Amazon Aurora DSQL
	Tutorials and sample code on GitHub
	Using Aurora DSQL with the AWS SDK
	Using AWS Lambda with Amazon Aurora DSQL

	Security in Amazon Aurora DSQL
	AWS managed policies for Amazon Aurora DSQL
	AWS managed policy: AmazonAuroraDSQLFullAccess
	AWS managed policy: AmazonAuroraDSQLReadOnlyAccess
	AWS managed policy: AmazonAuroraDSQLConsoleFullAccess
	AWS managed policy: AuroraDSQLServiceRolePolicy
	Aurora DSQL updates to AWS managed policies

	Data protection in Amazon Aurora DSQL
	Data encryption
	Encryption at rest
	Aurora DSQL owned keys
	Customer managed keys

	Encryption in transit
	Inter-network traffic privacy

	Identity and access management for Amazon Aurora DSQL
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Aurora DSQL works with IAM
	Identity-based policies for Aurora DSQL
	Identity-based policy examples for Aurora DSQL

	Resource-based policies within Aurora DSQL
	Policy actions for Aurora DSQL
	Policy resources for Aurora DSQL
	Policy condition keys for Aurora DSQL
	ACLs in Aurora DSQL
	ABAC with Aurora DSQL
	Using temporary credentials with Aurora DSQL
	Cross-service principal permissions for Aurora DSQL
	Service roles for Aurora DSQL
	Service-linked roles for Aurora DSQL

	Identity-based policy examples for Amazon Aurora DSQL
	Policy best practices
	Using the Aurora DSQL console
	Allow users to view their own permissions

	Troubleshooting Amazon Aurora DSQL identity and access
	I am not authorized to perform an action in Aurora DSQL
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Aurora DSQL resources

	Using service-linked roles in Aurora DSQL
	Service-linked role permissions for Aurora DSQL
	Create a service-linked role
	Edit a service-linked role
	Delete a service-linked role
	Supported Regions for Aurora DSQL service-linked roles

	Using IAM condition keys with Amazon Aurora DSQL
	Example 1: Grant permission to create a cluster in a specific AWS Region
	Example 2: Grant permission to create a multi-Region cluster in specific AWS Regions
	Example 3: Grant permission to create a multi-Region cluster with a specific witness Region

	Incident response in Amazon Aurora DSQL
	Compliance validation for Amazon Aurora DSQL
	Resilience in Amazon Aurora DSQL
	Backup and restore
	Replication
	High availability

	Infrastructure Security in Amazon Aurora DSQL
	Configuration and vulnerability analysis in Amazon Aurora DSQL
	Cross-service confused deputy prevention
	Security best practices for Amazon Aurora DSQL
	Detective security best practices for Aurora DSQL
	Preventative security best practices for Aurora DSQL

	Tagging resources in Aurora DSQL
	Tagging clusters with a Name
	Tagging requirements
	Tagging usage notes

	Known issues in Amazon Aurora DSQL
	Cluster quotas and database limits in Amazon Aurora DSQL
	Cluster quotas
	Database limits in Aurora DSQL

	Aurora DSQL API reference
	Troubleshooting issues in Aurora DSQL
	Troubleshooting authentication errors
	Troubleshooting authorization errors
	Troubleshooting SQL errors
	Troubleshooting OCC errors

	Document history for the Amazon Aurora DSQL User Guide

