
Developer Guide

Amazon Cloud Directory

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Cloud Directory Developer Guide

Amazon Cloud Directory: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Cloud Directory Developer Guide

Table of Contents

What Is Amazon Cloud Directory? .. 1
What Cloud Directory Is Not .. 2

Getting Started .. 3
Create a Schema ... 3
Create a Directory .. 4
Using Cloud Directory Interface VPC Endpoints .. 5

Availability .. 6
Create a VPC for Cloud Directory .. 6

Key Cloud Directory Concepts .. 9
Schema .. 9

Facets ... 9
Managed Schemas .. 9
Sample Schemas ... 9
Custom Schemas ... 9

Directory ... 10
Objects .. 10
Policies ... 10

Directory Structure .. 12
Root Node .. 12
Node .. 13
Leaf Node ... 13
Node Link ... 13

Schemas .. 14
Schema Lifecycle .. 15

Development State ... 16
Published State ... 16
Applied State ... 16

Facets .. 16
In-Place Schema Upgrade .. 17

Schema Versioning ... 17
Using the Schema Upgrade API Operations ... 18

Managed Schema ... 19
Facet Styles .. 20

Sample Schemas .. 21

iii

Amazon Cloud Directory Developer Guide

Organizations ... 21
Person .. 23
Device .. 27

Custom Schemas .. 28
Attribute References .. 28

API Example ... 29
JSON Example: .. 29

Attribute Rules .. 32
Format Specification .. 33

JSON Schema Format .. 33
Schema Document Examples ... 36

Directory Objects ... 42
Links .. 42

Child Links .. 43
Attachment Links .. 43
Index Links ... 43
Typed Links .. 44

Range Filters .. 50
Multiple range limitations ... 51
Missing values .. 52

Access Objects ... 52
Populating Objects ... 53
Updating Objects .. 53
Deleting Objects .. 54
Querying Objects .. 54

Consistency Levels ... 57
Read Isolation Levels ... 57
Write Requests ... 58
RetryableConflictExceptions ... 58

Indexing and Search .. 60
Index Lifecycle .. 60
Facet-Based Indexing ... 61
Unique vs Nonunique Indexes ... 63

How To... .. 64
Manage Your Directories ... 64

Create Your Directory .. 64

iv

Amazon Cloud Directory Developer Guide

Delete Your Directory .. 65
Disable Your Directory ... 66
Enable Your Directory .. 66

Manage Your Schema .. 67
Create Your Schema ... 67
Delete a Schema ... 68
Download a Schema .. 69
Publish a Schema .. 69
Update Your Schema ... 69
Upgrade Your Schema ... 70

Security .. 71
Identity and Access Management ... 71

Authentication ... 72
Access Control ... 72
Overview of Managing Access ... 72
Using Identity-Based Policies (IAM Policies) .. 76
Amazon Cloud Directory API Permissions Reference .. 78

Logging and Monitoring ... 78
Compliance Validation .. 79
Resilience .. 79
Infrastructure Security .. 80

Transaction Support .. 81
BatchWrite ... 81

Batch Reference Name .. 82
BatchRead .. 83
Limits on Batch operations .. 83
Exception handling .. 85

Batch write operation failures ... 85
Batch read operation failures ... 85

Compliance ... 86
Shared Responsibility .. 87

Using the Cloud Directory APIs .. 88
How Billing Works With Cloud Directory APIs ... 88

Limits .. 94
Amazon Cloud Directory ... 94

Limits on batch operations ... 96

v

Amazon Cloud Directory Developer Guide

Limits that cannot be modified ... 96
Cloud Directory Resources .. 97
Document History .. 99
AWS Glossary ... 101

vi

Amazon Cloud Directory Developer Guide

What Is Amazon Cloud Directory?

Amazon Cloud Directory is a highly available multi-tenant directory-based store in AWS. These
directories scale automatically to hundreds of millions of objects as needed for applications. This
lets operations staff focus on developing and deploying applications that drive the business, not
managing directory infrastructure. Unlike traditional directory systems, Cloud Directory does not
limit organizing directory objects in a single fixed hierarchy.

With Cloud Directory, you can organize directory objects into multiple hierarchies to support many
organizational pivots and relationships across directory information. For example, a directory of
users may provide a hierarchical view based on reporting structure, location, and project affiliation.
Similarly, a directory of devices may have multiple hierarchical views based on its manufacturer,
current owner, and physical location.

At its core, Cloud Directory is a specialized graph-based directory store that provides a
foundational building block for developers. With Cloud Directory, developers can do the following:

• Create directory-based applications easily and without having to worry about deployment,
global scale, availability, and performance

• Build applications that provide user and group management, permissions or policy management,
device registry, customer management, address books, and application or product catalogs

• Define new directory objects or extend existing types to meet their application needs, reducing
the code they need to write

• Reduce the complexity of layering applications on top of Cloud Directory

• Manage the evolution of schema information over time, ensuring future compatibility for
consumers

Cloud Directory includes a set of API operations to access various objects and policies stored
in your Cloud Directory-based directories. For a list of available operations, see Amazon Cloud
Directory API Actions. For a list of operations and the permissions required to perform each API
action, see Amazon Cloud Directory API Permissions: Actions, Resources, and Conditions Reference.

For a list of supported Cloud Directory regions, see the AWS Regions and Endpoints
documentation. For additional resources, see Cloud Directory Resources.

1

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#clouddirectory_region

Amazon Cloud Directory Developer Guide

What Cloud Directory Is Not

Cloud Directory is not a directory service for IT Administrators who want to manage or migrate
their directory infrastructure.

What Cloud Directory Is Not 2

Amazon Cloud Directory Developer Guide

Getting Started

In this getting started exercise, you create a schema. You then choose to create a directory from
that same schema or from any of the sample schemas that are available in the AWS Directory
Service console. Although not required, we recommend that you review Understanding Key Cloud
Directory Concepts before you begin using the console so that you are familiar with the core
features and terminology.

Topics

• Create a Schema

• Create an Amazon Cloud Directory

• Using Cloud Directory Interface VPC Endpoints

Create a Schema

Amazon Cloud Directory supports uploading of a compliant JSON file for schema creation. To
create a new schema, you can either create your own JSON file from scratch or download one
of the existing schemas listed in the console. Then upload it as a custom schema. For more
information, see Custom Schemas.

You can also create, delete, download, list, publish, update and upgrade schemas using the
Cloud Directory APIs. For more information about schema API operations, see the Amazon Cloud
Directory API Reference Guide.

Choose either of the procedures below, depending on your preferred method.

To create a custom schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Schemas.

2. Create a JSON file with all of your new schema definitions. For more information about how to
format a JSON file, see JSON Schema Format.

3. In the console, choose Upload new schema.

4. In the Upload new schema dialog, type a name for the schema.

5. Select Choose file, select the new JSON file that you just created, and then choose Open.

Create a Schema 3

http://docs.aws.amazon.com/amazoncds/latest/APIReference/welcome.html
http://docs.aws.amazon.com/amazoncds/latest/APIReference/welcome.html
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

6. Choose Upload. This adds a new schema to your schema library and places it in the
Development state. For more information about schema states, see Schema Lifecycle.

To create a custom schema based on an existing one in the console

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Schemas.

2. In the table listing the schemas, select the option near the schema you want to copy.

3. Choose Actions.

4. Choose Download schema.

5. Rename the JSON file, edit it as needed, and then save the file. For more information about
how to format a JSON file, see JSON Schema Format.

6. In the console, choose Upload new schema, select the JSON file that you just edited, and then
choose Open.

This adds a new schema to your schema library and places it in the Development state. For
more information about schema states, see Schema Lifecycle.

Create an Amazon Cloud Directory

Before you can create a directory in Amazon Cloud Directory, AWS Directory Service requires that
you first apply a schema to it. A directory cannot be created without a schema and typically has
one schema applied to it. However, you use Cloud Directory API operations to apply additional
schemas to a directory. For more information, see ApplySchema in the Amazon Cloud Directory API
Reference Guide.

To create a Cloud Directory

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Directories.

2. Choose Set up Cloud Directory.

3. Under Choose a schema to apply to your new directory, type the friendly name of your
directory, such as User Repository, and then choose one of the following options:

• Managed schema

• Sample schema

Create a Directory 4

https://console.aws.amazon.com/directoryservicev2/
http://docs.aws.amazon.com/amazoncds/latest/APIReference/API_ApplySchema.html
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

• Custom schema

Sample schemas and custom schemas are placed in the Development state, by default. For
more information about schema states, see Schema Lifecycle. Before a schema can be applied
to a directory, it must be converted into the Published state. To successfully publish a sample
schema using the console, you must have permissions to the following actions:

• clouddirectory:Get*

• clouddirectory:List*

• clouddirectory:CreateSchema

• clouddirectory:CreateDirectory

• clouddirectory:PutSchemaFromJson

• clouddirectory:PublishSchema

• clouddirectory:DeleteSchema

Since sample schemas are read-only templates provided by AWS Directory Service, they cannot
be published directly. Instead, when you choose to create a directory based on a sample
schema, the console creates a temporary copy of the sample schema you selected and places
it in the Development state. It then creates a copy of that development schema and places it
in the Published state. Once published, the development schema is deleted, which is why the
DeleteSchema action is necessary when publishing a sample schema.

4. Choose Next.

5. Review the directory information and make any necessary changes. When the information is
correct, choose Create.

Using Cloud Directory Interface VPC Endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and Cloud Directory. You can use this connection
to enable Cloud Directory to communicate with your resources on your VPC without going through
the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such as the IP address range,

Using Cloud Directory Interface VPC Endpoints 5

Amazon Cloud Directory Developer Guide

subnets, route tables, and network gateways. To connect your VPC to Cloud Directory, you define
an interface VPC endpoint for Cloud Directory. The endpoint provides reliable, scalable connectivity
to Cloud Directory without requiring an internet gateway, network address translation (NAT)
instance, or VPN connection. For more information, see What Is Amazon VPC? in the Amazon VPC
User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables private
communication between AWS services using an elastic network interface with private IP addresses.
For more information, see AWS PrivateLink for AWS Services.

The following steps are for users of Amazon VPC. For more information, see Getting Started with
Amazon VPC in the Amazon VPC User Guide.

Availability

Cloud Directory currently supports VPC endpoints in the following Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• AWS GovCloud (US-West)

Create a VPC for Cloud Directory

To start using Cloud Directory with your VPC, use the Amazon VPC console to create an interface
VPC endpoint for Cloud Directory. For more information, see Creating an Interface Endpoint.

• For Service Category, choose AWS services.

• For Service Name, choose com.amazonaws.region.clouddirectory. This creates a VPC
endpoint for Cloud Directory operations.

Availability 6

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Cloud Directory Developer Guide

For general information, see What is Amazon VPC? in the Amazon VPC User Guide.

Control Access to Your Cloud Directory VPC Endpoint

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create or
modify the endpoint. If you don't attach a policy when you create an endpoint, we attach a default
policy for you that allows full access to the service. An endpoint policy doesn't override or replace
IAM user policies or service-specific policies. It's a separate policy for controlling access from the
endpoint to the specified service.

Endpoint policies must be written in JSON format. For more information, see Controlling Access to
Services with VPC Endpoints in the Amazon VPC User Guide.

The following is an example of an endpoint policy for Cloud Directory. This policy enables
users connecting to Cloud Directory through the VPC to list directories and prevents them from
performing other Cloud Directory actions.

{
 "Statement": [
 {
 "Sid": "ReadOnly",
 "Principal": "*",
 "Action": [
 "clouddirectory:ListDirectories"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

To modify the VPC endpoint policy for Cloud Directory

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you have not already created the endpoint for Cloud Directory, choose Create Endpoint.
Then select com.amazonaws.region.clouddirectory and choose Create endpoint.

4. Select the com.amazonaws.region.clouddirectory endpoint and choose the Policy tab
in the lower half of the screen.

5. Choose Edit Policy and make the changes to the policy.

Create a VPC for Cloud Directory 7

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://console.aws.amazon.com/vpc/

Amazon Cloud Directory Developer Guide

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

Create a VPC for Cloud Directory 8

https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html

Amazon Cloud Directory Developer Guide

Understanding Key Cloud Directory Concepts

Amazon Cloud Directory is a directory-based data store that can create various types of objects in a
schema-oriented fashion.

Topics

• Schema

• Directory

• Directory Structure

Schema

A schema is a collection of facets that define what objects can be created in a directory and how
they are organized. A schema also enforces data integrity and interoperability. A single schema can
be applied to more than one directory at a time. For more information, see Schemas.

Facets

A facet is a collection of attributes, constraints, and links defined within a schema. Combined
together, facets define the objects in a directory. For example, Person and Device can be facets to
define corporate employees with association of multiple devices. For more information, see Facets.

Managed Schemas

A schema provided to make it easier to quickly develop and maintain your applications. For more
information, see Managed Schema.

Sample Schemas

The set of sample schemas provided by default in the AWS Directory Service console. For example,
Person, Organization, and Device are all sample schemas. For more information, see Sample
Schemas.

Custom Schemas

One or more schemas defined by a user that can be uploaded from the Schemas section or during
the Cloud Directory creation process of the AWS Directory Service console, or created by API calls.

Schema 9

Amazon Cloud Directory Developer Guide

Directory

A directory is a schema-based data store that contains specific types of objects organized in a
multi-hierarchical structure (see Directory Structure for more details). For example, a directory of
users may provide a hierarchical view based on reporting structure, location, and project affiliation.
Similarly, a directory of devices may have multiple hierarchical views based on its manufacturer,
current owner, and physical location.

A directory defines the logical boundary for the data store, completely isolating it from all
other directories in the service. It also defines the boundaries for an individual request. A single
transaction or query executes within the context of a single directory. A directory cannot be
created without a schema and typically has one schema applied to it. However, you can use the
Cloud Directory API operations to apply additional schemas to a directory. For more information,
see ApplySchema in the Amazon Cloud Directory API Reference Guide.

Objects

Objects are a structured data entity in a directory. An object in a directory is intended to capture
metadata (or attributes) about a physical or logical entity usually for the purpose of information
discovery and enforcing policies. For example users, devices, applications, AWS accounts, Amazon
EC2 instances and Amazon S3 buckets can all be represented as different types of objects in a
directory.

An object’s structure and type information is expressed as a collection of facets. You can use Path
or ObjectIdentifier to access objects. Objects can also have attributes, which are a user-
defined unit of metadata. For example, the user object can have an attribute called email-address.
Attributes are always associated with an object.

Policies

Policies are a specialized type of object that are useful for storing permissions or capabilities.
Policies offer the LookupPolicy API action. The lookup policy action takes a reference to any
object as its starting input. It then walks up the directory all the way to the root. The action collects
any policy objects that it encounters on each path to the root. Cloud Directory does not interpret
any of these policies in any way. Instead, Cloud Directory users interpret policies using their own
specialized business logic.

For example, imagine a system that stores employee information. Employees are grouped together
by job function. We want to establish different permissions for members of the Human Resources

Directory 10

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ApplySchema.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_LookupPolicy.html

Amazon Cloud Directory Developer Guide

Group and the Accounting group. Members of the Human Resources group will have access
to payroll information and the Accounting group will have access to ledger information. To
establish these permissions, we attach policy objects to each of these groups. When it is time to
evaluate a user’s permissions, we can use the LookupPolicy API action on that user’s object. The
LookupPolicy API action walks the tree from the specified policy's object up to the root. It stops
at each node and checks for any attached policies and returns those.

Policy Attachments

Policies can be attached to other objects in two ways: normal parent-child attachments and
special policy attachments. Using normal parent-child attachments, a policy can be attached to a
parent node. This is often useful to provide an easy mechanism to locate policies within your data
directory. Policies cannot have children. Policies attached via parent-child attachments will not be
returned during LookupPolicy API calls.

Policy objects can also be attached to other objects via policy attachments. You can manage these
policy attachments using the AttachPolicy and DetachPolicy API actions. Policy attachments
allow policy nodes to be located when you use the LookupPolicy API.

Policy Schema Specification

In order to start using policies, you must first add a facet to your schema that support creating
policies. To accomplish this, create a facet setting the objectType of the facet to POLICY. Creating
objects using a facet with the type POLICY ensures that the object has policy capabilities.

Policy facets inherit two attributes in addition to any attributes you add to the definition:

• policy_type (String, Required) – This is an identifier you can provide to distinguish between
different policy uses. If your policies logically fall into clear categories, we encourage setting the
policy type attribute appropriately. The LookupPolicy API returns the policy type of attached
policies (see PolicyAttachment). This allows easy filtering of the specific policy type that you
are looking for. It also allows you to use policy_type to decide how the document should be
processed or interpreted.

• policy_document (Binary, Required) – You can store application specific data in this attribute,
such as permission grants associated with the policy. You can also store application-related data
in normal attributes on your facet, if you prefer.

Policy API Overview

Policies 11

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachPolicy.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachPolicy.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_PolicyAttachment.html

Amazon Cloud Directory Developer Guide

A variety of specialized API actions are available for working with policies. For a list of available
operations, see Amazon Cloud Directory Actions.

To create a policy object, use the CreateObject API action with an appropriate facet:

• To attach or detach a policy from an object, use the actions AttachPolicy and DetachPolicy
respectively.

• To find policies that are attached to objects up the tree, use the LookupPolicy API action.

• To list the policies that are attached to a particular object, use the ListObjectPolicies API
action.

For a list of operations and the permissions required to perform each API action, see Amazon Cloud
Directory API Permissions: Actions, Resources, and Conditions Reference.

Directory Structure

Data in a directory is structured hierarchically in a tree pattern consisting of nodes, leaf nodes,
and links between the nodes, as shown in the following illustration. This is useful in application
development to model, store, and quickly traverse hierarchical data.

Root Node

The root is the top node in a directory that is used to organize the parent and child nodes in the
hierarchy. This is similar to how folders in a file system can contain subfolders and files.

Directory Structure 12

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectPolicies.html

Amazon Cloud Directory Developer Guide

Node

A node represents an object that can have child objects. For example, a node can logically
represent a group of managers whereby various user objects are the children, or leaf nodes. A node
object can only have one parent.

Leaf Node

A leaf node represents an object with no children that may or may not be directly connected
to a parent node. For example, a user or device object. A leaf node object can have multiple
parents. While leaf node objects are not required to be connected to a parent node, it is strongly
recommended that you do so, since without a path from the root, the object can only be accessed
by it’s NodeId. If you misplace the id of such an Object, you will have no way to locate it again.

Node Link

The connection between one node and another. Cloud Directory supports a variety of link types
between nodes, including parent-child links, policy links, and index attribute links.

Node 13

Amazon Cloud Directory Developer Guide

Schemas

With Amazon Cloud Directory, schemas define what types of objects can be created within a
directory (users, devices, and organizations), enforce validation of data for each object class, and
handle changes to the schema over time. More specifically, a schema defines the following:

• One or more types of facets that may be mapped to objects within a directory (such as Person,
Organization_Person)

• Attributes that may be mapped to objects within a directory (such as Name, Description).
Attributes can be required or made optional on various types of facets, and are defined within
the context of a facet.

• Constraints that may be enforced on object attributes (such as Required, Integer, String)

When a schema has been applied to a directory, all data within that directory must then conform
to that applied schema. In this way, the schema definition is essentially a blueprint that can be
used to construct multiple directories with applied schemas. Once built, those applied schemas
may vary from the original blueprint, each in different ways.

Applied schemas can later be updated using versioning and then reapplied to all the directories
that use it. For more information, see In-Place Schema Upgrade.

Cloud Directory provides API operations to create, read, update, and delete schemas. This allows
the contents of the schema to be easily consumed by programmatic agents. Such agents access
the directory to discover the full set of facets, attributes, and constraints that apply to data within
the directory. For more information about the schema APIs, see the Amazon Cloud Directory API
Reference Guide.

Cloud Directory supports uploading a compliant JSON file for schema creation. You can also create
and manage schemas using the AWS Directory Service console. For more information, see Create
an Amazon Cloud Directory.

Topics

• Schema Lifecycle

• Facets

• In-Place Schema Upgrade

• Managed Schema

14

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/welcome.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/welcome.html

Amazon Cloud Directory Developer Guide

• Sample Schemas

• Custom Schemas

• Attribute References

• Attribute Rules

• Format Specification

Schema Lifecycle

Cloud Directory offers a schema lifecycle to help with the development of schemas. This lifecycle
consists of three states: Development, Published, and Applied. These states are designed to
facilitate construction and distribution of schemas. Each of these states has different features
aiding this effort.

The following diagram depicts possible transitions and verbiage. All schema transitions are
copy-on-write. For example, publishing a development schema does not alter or remove the
development schema.

You can delete a schema when it is in either the Development or Published state. Deleting a
schema cannot be undone nor can it be restored once it has been deleted.

Schemas in Development, Published and Applied states have ARNs that represent them. These
ARNs are used in API operations to describe the schema that the API operates on. It is easy to
discern the state of a schema by looking at a schema ARN.

• Development: arn:aws:clouddirectory:us-east-1:1234567890:schema/
development/SchemaName

Schema Lifecycle 15

Amazon Cloud Directory Developer Guide

• Published: arn:aws:clouddirectory:us-east-1:1234567890:schema/
published/SchemaName/Version

• Applied: arn:aws:clouddirectory:us-east-1:1234567890:directory/directoryid/
schema/SchemaName/Version

Development State

Schemas are initially created in the development state. Schemas in this state are fully mutable. You
can freely add or remove facets and attributes. The majority of schema design occurs in this state.
Schemas in this state have a name but no version.

Published State

The published schema state stores schemas that are ready to be applied to data directories.
Schemas are published from the development state into the published state. You cannot
change schemas in the published state. You can apply published schemas to any number of data
directories.

Published and applied schemas must have a version associated with them. For more information
about versions, see Schema Versioning.

Applied State

A published schema can be applied to data directories. A schema that has been applied to a data
directory is said to be applied. Once you apply a schema to a data directory, you can use the
schema's facets when creating objects. You can apply multiple schemas to the same data directory.
Only the following changes are permitted on an applied schema.

• Add a facet to an applied schema

• Add a non-required attribute to an applied schema

Facets

Facets are the most basic abstraction within a schema. They represent a set of attributes that can
be associated with an object in the directory and are similar in concept to LDAP object classes.
Each directory object may have up to a certain number of facets associated with it. For more
information, see Amazon Cloud Directory Limits.

Development State 16

Amazon Cloud Directory Developer Guide

Each facet maintains its own independent set of attributes. Each facet consists of fundamental
metadata, such as the facet name, version information, and behaviors. The combination of schema
ARNs, facets, and attributes define uniqueness on the object.

The set of object facets, their constraints, and the relationships between them constitute an
abstract schema definition. Schema facets are used to define constraints over the following things:

1. Attributes allowed in an object

2. Policy types allowed to apply to an object

Once you have added the necessary facets to your schema, you can apply the schema to your
directory and create the applicable objects. For example, you can define a device schema by adding
facets such as computers, phones, and tablets. You can then use these facets to create computer
objects, phone objects, and tablet objects in the directory to which the schema applies.

Cloud Directory’s schema support makes it easy to add or modify facets and attributes without
worrying about breaking applications. For more information, see In-Place Schema Upgrade.

In-Place Schema Upgrade

Cloud Directory offers the updating of existing schema attributes and facets to help integrate your
applications with AWS provided services. Schemas that are in either the published or applied states
have versions and cannot be changed. For more information, see Schema Lifecycle.

Schema Versioning

A schema version indicates a unique identifier for a schema that developers can specify when
programming their applications to conform to certain rules and formatting of data. Two key
differentiators in the way versioning works with Cloud Directory are important for developers to
understand. These differentiators—major version and minor version—can determine how future
schema upgrades impact your application.

Major Version

Major version is the version identifier used for tracking major version changes for a schema.
It can be up to 10 characters in length. Different versions of the same schema are completely
independent. For example, two schemas with the same name and different versions are treated as
completely different schemas, which have their own namespaces.

In-Place Schema Upgrade 17

Amazon Cloud Directory Developer Guide

Backward incompatible changes

We recommend making changes to the major version only when schemas are incompatible. For
example, when changing the data type of an existing attribute (such as changing from string to
integer) or dropping a mandatory attribute from your schema. Backward-incompatible changes
require directory data migration from a previous schema version to the new schema version.

Minor Version

Minor version is the version identifier used for in-place upgrading of schemas or when you want
to make backward-compatible upgrades such as adding additional attributes or adding facets. An
upgraded schema using a minor version can be applied in place across all directories that use it
without breaking any running applications. This includes directories that are used in production
environments. For an example use case, see “How to Easily Apply Amazon Cloud Directory Schema
Changes with In-Place Schema Upgrades” in the Cloud Directory Blog.

The minor version information and history is saved along with the other schema information in
the schema metadata repository. No minor version information is retained in the objects. The
advantage of introducing minor version is that client code works seamlessly as long as the major
version is not changed.

Minor Version Limits

Cloud Directory retains and therefore limits up to five minor versions. However, minor version
limits are enforced differently for published and applied schemas in the following ways:

• Applied schemas: Once the minor version limit has been exceeded, Cloud Directory deletes the
oldest minor version automatically.

• Published schemas: Once the minor version limit has been exceeded, Cloud Directory does not
delete any of the minor versions but it does inform the user via a LimitExceededException
that the limit has been exceeded. Once you exceed the minor version limits, you can either delete
the schema by using the DeleteSchema API or request a limit raise.

Using the Schema Upgrade API Operations

You can use the UpgradePublishedSchema API call to upgrade published schemas. Schema
upgrades are applied in place to the directories that rely on it using the UpgradeAppliedSchema
API call. You can also fetch the major and minor version of an applied schema by calling
GetAppliedSchemaVersions. Or view the associated schema ARNs and schema revision history

Using the Schema Upgrade API Operations 18

https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DeleteSchema.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpgradePublishedSchema.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpgradeAppliedSchema.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetAppliedSchemaVersion.html

Amazon Cloud Directory Developer Guide

for a directory by calling ListAppliedSchemaArns. Cloud Directory maintains the five most
recent versions of applied schema changes.

For an illustrative example, see “How to Easily Apply Amazon Cloud Directory Schema Changes
with In-Place Schema Upgrades” in the Cloud Directory Blog. The blog post will demonstrate how
you perform an in-place schema upgrade and use schema versions in Cloud Directory. It covers
how to add additional attributes to an existing facet, add a new facet to a schema, publish the new
schema, and apply it to running directories to complete the upgrading of a schema in-place. It also
shows how to view the version history of a directory schema, which helps to ensure the directory
fleet is running the same version of the schema and has the correct history of schema changes
applied to it.

Managed Schema

Cloud Directory makes it easy for you to rapidly develop applications by using a managed schema.
With a managed schema, you can create a directory and start creating and retrieving objects from
it at a faster pace. For more information, see Create Your Directory.

Currently, there is one managed schema, called the QuickStartSchema. You can build a rich
hierarchical data model and establish relationships across objects by using constructs such as
Typed Links. You can then query for any information in your data by traversing the hierarchy.

The QuickStartSchema managed schema is represented by the following JSON:

QuickStartSchema: {
 "facets": {
 "DynamicObjectFacet": {
 "facetStyle": "DYNAMIC"
 },
 "DynamicTypedLinkFacet": {
 "facetAttributes": {
 "DynamicTypedLinkAttribute": {
 "attributeDefinition": {
 "attributeRules": {},
 "attributeType": "VARIANT",
 "isImmutable": false
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "identityAttributeOrder": [

Managed Schema 19

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListAppliedSchemaArns.html
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/

Amazon Cloud Directory Developer Guide

 "DynamicAttribute"
]
 }
 }
}

QuickStartSchema ARN

The QuickStartSchema managed schema uses the following ARN:

String QUICK_START_SCHEMA_ARN = "arn:aws:clouddirectory:::schema/managed/
quick_start/1.0/001" ;

For example, you could use this ARN to create a directory called ExampleDirectory as shown
below:

CreateDirectoryRequest createDirectoryRequest = new CreateDirectoryRequest()
 .withName("ExampleDirectory") // Directory name
 .withSchemaArn(QUICK_START_SCHEMA_ARN);

Facet Styles

There are two different styles that you can define on any given facet, Static and Dynamic.

Static Facets

Static facets are the best choice when you have all the details of your data model for your
directory, such as a list of attributes with their data types, and you also want to define constraints
for your attributes such as mandatory or unique fields. Cloud Directory will enforce the data
constraints and rule checking during your object creation or change.

Dynamic Facets

You can use a dynamic facet when you need flexibility to change the number of attributes or
change the data values being stored within your attributes. Cloud Directory does not enforce any
data constraints and rule checking during your object creation or change.

After creating a schema with dynamic facets, you can define any attributes that you need while
creating objects. Cloud Directory will accept the attributes as key-value pairs and store them on
their provided objects.

Facet Styles 20

Amazon Cloud Directory Developer Guide

You can add a dynamic facet to a new or existing schema. You can also combine the static and
dynamic facets within a single schema to get benefits for each style of facet within your directory.

When you create any attribute using Dynamic facet, they are created as Variant data type. To
store values for the attribute defined as a Variant data type, you can use values of any of the
primitive data types supported in Cloud Directory, such as String or Binary. Over time, you
can also change the value of the attribute to another datatype. There is no enforcement of data
validation.

You can use dynamic facets to define objects of the following type:

• NODE

• LEAF_NODE

• POLICY

For additional details about managed schemas, dynamic facets or variant data types and to see
example use cases, see How to rapidly develop applications on Amazon Cloud Directory using AWS
Managed Schema in the Amazon Cloud Directory blog.

Sample Schemas

Cloud Directory comes ready with sample schemas for Organizations, Persons, and Devices. The
following section lists the various sample schemas and lists the differences for each.

Organizations

The following tables list the facets that are included in the Organizations sample schema.

"Organization" Facet Data
Type

Length Required
Behavior?

Description

account_id String 1024 N Unique id for Organization

account_name String 1024 N Name of Organization

organization_status String 1024 N Status such as 'active', 'suspended',
'inactive', 'closed'

Sample Schemas 21

https://aws.amazon.com/blogs/database/rapidly-develop-applications-on-amazon-cloud-directory-with-managed-schema/
https://aws.amazon.com/blogs/database/rapidly-develop-applications-on-amazon-cloud-directory-with-managed-schema/

Amazon Cloud Directory Developer Guide

"Organization" Facet Data
Type

Length Required
Behavior?

Description

mailing_address
(street1)

String 1024 N A physical mailing address for this
company/entity

mailing_address
(street2)

String 1024 N A physical mailing address for this
company/entity

mailing_address (city) String 1024 N A physical mailing address for this
company/entity

mailing_address (state) String 1024 N A physical mailing address for this
company/entity

mailing_address
(country)

String 1024 N A physical mailing address for this
company/entity

mailing_address
(postal_code)

String 1024 N A physical mailing address for this
company/entity

email String 1024 N Email id for Organization

web_site String 1024 N Website URL

telephone_number String 1024 N Telephone number for Organization

description String 1024 N Description for Organization

"Legal_Entity" Facet Data
Type

Length Required
Behavior?

Description

registered_company
_name

String 1024 N Legal entity name

mailing_address
(street1)

String 1024 N A physical registered address for this
company/entity

Organizations 22

Amazon Cloud Directory Developer Guide

"Legal_Entity" Facet Data
Type

Length Required
Behavior?

Description

mailing_address
(street2)

String 1024 N A physical registered address for this
company/entity

mailing_address (city) String 1024 N A physical registered address for this
company/entity

mailing_address (state) String 1024 N A physical registered address for this
company/entity

mailing_address
(country)

String 1024 N A physical registered address for this
company/entity

mailing_address
(postal_code)

String 1024 N A physical registered address for this
company/entity

industry_vertical String 1024 N Industry Segment

billing_currency String 1024 N Billing currency

tax_id String 1024 N Tax identification number

Person

The following tables list the facets that are included in the Person sample schema.

"Person" Facet Data Type Length Required
Behavior?

Description

display_name String 1024 N The name of the user,
suitable for display to end-
users.

first_name String 1024 N The given name of the
User, or first name in most
western languages

Person 23

Amazon Cloud Directory Developer Guide

"Person" Facet Data Type Length Required
Behavior?

Description

last_name String 1024 N The family name of the
User, or last name in most
western languages

middle_name String 1024 N The middle name(s) of the
User

nickname String 1024 N The casual way to address
the user in real life, such as,
"Bob" or "Bobby" instead of
"Robert"

email String 1024 N Email address for the user

mobile_phone_number String 1024 N Phone number for the user

home_phone_number String 1024 N Phone number for the user

username String 1024 Y unique identifier for the
user

profile String 1024 N A URI that is a uniform
resource locator and
that points to a location
representing the user's
online profile (such as a
webpage)

picture String 1024 N A URI that is a uniform
resource locator that points
to a resource location
representing the user's
image.

website String 1024 N URL

Person 24

Amazon Cloud Directory Developer Guide

"Person" Facet Data Type Length Required
Behavior?

Description

timezone String 1024 N The User's time zone

locale String 1024 N Used to indicate the
User's default location for
purposes of localizing such
items as currency, date
time format, or numerical
representations.

address (street1) String 1024 N A physical mailing address for this
user.

address (street2) String 1024 N A physical mailing address
for this user.

address (city) String 1024 N A physical mailing address
for this user.

address (state) String 1024 N A physical mailing address
for this user.

address (country) String 1024 N A physical mailing address
for this user.

address (postal_code) String 1024 N A physical mailing address
for this user.

user_status String 1024 N Value indicating the user's
administrative status

"Organization_Person"
Facet

Data Type Length Required
Behavior?

Description

title String 1024 N Title in organization

Person 25

Amazon Cloud Directory Developer Guide

"Organization_Person"
Facet

Data Type Length Required
Behavior?

Description

preferred_language String 1024 N Indicates the user's
preferred written or spoken
languages and is generally
 used for selecting a
localized user interface.

employee_id String 1024 N A string identifier, typically
numeric or alphanumeric,
assigned to a person

cost_center Integer 1024 N Identifies the cost center

department String 1024 N Identifies the name of a
department

manager String 1024 N The user's manager

company_name String 1024 N Identifies the name of an
organization

company_address
(street1)

String 1024 N A physical mailing address
for the organization

company_address
(street2)

String 1024 N A physical mailing address
for the organization

company_address (city) String 1024 N A physical mailing address
for the organization

company_address (state) String 1024 N A physical mailing address
for the organization

company_address
(country)

String 1024 N A physical mailing address
for the organization

Person 26

Amazon Cloud Directory Developer Guide

"Organization_Person"
Facet

Data Type Length Required
Behavior?

Description

company_address
(postalCode)

String 1024 N A physical mailing address
for the organization

Device

The following table lists the facet that is included in the Device sample schema.

"Device" Facet Data
Type

Length Required
Behavior?

Description

device_id String 1024 N Alpha-numeric unique
device id

name String 1024 N Friendly name for device

description String 1024 N Description for device

X.509_cer
tificates

String 1024 N X.509 Certificate

device_version String 1024 N Device version

device_os_type String 1024 N Operating System on
device

device_os
_version

String 1024 N Operating System version
number on device

serial_number String 1024 N Serial number of device

device_status String 1024 N Status for device (such
as active, not_active,
suspended, shutdown, off)

Device 27

Amazon Cloud Directory Developer Guide

Custom Schemas

The first step in creating a custom schema is to define exactly what fields you must index. These
required fields form your schema's skeleton elements, to which you add your own fields. Map the
name and type of each field (such as string, integer, Boolean) to your object's structure. You can
define a schema with types and constraints and then apply them to a directory. Once defined,
Cloud Directory performs validation for attributes.

For more information, see Create a Schema.

Attribute References

Amazon Cloud Directory facets contain attributes. Attributes can be either an attribute definition
or an attribute reference. Attribute definitions are attributes that declare their name and primitive
type (string, binary, Boolean, DateTime, or number). They can also optionally declare their required
behavior, default value, immutable flag, and attribute rules (such as min/max length).

Attribute references are attributes that derive their primitive type, default value, immutable flag
and attribute rules from another preexisting attribute definition. Attribute references do not have
their own primitive type, default values, immutable flag or rules, since those properties come from
the target attribute definition.

Attribute references may override the required behavior of a target definition (more details about
this below).

When you create an attribute reference, you provide only an attribute name and the target
attribute definition (which includes the facet name and attribute name of the target attribute
definition). Attribute references may not refer to other attribute references. Also, at this time,
attribute references may not target attribute definitions from a different schema.

You can use an attribute reference when you want two or more attributes on an object to
refer to the same storage location. For example, imagine an object that has a User facet and
an EnterpriseUser facet applied. The User facet has a FirstName attribute definition, while
the EnterpriseUser facet has an attribute reference pointing at User.FirstName. Since both
FirstName attributes refer to the same storage location on the object, any change to either the
User.FirstName or the EnterpriseUser.FirstName has the same effect.

Custom Schemas 28

Amazon Cloud Directory Developer Guide

API Example

The following example demonstrates the use of attribute references using the Cloud Directory
API. In this example, a base facet contains an attribute definition, and another facet contains
an attribute referring to an attribute in the base facet. Note that the reference attribute can be
marked Required while the base facet is Not Required.

 // create base facet
 CreateFacetRequest req1 = new CreateFacetRequest()
 .withSchemaArn(devSchemaArn)
 .withName("baseFacet")
 .withAttributes(List(
 new FacetAttribute()
 .withName("baseAttr")
 .withRequiredBehavior(RequiredAttributeBehavior.NOT_REQUIRED)
 .withAttributeDefinition(new
 FacetAttributeDefinition().withType(FacetAttributeType.STRING))))
 .withObjectType(ObjectType.DIRECTORY)
 cloudDirectoryClient.createFacet(req1)

 // create another facet that refers to the base facet
 CreateFacetRequest req2 = new CreateFacetRequest()
 .withSchemaArn(devSchemaArn)
 .withName("facetA")
 .withAttributes(List(
 new FacetAttribute()
 .withName("ref")
 .withRequiredBehavior(RequiredAttributeBehavior.REQUIRED_ALWAYS)
 .withAttributeReference(new FacetAttributeReference()
 .withTargetFacetName("baseFacet")
 .withTargetAttributeName("baseAttr"))))
 .withObjectType(ObjectType.DIRECTORY)
 cloudDirectoryClient.createFacet(req2)

JSON Example:

The following example demonstrates the use of attribute references in a JSON model. The schema
represented by this model is identical to the model above.

 {
 "facets" : {
 "baseFacet" : {

API Example 29

Amazon Cloud Directory Developer Guide

 "facetAttributes" : {
 "baseAttr" : {
 "attributeDefinition" : {
 "attributeType" : "STRING"
 },
 "requiredBehavior" : "NOT_REQUIRED"
 }
 },
 "objectType" : "DIRECTORY"
 },
 "facetA" : {
 "facetAttributes" : {
 "ref" : {
 "attributeReference" : {
 "targetFacetName" : "baseFacet",
 "targetAttributeName" : "baseAttr"
 },
 "requiredBehavior" : "REQUIRED_ALWAYS"
 }
 },
 " objectType" : "DIRECTORY"
 }
}

Attribute reference considerations

Attribute references must target a preexisting attribute definition in the same schema.

• Attribute references may target a preexisting attribute definition in the same facet or a different
facet.

• Attribute references may not target other attribute references.

• Facets containing attribute definitions that are the target of another facet's attribute reference
cannot be deleted until all references have been deleted.

You can use attribute references the same way that you use traditional attribute definitions, by
creating objects or applying facets to existing objects.

Note

You can apply facets with references to other facets but are not required to apply the target
facets directly. When the target facet is not applied, there is no change to the behavior of

JSON Example: 30

Amazon Cloud Directory Developer Guide

the attribute reference. (You need to apply target facets only when you want the other
attributes on that facet to exist on the object.)

Setting Attribute Reference Values

You can call the UpdateObjectAttributes API action when you want to change the value of an
attribute. Updating (or deleting) either the definition or any other reference to that same definition
on that object has the same effect.

Getting Attribute Reference Values

You can call the ListObjectAttributes API action to retrieve storage aliases. This call returns a list
of tuples, each of which contains an attribute key and its associated value. The attribute keys
correspond to the list of storage aliases present on that object.

Note

It is possible for an attribute key to be returned for a facet that was not explicitly applied to
an object. This can happen when attribute references target facets that are not applied to
the object.

For example, imagine that you have a User facet and an EnterpriseUser facet. The
EnterpriseUser.FirstName attribute refers to User.FirstName. You then apply both the
User and EnterpriseUser facets to an object, set User.FirstName to Robert, and later set
EnterpriseUser.FirstName to Bob. When you call ListObjectAttributes you see only "User.FirstName
= Bob" since there is only one storage alias for both FirstName attributes.

Using Indexes with Attribute References

You can can create indexes with an attribute definition only, not a reference. Listing an index does
not return attribute keys for attribute references. But it does return attribute keys for any attribute
definitions that are targeted by references existing on the indexed object. In other words, at the
index layer, attribute references are treated merely as an alternative identifier for an attribute,
which gets resolved to the correct attribute definition identifier at runtime.

For example, imagine you have an Index for facet User attribute FirstName. You attach an
object with only the EnterpriseUser facet applied. You then set the value for that object's

JSON Example: 31

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateObjectAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectAttributes.html

Amazon Cloud Directory Developer Guide

EnterpriseUser.FirstName attribute to Bob. Finally, you call ListIndex action. The results contain
only "User.FirstName = Bob".

Required Behavior for Attribute References

An attribute references can have a required behavior that is different from its target attribute
definition. This allows a base definition to be optional, while a reference to that same definition
can be required. When an object has a base definition and one or more references to the same base
definition, the base definition and all references must adhere to the strongest required behavior
present across all related attributes.

• As with attribute definitions, you must provide values for any required attribute definitions when
you create the object or when you add a facet to an existing object.

• As a convenience, when more than one attribute on an object refers to the same storage
location, you only need to provide a value for one of the attributes for that storage location.

• Similarly, if you do provide multiple values for the same storage location, the values must be
equal.

Attribute Rules

Rules describe permissible values of an attribute type and constrain the values that are allowed for
any particular attribute. You must specify rules as part of an attribute definition when you create a
facet. Cloud Directory supports the following rule types:

• String length

• Binary length

• String from set

• Number comparison

String length

Constrains the length of a string attribute value.

Allowed rule parameter keys: min, max

Allowed rule parameter values: number

Binary length

Attribute Rules 32

Amazon Cloud Directory Developer Guide

Constrains the byte array length of a binary attribute value.

Allowed rule parameter keys: min, max

Allowed rule parameter values: number

String from set

Constrains the value of a string attribute to the allowed set of specified strings.

Allowed rule parameter keys: allowedValues

Allowed rule parameter values: Set of strings with each string to be UTF-8 encoded

Allowed values are comma delimited and can be wrapped in quotes. This is useful when allowed
values include comma’s. For example:

• One,two,three = matches One two or three

• “with,comma”,”withoutcomma” = matches “with,comma” or “withoutcomma”

• with”quote,withoutquote matches ‘with”quote’ or ‘withoutquote’

Number comparison

Constraints the numeric value allowed for a number attribute.

Allowed rule parameter keys: min, max

Allowed rule parameter values: number

Format Specification

A Cloud Directory schema adds structure to the data in your data directories. Cloud Directory
provides two mechanisms for you to define your schema. Developers can use specific API
operations to construct a schema or they can upload a schema entirely using schema upload
capabilities. Schema documents can be uploaded via API calls or through the console. This section
describes the format to use when you upload entire schema documents.

JSON Schema Format

A schema document is a JSON document in the following overall format.

Format Specification 33

Amazon Cloud Directory Developer Guide

{
 "facets": {
 "facet name": {
 "facetAttributes": {
 "attribute name": Attribute JSON Subsection
 }
 }
 }
}

A schema document contains a map of facet names to facets. Each facet in turn contains a map
containing attributes. All facet names within a schema must be unique. All attribute names within a
facet must be unique.

Attribute JSON Subsection

Facets contain attributes. Each attribute defines the type of value that can be stored on an
attribute. The following JSON format describes an attribute.

{
 "attributeDefinition": Attribute Definition Subsection,
 "attributeReference": Attribute Reference Subsection,
 "requiredBehavior": "REQUIRED_ALWAYS" or "NOT_REQUIRED"
}

You must provide either an attribute definition or an attribute reference. See related subsections
for more information about each.

The required behavior field indicates whether this attribute is required or not. You must provide
this field. Possible values are as follows:

• REQUIRED_ALWAYS: This attribute must be provided when the object is created or a facet is
added to the object. You cannot remove this attribute.

• NOT_REQUIRED: This attribute may or may not be present.

Attribute Definition Subsection

An attribute defines the type and the rules associated with an attribute value. The following JSON
layout describes the format.

JSON Schema Format 34

Amazon Cloud Directory Developer Guide

{
 "attributeType": One of "STRING", "NUMBER", "BINARY", "BOOLEAN" or "DATETIME",
 "defaultValue": Default Value Subsection,
 "isImmutable": true or false,
 "attributeRules": "Attribute Rules Subsection"
}

Default Value Subsection

Specify exactly one of the following default values. Long values and Boolean values should be
provided outside of quotes (as their respective Javascript types instead of strings). Binary values
are provided using a URL-safe Base64 encoded string (as described in RFC 4648). Datetimes are
provided in the number of milliseconds since the epoch (00:00:00 UTC on Jan 1, 1970).

{
 "stringValue": "a string value",
 "longValue": an integer value,
 "booleanValue": true or false,
 "binaryValue": a URL-safe Base64 encoded string,
 "datetimeValue": an integer value representing milliseconds since epoch
}

Attribute Rules Subsection

Attributes rules define constraints on attribute values. You can define multiple rules for each
attribute. Attribute rules contain a rule type and a set of parameters for the rule. You can find more
details in the Attribute Rules section.

{
 "rule name": {
 "parameters": {
 "rule parameter key 1": "value",
 "rule parameter key 2": "value"
 },
 "ruleType": "rule type value"
 }
}

JSON Schema Format 35

Amazon Cloud Directory Developer Guide

Attribute Reference Subsection

Attribute references are an advanced feature. They allow multiple facets to share an attribute
definition and stored value. See the Attribute References section for more information. You can
define an attribute reference in JSON schema with the following template.

{
 "targetSchemaArn": "schema ARN"
 "targetFacetName": "facet name"
 "targetAttributeName": "attribute name"
}

Schema Document Examples

The following are samples of schema documents that show valid JSON formatting.

Note

All values expressed in the allowedValues string must be comma separated and be
without spaces. For example, "SENSITIVE,CONFIDENTIAL,PUBLIC".

Basic Schema Document

{
 "facets": {
 "Employee": {
 "facetAttributes": {
 "Name": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": false,
 "attributeRules": {
 "NameLengthRule": {
 "parameters": {
 "min": "3",
 "max": "100"
 },
 "ruleType": "STRING_LENGTH"
 }
 }

Schema Document Examples 36

Amazon Cloud Directory Developer Guide

 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "EmailAddress": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {
 "EmailAddressLengthRule": {
 "parameters": {
 "min": "3",
 "max": "100"
 },
 "ruleType": "STRING_LENGTH"
 }
 }
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "Status": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": false,
 "attributeRules": {
 "rule1": {
 "parameters": {
 "allowedValues": "ACTIVE,INACTIVE,TERMINATED"
 },
 "ruleType": "STRING_FROM_SET"
 }
 }
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "LEAF_NODE"
 },
 "DataAccessPolicy": {
 "facetAttributes": {
 "AccessLevel": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {

Schema Document Examples 37

Amazon Cloud Directory Developer Guide

 "rule1": {
 "parameters": {
 "allowedValues": "SENSITIVE,CONFIDENTIAL,PUBLIC"
 },
 "ruleType": "STRING_FROM_SET"
 }
 }
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "POLICY"
 },
 "Group": {
 "facetAttributes": {
 "Name": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "NODE"
 }
 }
}

Schema Document with Typed Links

{
 "sourceSchemaArn": "",
 "facets": {
 "employee_facet": {
 "facetAttributes": {
 "employee_login": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },

Schema Document Examples 38

Amazon Cloud Directory Developer Guide

 "employee_id": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "employee_name": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "employee_role": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "LEAF_NODE"
 },
 "device_facet": {
 "facetAttributes": {
 "device_id": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "device_type": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"

Schema Document Examples 39

Amazon Cloud Directory Developer Guide

 }
 },
 "objectType": "NODE"
 },
 "region_facet": {
 "facetAttributes": {},
 "objectType": "NODE"
 },
 "group_facet": {
 "facetAttributes": {
 "group_type": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "NODE"
 },
 "office_facet": {
 "facetAttributes": {
 "office_id": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "office_type": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "office_location": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": true,
 "attributeRules": {}

Schema Document Examples 40

Amazon Cloud Directory Developer Guide

 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "objectType": "NODE"
 }
 },
 "typedLinkFacets": {
 "device_association": {
 "facetAttributes": {
 "device_type": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": false,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 },
 "device_label": {
 "attributeDefinition": {
 "attributeType": "STRING",
 "isImmutable": false,
 "attributeRules": {}
 },
 "requiredBehavior": "REQUIRED_ALWAYS"
 }
 },
 "identityAttributeOrder": [
 "device_label",
 "device_type"
]
 }
 }
}

Schema Document Examples 41

Amazon Cloud Directory Developer Guide

Directory Objects

Developers model directory objects using extensible schemas to enforce data correctness
constraints automatically, making it easier to program for. Amazon Cloud Directory offers rich
information lookup based on your defined indexed attributes, thus enabling fast tree traversals and
searches within the directory trees. Cloud Directory data is encrypted at rest and in transit.

An object is a basic element of Cloud Directory. Each object has a globally unique identifier, which
is specified by the object Identifier. An object is a collection of zero or more facets with their
attribute keys and values. An object can be created from one or more facets within a single applied
schema or from facets of multiple applied schemas. During object creation, you must specify all
required attribute values. Objects can have a limited number of facets. For more information, see
Amazon Cloud Directory Limits.

An object can be a regular object, a policy object, or an index object. An object can also be a node
object or a leaf node object. The type of the object is inferred from the object type of the facets
attached to it.

Topics

• Links

• Range Filters

• Access Objects

• Consistency Levels

Links

A link is a directed edge between two objects that define a relationship. Cloud Directory currently
supports the following link types.

Links 42

Amazon Cloud Directory Developer Guide

Child Links

A child link creates a parent–child relationship between the objects it connects. For example, in
the above illustration child link b connects objects 001 and 003. Child links define the hierarchy in
Cloud Directory. Child links have names when they participate in defining the path of the object
that the link points to.

Attachment Links

An attachment link applies a leaf node policy object to another leaf node or a node object.
Attachment links do not define the hierarchical structure of Cloud Directory. For example, in the
above illustration, attachment link applies the policy stored in policy leaf node object 006 on node
object 002 . Each object can have multiple policies attached but not more than one policy of any
given policy type can be attached.

Index Links

Index links provide rich information lookup based on an index object and your defined indexed
attributes, thus enabling fast tree traversals and searches within the directory trees. Conceptually,
indexes are similar to nodes with children: The links to the indexed nodes are labeled according to
the indexed attributes, rather than being given a label when the child is attached. However, index

Child Links 43

Amazon Cloud Directory Developer Guide

links are not parent-child edges, and have their own set of enumeration API operations. For more
information, see Indexing and Search.

Typed Links

Typed Links enable you to establish a relationship between objects within or across hierarchies in
Cloud Directory. You can then use these relationships to query for information, such as Which users
have device ‘xyz’ or What devices are owned by user ‘abc’.

You can use typed links to model relationships between different objects in your directory. For
example, in the illustration above, consider the relationship between object 004, which represents
a user, and object 005, which represents a device.

We might use a typed link to model an ownership relationship between the two objects. We could
add attributes to the typed link to represent the cost of a purchase, whether the device is rented or
purchased. There are two types of attributes associated with typed links:

• Identity-based attributes – An attribute of a typed link that distinguishes it from other links
(For example, Child, Attachment, Index links). Each typed link facet defines an ordered set of
identity attributes. The identity of a typed link is the source object id, a facet identifier (type), the
values of its identity attributes (defined by its facet), and the target object id. Identifiers must be
unique within a single directory.

• Optional attributes - An attribute that stores tracking characteristics about the typed link that
are unrelated to the identity of the link. For example, an optional attribute might identify the
date the typed link was first established or when it was last modified.

As with objects, you must create a typed link facet using the CreateTypedLinkFacet API to
define the typed link structure and its attributes. Typed link facets require a unique facet name
and set of attributes that are associated with the link. When designing your typed link structure,
you can define an ordered set of attributes on the typed link facet. To view a typed links sample
schema, see Schema Document with Typed Links.

Typed link attributes can be used when you need to do any of the following:

• Allow for filtering of incoming or outgoing typed links. For more information, see Typed Link
Listing.

• Represent the relationship between two objects.

• Track administrative data about your typed link, such as the date the link was created.

Typed Links 44

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateTypedLinkFacet.html

Amazon Cloud Directory Developer Guide

Consider the following when deciding if typed links are right for your use case:

• Typed links cannot be used in path-based object specification. Instead, you must select typed
links using the ListOutgoingTypedLinks or ListIncomingTypedLinks API operations.

• Typed links do not participate in LookupPolicy or ListObjectParentPaths API operations.

• Typed links between the same two objects and in the same direction may not have the same
attribute values. This can help avoid duplicated typed links between the same objects.

• Additional attributes can be used when you want to add optional information.

• The combined size of all identity attribute values is limited to 64 bytes. For more information,
see Amazon Cloud Directory Limits.

Related Cloud Directory Blog Article

• Use Amazon Cloud Directory Typed Links to Create and Search Relationships Across Hierarchies

Typed Link Identity

Identity is what uniquely defines whether a typed link can exist between two objects. The
exception is when you connect two objects in one direction with the exact same attribute values.
Attributes must be configured as REQUIRED_ALWAYS.

Typed links that are created from different typed link facets never conflict with each other. For
example, consider the following diagram:

Typed Links 45

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIncomingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_LookupPolicy.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectParentPaths.html
https://aws.amazon.com/blogs/security/new-use-amazon-cloud-directory-typed-links-to-create-and-manage-relationships-in-your-directory/

Amazon Cloud Directory Developer Guide

• Object 001 has typed links and attributes (A1 and A2) with the same attribute values (x1 and x2)
going to different objects (002 and 003). This operation would succeed.

• Objects 002 and 003 have a typed link between them. This operation would fail because two
typed links in the same direction with the same attributes cannot exist between objects.

• Objects 001 and 003 have two typed links between them with the same attributes. However,
since the links go in different directions, this operation would succeed.

• Objects 002 and 003 have typed links between them with the same value for A1 but different
values for A2. Typed link identity considers all attributes so this operation would succeed.

Typed Link Rules

You can add rules to typed link attributes when you want to add restrictions to link attributes.
These rules are equivalent to rules on object attributes. For more information, see Attribute Rules.

Typed Links 46

Amazon Cloud Directory Developer Guide

Typed Link Listing

Cloud Directory provides API operations that you can use to select incoming or outgoing typed
links from an object. You can select a specific subset of typed links rather than iterating over every
typed link. You can also specify a particular typed link facet to filter only typed links of that type.

You can filter typed links based on the order that the attributes are defined on the typed link
facet. You can provide range filters for multiple attributes. When providing ranges to a typed link
selection, any inexact ranges much be specified at the end. Any attributes with no range specified
are presumed to match the entire range. Filters are interpreted in the order of the attributes that
are defined on the typed link facet, not the order they are supplied to any API calls.

For example, in the following diagram, consider a Cloud Directory that is used to store information
about Employees and their Abilities.

Let’s say we model our employee’s capabilities with a typed link named EmployeeCapability,
which is configured with three string attributes: Status, Role and Created. The following filters
are supported on ListIncomingTypedLinks and ListOutgoingTypedLinks API operations.

Typed Links 47

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIncomingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html

Amazon Cloud Directory Developer Guide

• Facet = EmployeeCapability, Status = Active, Role = Driver

• Selects active employees who are drivers. This filter includes two exact matches.

• Facet = EmployeeCapability, Status = Active, Role = Driver, Created = 05/31/18

• Selects active employees who are drivers and who's facets were created on or after May 31st,
2018.

• Facet = EmployeeCapability, Status = Active

• Selects all active employees.

• Facet = EmployeeCapability, Status = Active, Role = A to M

• Selects active employees with roles starting with A through M.

• Facet = EmployeeCapability

• This selects all typed links of the EmployeeCapability type.

The following filters would NOT be supported:

• Facet = EmployeeCapability, Status between A to C, Role = Driver

• This filter is not allowed because any ranges must appear at the end of the filter.

• Facet = EmployeeCapability, Role = Driver

• This filter is not allowed because the implicit status range is not an exact match and does not
appear at the end of the list of ranges.

• Status = Active

• This filter is not allowed because the typed link facet is not specified.

Typed Link Schema

You can create typed link facets in two ways. You can manage your typed link facets from
individual API calls, including CreateTypedLinkFacet, DeleteTypedLinkFacet, and
UpdateTypedLinkFacet. You can also upload a JSON document that represents your schema in
a single PutSchemaFromJson API call. For more information, see JSON Schema Format. To view a
typed links sample schema, see Schema Document with Typed Links.

The types of changes allowed at different phases of the schema development lifecycle are
similar to changes that are allowed for object facet manipulation. Schemas in the development
state support any changes. Schemas in the published state are immutable and no changes are
Typed Links 48

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DeleteTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_PutSchemaFromJson.html

Amazon Cloud Directory Developer Guide

supported. Only certain changes are allowed to schemas that are applied to a data directory. Once
you set the order and attributes on an applied typed link facet, that order cannot be changed.

Two other API operations list facets and their attributes:

• ListTypedLinkFacetAttributes

• ListTypedLinkFacetNames

Typed Link Interaction

Once a typed link facet has been created, you are ready to start creating and interacting with typed
links. To attach and detach typed links, use the AttachTypedLink and DetachTypedLink API
operations.

The TypedLinkSpecifier is a structure that contains all the information to uniquely
identify a typed link. Within that structure you can find TypedLinkFacet, SourceObjectID,
DestinationObjectID, and IdentityAttributeValues. These are used to uniquely
specify the typed link being operated on. The AttachTypedLink API operation returns a typed
link specifier while the DetachTypedLink API operation accepts one as input. Similarly, the
ListIncomingTypedLinks and ListOutgoingTypedLinks API operations provide typed link
specifiers as output. You can construct a typed link specifier from scratch as well. The full list of
typed link-related API operations, include the following:

• AttachTypedLink

• CreateTypedLinkFacet

• DeleteTypedLinkFacet

• DetachTypedLink

• GetLinkAttributes

• GetTypedLinkFacetInformation

• ListIncomingTypedLinks

• ListOutgoingTypedLinks

• ListTypedLinkFacetNames

• ListTypedLinkFacetAttributes

• UpdateLinkAttributes

Typed Links 49

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListTypedLinkFacetAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListTypedLinkFacetNames.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIncomingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DeleteTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetLinkAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetTypedLinkFacetInformation.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIncomingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListTypedLinkFacetNames.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListTypedLinkFacetAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateLinkAttributes.html

Amazon Cloud Directory Developer Guide

• UpdateTypedLinkFacet

Note

Attribute references and updating typed links are not supported. To update a typed link,
you must remove it and add the updated version.

Range Filters

Several Cloud Directory list APIs allow specifying a filter in the form of a range. These filters allow
you to efficiently select subsets of the links attached to the specified node.

Ranges are generally supplied as a map (array of key-value pairs) whose keys are attribute
identifiers and whose values are the corresponding ranges. This allows filtering links whose
identities consist of one or more attributes. For example, a TypedLink set up to model a Role
relationship for determining permissions might have both RoleType and Authorizer attributes. A
ListOutgoingTypedLinks call could then specify ranges to filter the result to RoleType:”Admin”
and Authorizer:”Julia”. The map of ranges used to filter a single list request must contain only
attributes that define the link’s identity (an index’s OrderedIndexedAttributeList or a TypedLink’s
IdentityAttributeOrder), but it need not contain ranges for all of them. Missing ranges will
automatically be filled in with ranges that span all possible values (from FIRST to LAST).

If you think of each attribute as defining an independent flat domain of values, the range
structures define two logical points in that domain — the start and end points — and the range
matches all of the possible points in between those points. The StartValue and EndValue of
the range structure define the basis for these two points with the “modes” further refining
them to indicating whether each point itself is to be included or excluded from the range. In the
RoleType:”Admin” example above, the values for the RoleType attribute would both be “Admin”,
and the modes are both “INCLUSIVE” (written as [“Admin” to “Admin”]). A filter for a ListIndex
call where the index is defined on the LastName of a User facet might use StartValue=”D”,
StartMode=INCLUSIVE, EndValue:”G”, EndMode:EXCLUSIVE to narrow the listing to names starting
with D, E, or F.

The start point of a range must always precede or be equal to the end point. Cloud Directory will
return an error if EndValue precedes the StartValue. The values must also be of the same primitive
type as the attribute they are filtering, String values for a String attribute, Integer for an Integer

Range Filters 50

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateTypedLinkFacet.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html

Amazon Cloud Directory Developer Guide

attribute, and so on. StartValue=“D”, StartMode=EXCLUSIVE, EndValue=“D”, EndMode=INCLUSIVE
is invalid, for instance, because the end point includes the value while the start point follows the
value.

There are three special modes that can be used by either start or end points. The following modes
do not require the corresponding value field to be specified, as they imply a position on their own.

• FIRST - precedes all possible values in the domain. When used for the start point, this matches
all possible values from the beginning of the domain up to the end point. When used for the end
point, no values in the domain will match the range.

• LAST - follows all possible values in the domain. When used for the end point, this matches all
possible values that follow the start point, including missing values. When used for the start
point, no values in the domain will match the range.

• LAST_BEFORE_MISSING_VALUES - This mode is only useful for optional attributes where the
value may be omitted (see Missing values). It corresponds to the point between the missing
values and the actual domain values. When used for the end point, this matches all non-missing
domain values that follow the start point. When used for the start point, it excludes all non-
missing domain values. If the attribute is a required one, this mode is equivalent to LAST, as
there can be no missing values.

Multiple range limitations

Cloud Directory limits patterns where there are multiple attributes in order to guarantee efficient,
low-latency request processing. Each link with multiple identifying attributes specifies them in a
well-defined order. For instance, the Role example above defines the RoleType attribute as most
significant, and the Authorizer attribute as least significant. A List request can specify only a single
“qualifying” range that is not either 1) a single value or 2) spans all possible values (there can be
multiple ranges that match these two requirements). Any ranges for more significant attributes
than the qualifying range attribute must specify a single value, and any ranges for less significant
ranges must span all possible values. In the Role example, the filter sets (RoleType:”Admin”,
Authorizer:[“J” to “L”]) (single value + qualifying range), (RoleType:[”Admin” to “User”]) (qualifying
range + implicit spanning range), and (RoleType:[FIRST to LAST]) (two spanning ranges, one
implicit) are all examples of valid filter sets. (RoleType:[FIRST to LAST], Authorizer:”Julia”) is not a
valid set, since the spanning range is more significant than the single value range.

Some useful patterns when filling in the range structures, include:

Matching a single value

Multiple range limitations 51

Amazon Cloud Directory Developer Guide

Specify the value for both StartValue and EndValue, and set both modes to “INCLUSIVE”.

Example: StartValue=“Admin”, StartMode=INCLUSIVE, EndValue=“Admin”,
EndMode=INCLUSIVE

Matching a prefix

Specify the prefix as the StartValue with INCLUSIVE mode, and the first value after the prefix as
EndValue with an EXCLUSIVE mode.

Example: StartValue=“Jo”, StartMode=INCLUSIVE, EndValue=“Jp”,
EndMode=EXCLUSIVE (“p” is the next character value after “o”)

Filtering for Greater Than a value

Specify the value for StartValue with EXCLUSIVE mode, and LAST as the EndMode (or
LAST_BEFORE_MISSING_VALUES to exclude missing values, if applicable).

Example: StartValue=127, StartMode=EXCLUSIVE, EndValue=null, EndMode=LAST

Filtering for Less Than or equal to a value

Specify the value for the EndValue with INCLUSIVE mode, and FIRST as the StartMode.

Missing values

When an attribute is marked as Optional in the schema, it’s value may be “missing” since it
need not have been supplied when the facet was attached or the attribute could have been
subsequently deleted. If the object with such a missing value is attached to an index, the index
link is still present, but moved to the end of the set of links. A ListIndex call will first return
any links where the indexed attributes are all present before returning links where one or more
are missing. This is roughly similar to a relational database NULL value, with these values ordered
after non-NULL values. You can specify whether a range includes these missing values or not
by choosing the LAST or LAST_BEFORE_MISSING_VALUES modes. For example, you provide a
filter to a ListIndex call to return just the missing values in an index by filtering with the range
[LAST_BEFORE_MISSING_VALUES to LAST].

Access Objects

Objects in a directory can be accessed either by path or by objectIdentifier.

Missing values 52

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIndex.html

Amazon Cloud Directory Developer Guide

Path – Every object in a Cloud Directory tree can be identified and found by the pathname that
describes how to reach it. The path starts from the root of the directory (Node 000 in the previous
figure). The path notation begins with the link labeled with a slash (/) and follows the child links
separated by path separator (also a slash) until reaching the last part of the path. For example,
object 005 in the previous figure can be identified using the path /group/a/d. Multiple paths may
identify an object, since objects that are leaf nodes can have multiple parents. The following path
can also be used to identify object 005 : /group/b/e

ObjectIdentifier – Every object in the directory has a unique global identifier, which is the
ObjectIdentifier. ObjectIdentifier is returned as part of the CreateObject API call. You
can also fetch the ObjectIdentifier by using GetObjectInformation API call. For example,
to fetch the object identifier of object 005, you can call GetObjectInformation with object
reference as the path that leads to the object, which is group/b/e or group/a/d.

GetObjectInformationRequest request = new GetObjectInformationRequest()
 .withDirectoryArn(directoryArn)
 .withObjectReference("/group/b/e")
 .withConsistencyLevel(level)
GetObjectInformationResult result = cdClient.getObjectInformation(request)
String objectIdentifier = result.getObjectIdentifier()

Populating Objects

New facets can be added to an object using AddFacetToObject API call. The type of the object
is determined based on the facets attached to the object. Object attachment in a directory works
based on the type of the object. When attaching an object, remember these rules:

• A leaf node object cannot have children.

• A node object can have multiple children.

• An object of the policy type cannot have children and can have zero or one parent.

Updating Objects

You can update an object in multiple ways:

1. Use the UpdateObjectAttributes operation to update individual facet attributes on an
object.

2. Use the AddFacetToObject operation to add new facets to an object.

Populating Objects 53

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetObjectInformation.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AddFacetToObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateObjectAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AddFacetToObject.html

Amazon Cloud Directory Developer Guide

3. Use the RemoveFacetFromObject operation to delete existing facets from an object.

Deleting Objects

An attached object must meet certain conditions before you can delete it from a directory:

1. You must detach the object from the tree. You can detach an object only when it doesn’t have
any children. If the object has children, you must detach all the children first.

2. You can delete a detached object only if all the attributes on that object are deleted. You can
delete attributes on an object by deleting each facet attached to that object. You can fetch a list
of facets attached to an object by calling GetObjectInformation.

3. An object must also have no parent, no policy attachments, and no index attachments.

Because an object must be fully detached from the tree to be deleted, you must use the object
identifier to delete it.

Querying Objects

This section discusses various elements relevant for querying objects in a directory.

Directory Traversal

Because Cloud Directory is a tree, you can query objects from the top down using the
ListObjectChildren API operation or from the bottom up using the ListObjectParents API
operation.

Policy Lookup

Given an object reference, the LookupPolicy API operation returns all the policies that are
attached along its path (or paths) to the root in a top-down fashion. Any of the paths that are not
leading up to the root are ignored. All policy type objects are returned.

If the object is a leaf node, it can have multiple paths to the root. This call returns only one path for
each call. To fetch additional paths, use the pagination token.

Index Querying

Cloud Directory supports rich index querying functionality with the use of the following ranges:

Deleting Objects 54

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_RemoveFacetFromObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetObjectInformation.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectChildren.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectParents.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_LookupPolicy.html

Amazon Cloud Directory Developer Guide

• FIRST - Starts from the first indexed attribute value. The start attribute value is optional.

• LAST - Returns attribute values up to the end of the index, including the missing values. The end
attribute value is optional.

• LAST_BEFORE_MISSING_VALUES - Returns attribute values up to the end of index, excluding
missing values.

• INCLUSIVE - Includes the attribute value being specified.

• EXCLUSIVE - Excludes the attribute value being specified.

Parent Path Listing

Using the ListObjectParentPaths API call, you can retrieve all available parent paths for
any type of object (node, leaf node, policy node, index node). This API operation can be helpful
when you need to evaluate all parents for an object. The call returns all the objects from the
directory root until the requested object. It also returns the number of paths based on user-defined
MaxResults, in case of multiple paths to the parent. The order of the paths and nodes returned is
consistent among multiple API calls unless the objects are deleted or moved. Paths not leading to
the directory root are ignored from the target object.

For an example on how this works, let's say a directory has an object hierarchy similar to the
illustration shown below.

Querying Objects 55

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectParentPaths.html

Amazon Cloud Directory Developer Guide

The numbered shapes represent the different objects. The number of arrows between that object
and the directory root (000) represent the complete path and would be expressed in the output.
The following table shows requests and responses from queries made to specific leaf node objects
in the hierarchy.

Example queries on objects

Request Response

004,
PageToken
: null,
MaxResults:
1

[{/group/a/c], [000, 001, 002, 004]}], PageToken: null

005,
PageToken
: null,
MaxResults:
2

[{/group/a/d, [000, 001, 002, 005]}, { /group/b/e,
[000, 001, 003, 005]}], PageToken: null

Note

In this example, object 005 has both nodes 002 and 003 as
parents. Also, since MaxResults is 2, both paths display objects
in a list.

005,
PageToken
: null,
MaxResults:
1

[{/group/a/d, [000, 001, 002, 005]}], PageToken:
<encrypted_next_token>

005,
PageToken
: <encrypte
d_next_to
ken>,
MaxResults:
1

[{/group/b/e, [000, 001, 003, 005]}], PageToken: null

Note

In this example, object 005 has both nodes 002 and 003 as
parents. Also, since MaxResults is 1, multiple paginated calls

Querying Objects 56

Amazon Cloud Directory Developer Guide

Request Response

with page tokens will be made to get all paths with a list of
objects.

006,
PageToken
: null,
MaxResults:
1

[{/group/b/f, [000, 001, 003, 006]}], PageToken: null

007,
PageToken
: null,
MaxResults:
1

[{/group/a/index, [000, 001, 002, 007]}], PageToken:
null

Consistency Levels

Amazon Cloud Directory is a distributed directory store. Data is distributed to multiple servers
in different Availability Zones. A successful write request updates the data on all servers. Data
is eventually available on all servers, usually within a second. To aid users of the service, Cloud
Directory offers two consistency levels for read operations. This section describes the different
consistency levels and eventually consistent nature of Cloud Directory.

Read Isolation Levels

When reading data from Cloud Directory, you must specify the isolation level you want to read
from. Different isolation levels have tradeoffs between latency and data freshness.

• EVENTUAL – The snapshot isolation level reads whatever data is immediately available. It
provides the lowest latency of any isolation level. It also provides a potentially old view of the
data in the directory. EVENTUAL isolation does not provide read-after-write consistency. This
means it is not guaranteed that you will be able to read data immediately after writing it.

• SERIALIZABLE – The serializable isolation level provides the highest level of consistency
offered by Cloud Directory. Reads done at the SERIALIZABLE isolation level ensure that
you receive data from any successful writes. If a change has been made to the data that

Consistency Levels 57

Amazon Cloud Directory Developer Guide

you requested and that change is not yet available, the system rejects your request with
RetryableConflictException. We recommend that you retry these exceptions (see the
following section). When successfully retried, SERIALIZABLE reads offer read-after-write
consistency.

Write Requests

Cloud Directory ensures that multiple write requests are not concurrently updating the same
object or objects. If two write requests are found to be operating on the same objects, one of the
operations fails with a RetryableConflictException. We recommend that you retry these
exceptions (see the section below).

Note

RetryableConflictException responses received during write operations cannot be
used to detect race conditions. Given a use case that has been shown to precipitate this
situation, there is no guarantee that an exception will always occur. Whether an exception
occurs or not depends on the order of each request being processed internally.

RetryableConflictExceptions

When performing write operations or read operations with a SERIALIZABLE isolation level after a
write on the same object, Cloud Directory may respond with a RetryableConflictException.
This exception indicates that Cloud Directory servers have not yet processed the contents of the
previous write. These situations are transient and remedy themselves quickly. It’s important to note
that the RetryableConflictException cannot be used to detect any type of read-after-write
consistency. There is no guarantee a particular use case will cause this exception.

We recommend that you configure your Cloud Directory clients to retry the
RetryableConflictException. This configuration provides error-free behavior during
operation. The following sample code demonstrates how this configuration can be made in Java.

 RetryPolicy retryPolicy = new RetryPolicy(new CloudDirectoryRetryCondition(),
 PredefinedRetryPolicies.DEFAULT_BACKOFF_STRATEGY,
 PredefinedRetryPolicies.DEFAULT_MAX_ERROR_RETRY,
 true);

Write Requests 58

Amazon Cloud Directory Developer Guide

 ClientConfiguration clientConfiguration = new
 ClientConfiguration().withRetryPolicy(retryPolicy);

 AmazonCloudDirectory client = new AmazonCloudDirectory (
 new BasicAWSCredentials(…), clientConfiguration);

 public static class CloudDirectoryRetryCondition extends SDKDefaultRetryCondition {

 @Override
 public boolean shouldRetry(AmazonWebServiceRequest originalRequest,
 AmazonClientException exception,
 int retriesAttempted) {

 if (exception.getCause() instanceof RetryableConflictException) {
 return true;
 }

 return super.shouldRetry(originalRequest, exception, retriesAttempted);
 }
 }

RetryableConflictExceptions 59

Amazon Cloud Directory Developer Guide

Indexing and Search

Amazon Cloud Directory supports two methods of indexing: Value based and type based. Value-
based indexing is the most common form. With it you can index and search for objects in the
directory based on the values of object attributes. With type-based indexing, you can index and
search for objects in the directory based on object types. Facets help define object types. For more
information about schemas and facets, see Schemas and Facets.

Indexes in Cloud Directory enable simple listing of other objects by those objects' attribute or
facet values. Each index is defined at creation to work with a specific named attribute or facet. For
example, an index may be defined on the “email” attribute of the “Person” facet. Indexes are first-
class objects, which means that clients can create, modify, list, and delete them flexibly according
to the application logic’s needs.

Conceptually, indexes are similar to nodes with children, where the links to the indexed nodes
are labeled according to the indexed attributes, rather than being given a label when the child is
attached. However, index links are not parent-child edges, and have their own set of enumeration
API operations.

It’s important to understand that indexes in Cloud Directory are not automatically populated as
they might be in other systems. Instead, you use API calls to directly attach and detach objects to
or from the index. Although this is a bit more work, it gives you flexibility to define varying index
scopes. For example, you can define an index that tracks only direct children of a specific node.
Or you can define an index that tracks all objects in a given branch under a local root, such as all
nodes in a department. You can also do both at the same time.

Topics

• Index Lifecycle

• Facet-Based Indexing

• Unique vs Nonunique Indexes

Index Lifecycle

You can use the following API calls to help with the development lifecycle of indexes.

1. You create indexes with the CreateIndex API call. You supply an index definition structure
that describes the attributes on attached objects that the index will track. The definition also

Index Lifecycle 60

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateIndex.html

Amazon Cloud Directory Developer Guide

indicates whether or not the index should enforce uniqueness. The result is an object ID for the
new index, which should immediately be attached to your hierarchy like any other object. For
example, this can be a branch dedicated to holding indexes.

2. You attach objects to the index manually with the AttachToIndex API call. The index then
automatically tracks the values of its defined attributes on each attached object.

3. To use the indexes to search for objects with more efficient enumeration, call ListIndex and
specify a range of values that you are interested in.

4. Use the ListAttachedIndices API call to enumerate the indexes that are attached to a given
object.

5. Use the DetachFromIndex API call to remove objects from the index manually.

6. Once you detach all objects from the index, you can delete the index with the DeleteObject
API call.

There is no limit on the number of indexes within a directory, other than the limit on the space
used by all objects. Indexes and their attachments do consume space, but it is similar to that
consumed by nodes and parent–child links. There is a limit on the number of indexes that can be
attached to a given object. For more information, see Amazon Cloud Directory Limits.

Facet-Based Indexing

With facet-based indexing and search, you can optimize your directory searches by searching only
a subset of your directory. To do this, you use a schema facet. For example, instead of searching
across all the user objects in your directory, you can search only the user objects that contain an
employee facet. This efficiency helps reduce the latency time and amount of data retrieved for the
query.

With facet-based indexing, you can use the Cloud Directory index API operations to create and
attach an index to the facets of objects. You can also list the index results and then filter those
results based on certain facets. This can effectively reduce query times and the amount of data by
narrowing the search scope to only objects that contain a certain type of facet.

The “facets” attribute that is used with the CreateIndex and ListIndex API calls surfaces
the collection of facets that are applied to an object. This attribute is available for use only with
the CreateIndex and ListIndex API calls. As shown in the following sample code, the schema
ARN uses the directory’s region, owner account, and directory ID to reference the Cloud Directory
schema. This service-provided schema does not appear in listings.

Facet-Based Indexing 61

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachToIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListAttachedIndices.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachFromIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DeleteObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIndex.html

Amazon Cloud Directory Developer Guide

String cloudDirectorySchemaArn = String.format(“arn:aws:clouddirectory:%s:%s:directory/
%s/schema/CloudDirectory/1.0", region, ownerAccount, directoryId);

For example, the following sample code creates a facet-based index specific to your AWS
account and directory where you could enumerate all objects that are created with the facet
SalesDepartmentFacet.

Note

Make sure to use the “facets” value within the parameters as shown below. Instances of
“facets” shown in the sample code refer to a value that is provided and controlled by the
Cloud Directory service. You can use these for indexing but can have read-only access.

// Create a facet-based index
String cloudDirectorySchemaArn = String.format(“arn:aws:clouddirectory:%s:%s:directory/
%s/schema/CloudDirectory/1.0",
 region, ownerAccount, directoryId);

facetIndexResult = clouddirectoryClient.createIndex(new CreateIndexRequest()
 .withDirectoryArn(directoryArn)
 .withOrderedIndexedAttributeList(List(new AttributeKey()
 .withSchemaArn(cloudDirectorySchemaArn)
 .withFacetName("facets")
 .withName("facets")))
 .withIsUnique(false)
 .withParentReference("/")
 .withLinkName("MyFirstFacetIndex"))
facetIndex = facetIndexResult.getObjectIdentifier()

// Attach objects to the facet-based index
clouddirectoryClient.attachToIndex(new
 AttachToIndexRequest().withDirectoryArn(directoryArn)
 .withIndexReference(facetIndex).withTargetReference(userObj))

// List all objects
val listResults = clouddirectoryClient.listIndex(new ListIndexRequest()
 .withDirectoryArn(directoryArn)
 .withIndexReference(facetIndex)
 .getIndexAttachments()

Facet-Based Indexing 62

Amazon Cloud Directory Developer Guide

// List the index results filtering for a certain facet
val filteredResults = clouddirectoryClient.listIndex(new ListIndexRequest()
 .withDirectoryArn(directoryArn)
 .withIndexReference(facetIndex)
 .withRangesOnIndexedValues(new ObjectAttributeRange()
 .withAttributeKey(new AttributeKey()
 .withFacetName("facets")
 .withName("facets")
 .withSchemaArn(cloudDirectorySchemaArn))
 .withRange(new TypedAttributeValueRange()
 .withStartMode(RangeMode.INCLUSIVE)
 .withStartValue("MySchema/1.0/SalesDepartmentFacet")
 .withEndMode(RangeMode.INCLUSIVE)
 .withEndValue("MySchema/1.0/SalesDepartmentFacet")
)))

Unique vs Nonunique Indexes

Unique indexes differ from nonunique indexes in enforcing uniqueness of the indexed attribute
values for objects that are attached to the index. For example, you might want to populate
Person objects into two indexes, a unique one on an “email” attribute, and a nonunique one
on a “lastname” attribute. The lastname index allows many Person objects with the same last
name to be attached. On the other hand, the AttachToIndex call that targets the email index
returns a LinkNameAlreadyInUseException error if a Person with the same email attribute
is already attached. Note that the error does not remove the Person object itself. Consequently,
an application might create the Person, attach it to the hierarchy, and attach it to indexes, all in a
single batch request. This ensures that if uniqueness is violated on any of the indexes, the object
and all of its attachments are rolled back automatically.

Unique vs Nonunique Indexes 63

Amazon Cloud Directory Developer Guide

How To Administer Cloud Directory

This section lists all of the procedures for operating and maintaining a Cloud Directory
environment.

Topics

• Manage Your Directories

• Manage Your Schema

Manage Your Directories

This section describes how to maintain common directory tasks for your Cloud Directory
environment.

Topics

• Create Your Directory

• Delete Your Directory

• Disable Your Directory

• Enable Your Directory

Create Your Directory

Before you can create a directory in Amazon Cloud Directory, AWS Directory Service requires that
you first apply a schema to it. A directory cannot be created without a schema and typically has
one schema applied to it. However, you use Cloud Directory API operations to apply additional
schemas to a directory. For more information, see ApplySchema in the Amazon Cloud Directory API
Reference Guide.

To create a Cloud Directory

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Directories.

2. Choose Set up Cloud Directory.

3. Under Choose a schema to apply to your new directory, type the friendly name of your
directory, such as User Repository, and then choose one of the following options:

Manage Your Directories 64

http://docs.aws.amazon.com/amazoncds/latest/APIReference/API_ApplySchema.html
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

• Managed schema

• Sample schema

• Custom schema

Sample schemas and custom schemas are placed in the Development state, by default. For
more information about schema states, see Schema Lifecycle. Before a schema can be applied
to a directory, it must be converted into the Published state. To successfully publish a sample
schema using the console, you must have permissions to the following actions:

• clouddirectory:Get*

• clouddirectory:List*

• clouddirectory:CreateSchema

• clouddirectory:CreateDirectory

• clouddirectory:PutSchemaFromJson

• clouddirectory:PublishSchema

• clouddirectory:DeleteSchema

Since sample schemas are read-only templates provided by AWS Directory Service, they cannot
be published directly. Instead, when you choose to create a directory based on a sample
schema, the console creates a temporary copy of the sample schema you selected and places
it in the Development state. It then creates a copy of that development schema and places it
in the Published state. Once published, the development schema is deleted, which is why the
DeleteSchema action is necessary when publishing a sample schema.

4. Choose Next.

5. Review the directory information and make any necessary changes. When the information is
correct, choose Create.

Delete Your Directory

Use the following procedure to delete a directory in Cloud Directory.

Delete Your Directory 65

Amazon Cloud Directory Developer Guide

Note

Before you can delete a directory, you must first disable it. For instructions, see Disable
Your Directory.

To delete a directory

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select
Directories.

2. Select the option in the table next to the directory ID you want to delete.

3. Choose Actions.

4. Choose Delete

5. In the Delete directory dialog, confirm the operation by typing in the name of your directory,
and then choose Delete.

Disable Your Directory

Use the following procedure to disable a directory in Cloud Directory.

To disable a directory

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select
Directories.

2. Select the option in the table next to the directory ID you want to disable.

3. Choose Actions.

4. Choose Disable

Enable Your Directory

Use the following procedure to enable a previously disabled directory in Cloud Directory.

To enable a directory

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select
Directories.

Disable Your Directory 66

https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

2. Select the option in the table next to the directory ID you want to enable.

3. Choose Actions.

4. Choose Enable

Manage Your Schema

This section describes how to maintain common schema tasks for your Cloud Directory
environment.

Topics

• Create Your Schema

• Delete a Schema

• Download a Schema

• Publish a Schema

• Update Your Schema

• Upgrade Your Schema

Create Your Schema

Amazon Cloud Directory supports uploading of a compliant JSON file for schema creation. To
create a new schema, you can either create your own JSON file from scratch or download one
of the existing schemas listed in the console. Then upload it as a custom schema. For more
information, see Custom Schemas.

You can also create, delete, download, list, publish, update and upgrade schemas using the
Cloud Directory APIs. For more information about schema API operations, see the Amazon Cloud
Directory API Reference Guide.

Choose either of the procedures below, depending on your preferred method.

To create a custom schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Schemas.

2. Create a JSON file with all of your new schema definitions. For more information about how to
format a JSON file, see JSON Schema Format.

Manage Your Schema 67

http://docs.aws.amazon.com/amazoncds/latest/APIReference/welcome.html
http://docs.aws.amazon.com/amazoncds/latest/APIReference/welcome.html
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

3. In the console, choose Upload new schema.

4. In the Upload new schema dialog, type a name for the schema.

5. Select Choose file, select the new JSON file that you just created, and then choose Open.

6. Choose Upload. This adds a new schema to your schema library and places it in the
Development state. For more information about schema states, see Schema Lifecycle.

To create a custom schema based on an existing one in the console

1. In the AWS Directory Service console navigation pane, under Cloud Directory, choose
Schemas.

2. In the table listing the schemas, select the option near the schema you want to copy.

3. Choose Actions.

4. Choose Download schema.

5. Rename the JSON file, edit it as needed, and then save the file. For more information about
how to format a JSON file, see JSON Schema Format.

6. In the console, choose Upload new schema, select the JSON file that you just edited, and then
choose Open.

This adds a new schema to your schema library and places it in the Development state. For
more information about schema states, see Schema Lifecycle.

Delete a Schema

Use the following procedure to delete a schema in Cloud Directory.

To delete a schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select Schemas.

2. Select the option in the table next to the schema name you want to delete.

3. Choose Actions.

4. Choose Delete

5. In the Delete schema dialog, confirm the operation by choosing Delete.

Delete a Schema 68

https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

Download a Schema

Use the following procedure to download a schema.

To download a schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select Schemas.

2. Select the option in the table next to the schema name you want to download.

3. Choose Actions.

4. Choose Download schema

Publish a Schema

Use the following procedure to publish a schema in Cloud Directory.

To publish a schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select Schemas.

2. Select the option in the table next to the schema name you want to publish.

3. Choose Actions.

4. Choose Publish

5. In the Publish schema dialog, provide the following information:

a. Schema name

b. Major version

c. Minor version

6. Choose Publish.

Update Your Schema

Use the following procedure to update a schema in Cloud Directory.

To update a schema

1. In the AWS Directory Service console navigation pane, under Cloud Directory, select Schemas.

2. Select the option in the table next to the schema name you want to update.

Download a Schema 69

https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/directoryservicev2/

Amazon Cloud Directory Developer Guide

3. Choose Actions.

4. Choose Update

5. In the Update schema dialog, optionally modify the Schema name, or select Choose file to
apply or remove facets and attributes.

6. Choose Update.

Upgrade Your Schema

Upgrading a schema adds the facets and attributes you choose to the published schema or applied
schema you select.

• To upgrade a published schema call the UpgradePublishedSchema CLI action.

• To upgrade an applied schema, call the UpgradeAppliedSchema CLI action.

Upgrade Your Schema 70

https://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpgradePublishedSchema.html
https://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpgradeAppliedSchema.html

Amazon Cloud Directory Developer Guide

Security in Amazon Cloud Directory

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon Cloud
Directory, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Cloud Directory. The following topics show you how to configure Cloud Directory to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your Cloud Directory resources.

Topics

• Identity and Access Management in Amazon Cloud Directory

• Logging and Monitoring in Amazon Cloud Directory

• Compliance Validation for Amazon Cloud Directory

• Resilience in Amazon Cloud Directory

• Infrastructure Security in Amazon Cloud Directory

Identity and Access Management in Amazon Cloud Directory

Access to Amazon Cloud Directory requires credentials that AWS can use to authenticate your
requests. Those credentials must have permissions to access AWS resources. The following sections

Identity and Access Management 71

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Cloud Directory Developer Guide

provide details on how you can use AWS Identity and Access Management (IAM) and Cloud
Directory to help secure your resources by controlling who can access them:

• Authentication

• Access Control

Authentication

Learn how to access AWS using IAM identities.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access Cloud Directory resources. For example, you must have permissions to
create an Amazon Cloud Directory.

The following sections describe how to manage permissions for Cloud Directory. We recommend
that you read the overview first.

• Overview of Managing Access Permissions to Your Cloud Directory Resources

• Using Identity-Based Policies (IAM Policies) for Cloud Directory

• Amazon Cloud Directory API Permissions: Actions, Resources, and Conditions Reference

Overview of Managing Access Permissions to Your Cloud Directory
Resources

Every AWS resource is owned by an AWS account, and permissions to create or access the resources
are governed by permissions policies. An account administrator can attach permissions policies
to IAM identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also
support attaching permissions policies to resources.

Note

An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

Authentication 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Cloud Directory Developer Guide

Topics

• Cloud Directory Resources and Operations

• Understanding Resource Ownership

• Managing Access to Resources

• Specifying Policy Elements: Actions, Effects, Resources, and Principals

• Specifying Conditions in a Policy

Cloud Directory Resources and Operations

In Cloud Directory, the primary resources are directories and schemas. These resources have unique
Amazon Resource Names (ARNs) associated with them as shown in the following table.

Resource Type ARN Format

Directory arn:aws:clouddirectory: region:account-id :director
y/ directory-id

Schema arn:aws:clouddirectory: region:account-i
d :schema/schema-state /schema-name

For more information about schema states and ARNs, see ARN Examples in the Amazon Cloud
Directory API Reference.

Cloud Directory provides a set of operations to work with the appropriate resources. For a list of
available operations, see either Amazon Cloud Directory Actions or Directory Service Actions.

Understanding Resource Ownership

A resource owner is the AWS account that created a resource. That is, the resource owner is the AWS
account of the principal entity (the root account, an IAM user, or an IAM role) that authenticates the
request that creates the resource. The following examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a Cloud Directory resource,
such as a directory, your AWS account is the owner of that resource.

• If you create an IAM user in your AWS account and grant permissions to create Cloud Directory
resources to that user, the user can also create Cloud Directory resources. However, your AWS
account, to which the user belongs, owns the resources.

Overview of Managing Access 73

https://docs.aws.amazon.com/clouddirectory/latest/APIReference/arns.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/directoryservice/latest/devguide/API_Operations.html

Amazon Cloud Directory Developer Guide

• If you create an IAM role in your AWS account with permissions to create Cloud Directory
resources, anyone who can assume the role can create Cloud Directory resources. Your AWS
account, to which the role belongs, owns the Cloud Directory resources.

Managing Access to Resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of Cloud Directory. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What Is
IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
AWS IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and
policies attached to a resource are referred to as resource-based policies. Cloud Directory supports
only identity-based policies (IAM policies).

Topics

• Identity-Based Policies (IAM Policies)

• Resource-Based Policies

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – An account administrator
can use a permissions policy that is associated with a particular user to grant permissions for that
user to create an Cloud Directory resource, such as a new directory.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

Overview of Managing Access 74

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Cloud Directory Developer Guide

The following permissions policy grants permissions to a user to run all of the actions that begin
with Create. These actions show information about an Cloud Directory resource, such as a
directory or schema. Note that the wildcard character (*) in the Resource element indicates that
the actions are allowed for all Cloud Directory resources owned by the account.

{
 "Version":"2017-01-11",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"clouddirectory:Create*",
 "Resource":"*"
 }
]
}

For more information about using identity-based policies with Cloud Directory, see Using Identity-
Based Policies (IAM Policies) for Cloud Directory. For more information about users, groups, roles,
and permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example,
you can attach a policy to an S3 bucket to manage access permissions to that bucket. Cloud
Directory doesn't support resource-based policies.

Specifying Policy Elements: Actions, Effects, Resources, and Principals

For each Cloud Directory resource (see Cloud Directory Resources and Operations), the service
defines a set of API operations. For a list of available API operations, see either Amazon Cloud
Directory Actions or Directory Service Actions. To grant permissions for these API operations, Cloud
Directory defines a set of actions that you can specify in a policy. Note that, performing an API
operation can require permissions for more than one action.

The following are the basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to
which the policy applies. For Cloud Directory resources, you always use the wildcard character (*)
in IAM policies. For more information, see Cloud Directory Resources and Operations.

Overview of Managing Access 75

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/directoryservice/latest/devguide/API_Operations.html

Amazon Cloud Directory Developer Guide

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, the clouddirectory:GetDirectory permission allows the user permissions to
perform the Cloud Directory GetDirectory operation.

• Effect – You specify the effect when the user requests the specific action—this can be either
allow or deny. If you don't explicitly grant access to (allow) a resource, access is implicitly denied.
You can also explicitly deny access to a resource, which you might do to make sure that a user
cannot access it, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only). Cloud
Directory doesn't support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a table showing all of the Amazon Cloud Directory API actions and the resources that they
apply to, see Amazon Cloud Directory API Permissions: Actions, Resources, and Conditions
Reference.

Specifying Conditions in a Policy

When you grant permissions, you can use the access policy language to specify the conditions
when a policy should take effect. For example, you might want a policy to be applied only after a
specific date. For more information about specifying conditions in a policy language, see Condition
in the IAM User Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to
Cloud Directory. However, there are AWS-wide condition keys that you can use as appropriate. For a
complete list of AWS-wide keys, see Available Global Condition Keys in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for Cloud Directory

This topic provides examples of identity-based policies in which an account administrator can
attach permissions policies to IAM identities (that is, users, groups, and roles).

Using Identity-Based Policies (IAM Policies) 76

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

Amazon Cloud Directory Developer Guide

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your Cloud Directory resources. For
more information, see Overview of Managing Access Permissions to Your Cloud Directory
Resources.

The sections in this topic cover the following:

• Permissions Required to Use the AWS Directory Service Console

• AWS Managed (Predefined) Policies for Amazon Cloud Directory

Permissions Required to Use the AWS Directory Service Console

For a user to work with the AWS Directory Service console, that user must have permissions
listed in the policy above or the permissions granted by the Directory Service Full Access Role or
Directory Service Read Only role, described in AWS Managed (Predefined) Policies for Amazon
Cloud Directory.

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended for users with that IAM policy.

AWS Managed (Predefined) Policies for Amazon Cloud Directory

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. Managed policies grant necessary permissions for common use cases so
you can avoid having to investigate what permissions are needed. For more information, see AWS
Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Cloud Directory:

• AmazonCloudDirectoryReadOnlyAccess – Grants a user or group read-only access to all Amazon
Cloud Directory resources. For more information, see the Policies page in the AWS Management
Console.

• AmazonCloudDirectoryFullAccess – Grants a user or group full access to Amazon Cloud
Directory. For more information, see the Policies page in the AWS Management Console.

Using Identity-Based Policies (IAM Policies) 77

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonCloudDirectoryReadOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonCloudDirectoryFullAccess

Amazon Cloud Directory Developer Guide

In addition, there are other AWS-managed policies that are suitable for use with other IAM roles.
These policies are assigned to the roles associated with users in your Amazon Cloud Directory and
are required in order for those users to have access to other AWS resources, such as Amazon EC2.

You can also create custom IAM policies that allow users to access the required API actions and
resources. You can attach these custom policies to the IAM users or groups that require those
permissions.

Amazon Cloud Directory API Permissions: Actions, Resources, and
Conditions Reference

When you are setting up Access Control and writing permissions policies that you can attach
to an IAM identity (identity-based policies), you can use the following table as a reference. The
list includes each Amazon Cloud Directory API operation, the corresponding actions for which
you can grant permissions to perform the action, the AWS resource for which you can grant the
permissions. You specify the actions in the policy's Action field and the resource value in the
policy's Resource field.

You can use AWS-wide condition keys in your Amazon Cloud Directory policies to express
conditions. For a complete list of AWS-wide keys, see Available Global Condition Keys in the IAM
User Guide.

Note

To specify an action, use the clouddirectory: prefix followed by the API operation
name (for example, clouddirectory:CreateDirectory).

Logging and Monitoring in Amazon Cloud Directory

As a best practice, you should monitor your directory to ensure that changes are logged. This
helps you to ensure that any unexpected change can be investigated and unwanted changes can
be rolled back. Amazon Cloud Directory currently supports AWS CloudTrail, which you can use to
monitor your directory and any associated activity.

For more information, see Logging Cloud Directory API Calls with CloudTrail.

Amazon Cloud Directory API Permissions Reference 78

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys
https://docs.aws.amazon.com/clouddirectory/latest/APIReference/cloudtrail_logging.html

Amazon Cloud Directory Developer Guide

Compliance Validation for Amazon Cloud Directory

Third-party auditors assess the security and compliance of Amazon Cloud Directory as part of
multiple AWS compliance programs. These include ISO, SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Cloud Directory is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on AWS – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications. For more information, see
HIPAA compliance.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Cloud Directory

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. Cloud Directory was built on
those principles and is available in multiple AWS Regions, which are physically isolated from each
other. Within each Region, the service is further supported through at least three Availability
Zones, minimizing service downtime due to nonavailability of any single Availability Zone.

Compliance Validation 79

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Cloud Directory Developer Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure Security in Amazon Cloud Directory

As a managed service, Amazon Cloud Directory is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Cloud Directory through the network. Clients must
support Transport Layer Security (TLS). We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic
Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support
these modes.

If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure Security 80

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Cloud Directory Developer Guide

Transaction Support

With Amazon Cloud Directory, it’s often necessary to add new objects or add relationships between
new objects and existing objects to reflect changes in a real-world hierarchy. Batch operations can
make directory tasks like these easier to manage by providing the following benefits:

• Batch operations can minimize the number of round trips required to write and read objects to
and from your directory, improving the overall performance of your application.

• Batch write provides the SQL database-equivalent transaction semantics. All operations
successfully complete, or if any operation has a failure then none of them are applied.

• Using batch reference you can create an object and use a reference to the new object for further
action such as adding it to a relationship, reducing overhead of using a read operation before a
write operation.

BatchWrite

Use BatchWrite operations to perform multiple write operations on a directory. All operations in
batch write are executed sequentially. It works similar to SQL database transactions. If one of the
operation inside batch write fails, the entire batch write has no effect on the directory. If a batch
write fails, a batch write exception occurs. The exception contains the index of the operation that
failed along with exception type and message. This information can help you identify the root
cause for the failure.

The following API operations are supported as part of batch write:

• AddFacetToObject

• AttachObject

• AttachPolicy

• AttachToIndex

• AttachTypedLink

• CreateIndex

• CreateObject

• DeleteObject

• DetachFromIndex

BatchWrite 81

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_BatchWrite.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AddFacetToObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachPolicy.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachToIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_AttachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_CreateObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DeleteObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachFromIndex.html

Amazon Cloud Directory Developer Guide

• DetachObject

• DetachTypedLink

• RemoveFacetFromObject

• UpdateObjectAttributes

Batch Reference Name

Batch reference names are supported only for batch writes when you need to refer to an object
as part of the intermediate batch operation. For example, suppose that as part of a given batch
write, 10 different objects are being detached and are attached to a different part of the directory.
Without batch reference, you would have to read all 10 object references and provide them as
input during reattachment as part of the batch write. You can use a batch reference to identify the
detached resource during attachment. A batch reference can be any regular string prefixed with the
number sign / hashtag symbol (#).

For example, in the following code sample, an object with link name "this-is-a-typo" is being
detached from root with a batch reference name "ref" . Later the same object is attached to
the root with the link name as "correct-link-name" . The object is identified with the child
reference set to batch reference. Without the batch reference, you would initially need to get
the objectIdentifier that is being detached and provide that in the child reference during
attachment. You can use a batch reference name to avoid this extra read.

BatchDetachObject batchDetach = new BatchDetachObject()
 .withBatchReferenceName("ref")
 .withLinkName("this-is-a-typo")
 .withParentReference(new ObjectReference().withSelector("/"));
BatchAttachObject batchAttach = new BatchAttachObject()
 .withParentReference(new ObjectReference().withSelector("/"))
 .withChildReference(new ObjectReference().withSelector("#ref"))
 .withLinkName("correct-link-name");
BatchWriteRequest batchWrite = new BatchWriteRequest()
 .withDirectoryArn(directoryArn)
 .withOperations(new ArrayList(Arrays.asList(batchDetach, batchAttach)));

Batch Reference Name 82

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_DetachTypedLink.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_RemoveFacetFromObject.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateObjectAttributes.html

Amazon Cloud Directory Developer Guide

BatchRead

Use BatchRead operations to perform multiple read operations on a directory. For example, in the
following code sample, children of object with reference “/managers” is being read along with
attributes of object with reference “/managers/bob” in a single batch read.

BatchListObjectChildren listObjectChildrenRequest = new BatchListObjectChildren()
 .withObjectReference(new ObjectReference().withSelector("/managers"));
BatchListObjectAttributes listObjectAttributesRequest = new BatchListObjectAttributes()
 .withObjectReference(new ObjectReference().withSelector("/managers/bob"));
BatchReadRequest batchRead = new BatchReadRequest()
 .withConsistencyLevel(ConsistencyLevel.SERIALIZABLE)
 .withDirectoryArn(directoryArn)
 .withOperations(new ArrayList(Arrays.asList(listObjectChildrenRequest,
 listObjectAttributesRequest)));
BatchReadResult result = cloudDirectoryClient.batchRead(batchRead);

BatchRead supports the following API operations:

• GetObjectInformation

• ListAttachedIndices

• ListIncomingTypedLinks

• ListIndex

• ListObjectAttributes

• ListObjectChildren

• ListObjectParentPaths

• ListObjectPolicies

• ListOutgoingTypedLinks

• ListPolicyAttachments

• LookupPolicy

Limits on Batch operations

Each request to the server (including batched requests) has a maximum number of resources that
can be operated on, regardless of the number of operations in the request. This allows you to

BatchRead 83

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_BatchRead.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_GetObjectInformation.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListAttachedIndices.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIncomingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListIndex.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectAttributes.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectChildren.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectParentPaths.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectPolicies.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListOutgoingTypedLinks.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListPolicyAttachments.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_LookupPolicy.html

Amazon Cloud Directory Developer Guide

compose batch requests with high flexibility as long as you stay within the resource maximums. For
more information on resource maximums, see Amazon Cloud Directory Limits.

Limits are calculated by summing the writes or reads for each single operation inside the Batch
. For example, the read operation limit is currently 200 objects per API call. Let’s say you want to
compose a batch that adds 9 ListObjectChildren API calls and each call requires reading 20 objects .
Since the total number of read objects (9 x 20 = 180) does not exceed 200, the batch operation
would succeed.

The same concept applies with calculating write operations. For example, the write operation limit
is currently 20. If you set up your batch to add 2 UpdateObjectAttributes API calls with 9 write
operations each, this would also succeed. In either case, should the batch operation exceed the
limit, then the operation will fail and a LimitExceededException will be thrown.

The correct way to calculate the number of objects that are included within a batch is to include
both the actual node or leaf_node objects and if using a path based approach to iterate your
directory tree, you also need to include each path that is iterated on, within the batch. For example,
as shown in the following illustration of a basic directory tree, to read an attribute value for the
object 003, the total read count of objects would be three.

The traversing of reads down the tree works like this:

Limits on Batch operations 84

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_ListObjectChildren.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/API_UpdateObjectAttributes.html

Amazon Cloud Directory Developer Guide

1. Read object 001 object to determine the path to object 003

2. Go down Path 2

3. Read object 003

Similarly, for the number of attributes we need to count the number of attributes in objects 001
and 003 to ensure we don’t hit the limit.

Exception handling

Batch operations in Cloud Directory can sometimes fail. In these cases, it is important to know how
to handle such failures. The method you use to resolve failures differs for write operations and read
operations.

Batch write operation failures

If a batch write operation fails, Cloud Directory fails the entire batch operation and returns
an exception. The exception contains the index of the operation that failed along with the
exception type and message. If you see RetryableConflictException, you can try again with
exponential backoff. A simple way to do this is to double the amount of time you wait each time
you get an exception or failure. For example, if your first batch write operation fails, wait 100
milliseconds and try the request again. If the second request fails, wait 200 milliseconds and try
again. If the third request fails, wait 400 milliseconds and try again.

Batch read operation failures

If a batch read operation fails, the response contains either a successful response or an exception
response. Individual batch read operation failures do not cause the entire batch read operation to
fail—Cloud Directory returns individual success or failure responses for each operation.

Related Cloud Directory Blog Articles

• Write and Read Multiple Objects in Amazon Cloud Directory by Using Batch Operations

• How to Use Batch References in Amazon Cloud Directory to Refer to New Objects in a Batch
Request

Exception handling 85

https://aws.amazon.com/blogs/security/write-and-read-multiple-objects-in-amazon-cloud-directory-by-using-batch-operations/
https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/
https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/

Amazon Cloud Directory Developer Guide

Amazon Cloud Directory Compliance

Amazon Cloud Directory has undergone auditing for the following standards and can be part of
your solution when you need to obtain compliance certification.

Amazon Cloud Directory meets Federal Risk and
Authorization Management Program (FedRAMP)
security requirements and has received a FedRAMP
Joint Authorization Board (JAB) Provisional Authority
to Operate (P-ATO) at the FedRAMP Moderate Baseline.
For more information about FedRAMP, see FedRAMP
Compliance.

Amazon Cloud Directory has an Attestation of Complianc
e for Payment Card Industry (PCI) Data Security Standard
(DSS) version 3.2 at Service Provider Level 1. Customers
who use AWS products and services to store, process,
or transmit cardholder data can use Cloud Directory as
they manage their own PCI DSS compliance certification.
For more information about PCI DSS, including how to
request a copy of the AWS PCI Compliance Package, see
PCI DSS Level 1.

AWS has expanded its Health Insurance Portability
and Accountability Act (HIPAA) compliance program
to include Amazon Cloud Directory as a HIPAA Eligible
Service. If you have an executed Business Associate
Agreement (BAA) with AWS, you can use Cloud Directory
to help build your HIPAA-compliant applications. AWS
offers a HIPAA-focused Whitepaper for customers who
are interested in learning more about how they can
leverage AWS for the processing and storage of health

86

https://aws.amazon.com/compliance/fedramp/
https://aws.amazon.com/compliance/fedramp/
http://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf

Amazon Cloud Directory Developer Guide

information. For more information, see HIPAA Complianc
e

Amazon Cloud Directory has successfully completed
compliance certification for ISO/IEC 27001, ISO/IEC
27017, ISO/IEC 27018, and ISO 9001. For more informati
on, see ISO 27001, ISO 27017, ISO 27018, and ISO 9001.

System and Organization Control (SOC) reports are
independent third-party examination reports that
demonstrate how Amazon Cloud Directory achieves
key compliance controls and objectives. The purpose of
these reports is to help you and your auditors understan
d the AWS controls that are established to support
operations and compliance. For more information, see
SOC Compliance.

Shared Responsibility

Security, including HIPAA and PCI compliance, is a shared responsibility. It is important to
understand that Cloud Directory compliance status does not automatically apply to applications
that you run in the AWS Cloud. You must ensure that your use of AWS services complies with the
standards.

Shared Responsibility 87

https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/iso-27001-faqs/
https://aws.amazon.com/compliance/iso-27017-faqs/
https://aws.amazon.com/compliance/iso-27018-faqs/
https://aws.amazon.com/compliance/iso-9001-faqs/
https://aws.amazon.com/compliance/soc-faqs/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Cloud Directory Developer Guide

Using the Cloud Directory APIs

Amazon Cloud Directory includes a set of API operations that enable programmatic access to Cloud
Directory capabilities. You can use the Amazon Cloud Directory API Reference Guide to learn how
to make requests to the Cloud Directory API for creating and managing the various elements.
It also covers the components of requests, the content of responses, and how to authenticate
requests.

Cloud Directory provides all necessary API operations that enable developers to build new
applications. It provides the following categories of API calls:

• Create, read, update, delete (CRUD) for schema

• CRUD for facet

• CRUD for directories

• CRUD for objects (nodes, policies, etc.)

• CRUD for Index definition

• Batch read, batch write

How Billing Works With Cloud Directory APIs

Billing for API calls vary based on the specific types of API calls being made. There are specific
billing rates for Eventually Consistent Read API calls, Strongly Consistent Read API calls, and Write
API calls. Metadata API calls are free.

Strongly Consistent operations are used for read-after-write consistency when reading a value.
Eventually Consistent operations are used for retrieving a value while updates are running. With
Eventually Consistent operations retrieved results might not be the most accurate since the specific
host you are reading the value from is still processing updates. However, the latency for such read
operations are low when you retrieve a performance call.

When reading data from Cloud Directory, you must specify either an Eventually Consistent Read
or Strongly Consistent Read type operation. The read type is based on consistency level. The two
consistency levels are EVENTUAL for Eventually Consistent Reads and SERIALIZABLE for Strongly
Consistent Reads. For more information, see Consistency Levels.

The following table lists all of the Cloud Directory APIs and how they can impact billing for your
AWS account.

How Billing Works With Cloud Directory APIs 88

http://docs.aws.amazon.com/clouddirectory/latest/APIReference/welcome.html

Amazon Cloud Directory Developer Guide

API Eventually
Consistent Read
1

Strongly
Consistent Read
2

Write 3 Metadata 4

AddFacetT
oObject

 X

ApplySchema X

AttachObject X

AttachPolicy X

AttachToIndex X

AttachTypedLink X

BatchRead X X

BatchWrite X

CreateDirectory X

CreateFacet X

CreateIndex X

CreateObject X

CreateSchema X

CreateTyp
edLinkFacet

 X

DeleteDirectory X

DeleteFacet X

DeleteObject X

DeleteSchema X

How Billing Works With Cloud Directory APIs 89

Amazon Cloud Directory Developer Guide

API Eventually
Consistent Read
1

Strongly
Consistent Read
2

Write 3 Metadata 4

DetachFro
mIndex

 X

DetachObject X

DetachPolicy X

DetachTyp
edLink

 X

DeleteTyp
edLinkFacet

 X

DisableDirectory X

EnableDirectory X

GetApplie
dSchemaVersion

 X

GetDirectory X

GetFacet X

GetLinkAt
tributes

X X

GetObject
Attributes

X X

GetObject
Information

X X

GetSchema
AsJson

 X

How Billing Works With Cloud Directory APIs 90

Amazon Cloud Directory Developer Guide

API Eventually
Consistent Read
1

Strongly
Consistent Read
2

Write 3 Metadata 4

GetTypedL
inkFacetI
nformation

 X

ListAppli
edSchemaArns

 X

ListAttac
hedIndices

X X

ListDevel
opmentSch
emaArns

 X

ListDirectories X

ListFacet
Attributes

 X

ListFacetNames X

ListIncom
ingTypedLinks

X X

ListIndex X X

ListManag
edSchemaArns

 X

ListObjec
tAttributes

X X

ListObjec
tChildren

X X

How Billing Works With Cloud Directory APIs 91

Amazon Cloud Directory Developer Guide

API Eventually
Consistent Read
1

Strongly
Consistent Read
2

Write 3 Metadata 4

ListObjec
tParentPaths

X

ListObjec
tParents

X X

ListObjec
tPolicies

X X

ListOutgo
ingTypedLinks

X X

ListPolic
yAttachments

X X

ListPubli
shedSchem
aArns

 X

ListTagsF
orResource

 X

ListTyped
LinkFacet
Attributes

 X

ListTyped
LinkFacetNames

 X

LookupPolicy X

PublishSchema X

PutSchema
FromJson

 X

How Billing Works With Cloud Directory APIs 92

Amazon Cloud Directory Developer Guide

API Eventually
Consistent Read
1

Strongly
Consistent Read
2

Write 3 Metadata 4

RemoveFac
etFromObject

 X

TagResource X

UntagResource X

UpdateFacet X

UpdateLin
kAttributes

 X

UpdateObj
ectAttributes

 X

UpdateSchema X

UpdateTyp
edLinkFacet

 X

UpgradeAp
pliedSchema

 X

UpgradePu
blishedSchema

 X

1 Eventually Consistent Read APIs are called with the EVENTUAL consistency level

2 Strongly Consistent Read APIs are called with the SERIALIZABLE consistency level

3 Write APIs are billed as write API calls

4 Metadata APIs are NOT billed but are categorized as Metadata API calls

For additional information about billing, see Amazon Cloud Directory Pricing.

How Billing Works With Cloud Directory APIs 93

https://aws.amazon.com/cloud-directory/pricing/

Amazon Cloud Directory Developer Guide

Amazon Cloud Directory Limits

The following are the default limits for Cloud Directory. Each limit is per region unless otherwise
noted.

Amazon Cloud Directory

Schema and Directory Limits

Limit/Concept Quantity

Number of attributes per facet (including
required)

1000

Number of facets per object 5

Number of unique indexes an object is
attached

3

Number of facets per schema 30

Number of rules per attribute 5

Number of attributes with default values per
facet

10

Number of required attributes per facet 30

Number of development schemas 20

Number of published schemas 20

Number of applied schemas 5

Number of directories 100

Max page elements 30

Max input size (all inputs combined) 200 KB

Amazon Cloud Directory 94

Amazon Cloud Directory Developer Guide

Limit/Concept Quantity

Max response size (all outputs combined) 1 MB

Schema JSON file size limit 200 KB

Facet name length 64 UTF-8 encoded bytes

Directory name length 64 UTF-8 encoded bytes

Schema name length 64 UTF-8 encoded bytes

Object Limits

Limit/Concept Quantity

Number of written objects 20 per API call

Number of read objects 200 per API call

Number of written attribute values 1000 per API call

Number of read attribute values 1000 per API call

Path depth 15

Max input size (all inputs combined) 200 KB

Max response size (all outputs combined) 1 MB

Policy size limit 10 KB

Number of attributes that can be deleted
during object deletion

30

Aggregate value length for typed link
identity attributes

64 UTF-8 encoded bytes

Edge or link name length 64 UTF-8 encoded bytes

Value length for indexed attributes 512 UTF-8 encoded bytes

Amazon Cloud Directory 95

Amazon Cloud Directory Developer Guide

Limit/Concept Quantity

Value length for non-indexed attributes 2KB

Number of policies attached to an object 4

Limits on batch operations

There are no limits on the number of operations you can call inside a batch. For more information,
see Limits on Batch operations.

Limits that cannot be modified

Amazon Cloud Directory limits that cannot be changed or increased, include:

• Facet name length

• Directory name length

• Schema name length

• Max page elements

• Edge or link name length

• Value length for indexed attributes

Limits on batch operations 96

Amazon Cloud Directory Developer Guide

Cloud Directory Resources

The following tables list related resources that you'll find useful as you work with this service.

Cloud Directory Getting Started Link

Cloud Directory Webinar Deep Dive on Amazon Cloud Directory

Cloud Directory Sample Java Code Amazon Cloud DirectoryGitHub

Cloud Directory Blog Posts Description

How to rapidly develop applications
on Amazon Cloud Directory with
Managed Schema

This blog post explains about rapidly prototyping and
developing on Cloud Directory using managed schema.
It also includes sample Java code.

How to Search More Efficiently in
Amazon Cloud Directory

This blog post explains about searching more efficiently
using facet-based indexing. It also includes sample Java
code.

How to Easily Apply Amazon Cloud
Directory Schema Changes with In-
Place Schema Upgrades

This blog post explains about performing an in-place
schema upgrade for any operational (running) Cloud
Directory. It also includes sample Java code.

Write and Read Multiple Objects in
Amazon Cloud Directory by Using
Batch Operations

Explains about using Batch Read and Write. It also
includes sample Java code.

How to Use Batch References in
Amazon Cloud Directory to Refer to
New Objects in a Batch Request

Explains about using Batch Reference. It also includes
sample Java code.

Cloud Directory Update – Support
for Typed Links

Explains about creating and searching relationships
across hierarchies in Cloud Directory by using typed
links. It also includes sample Java code.

97

https://www.youtube.com/watch?v=UANm3DC_IxE
https://github.com/aws-samples/AmazonCloudDirectory-sample
https://aws.amazon.com/blogs/database/rapidly-develop-applications-on-amazon-cloud-directory-with-managed-schema/
https://aws.amazon.com/blogs/database/rapidly-develop-applications-on-amazon-cloud-directory-with-managed-schema/
https://aws.amazon.com/blogs/database/rapidly-develop-applications-on-amazon-cloud-directory-with-managed-schema/
https://aws.amazon.com/blogs/security/how-to-search-more-efficiently-in-amazon-cloud-directory/
https://aws.amazon.com/blogs/security/how-to-search-more-efficiently-in-amazon-cloud-directory/
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/
https://aws.amazon.com/blogs/security/write-and-read-multiple-objects-in-amazon-cloud-directory-by-using-batch-operations/
https://aws.amazon.com/blogs/security/write-and-read-multiple-objects-in-amazon-cloud-directory-by-using-batch-operations/
https://aws.amazon.com/blogs/security/write-and-read-multiple-objects-in-amazon-cloud-directory-by-using-batch-operations/
https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/
https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/
https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/
https://aws.amazon.com/blogs/aws/cloud-directory-update-support-for-typed-links/
https://aws.amazon.com/blogs/aws/cloud-directory-update-support-for-typed-links/

Amazon Cloud Directory Developer Guide

Cloud Directory Blog Posts Description

New Cloud Directory API Makes It
Easier to Query Data Along Multiple
Dimensions

Explains how to query for data across multiple
dimensions with a single call using the ListObjec
tParentPaths API.

How to Create an Organizational
Chart with Separate Hierarchies by
Using Amazon Cloud Directory

Explains how to create a schema and a directory with
sample Java code.

Amazon Cloud Directory – A Cloud-
Native Directory for Hierarchical
Data

Describes the launch of Cloud Directory as a new service
from AWS.

Cloud Directory Documentation Link

Cloud Directory Developer Guide What is Amazon Cloud Directory

Cloud Directory API Reference Amazon Cloud Directory API Reference

Cloud Directory Limits Amazon Cloud Directory Limits

Cloud Directory Other Link

Cloud Directory Product Info https://aws.amazon.com/cloud-directory/

Cloud Directory Pricing https://aws.amazon.com/cloud-directory/pri
cing/

98

https://aws.amazon.com/blogs/security/new-cloud-directory-api-makes-it-easier-to-query-data-along-multiple-dimensions/
https://aws.amazon.com/blogs/security/new-cloud-directory-api-makes-it-easier-to-query-data-along-multiple-dimensions/
https://aws.amazon.com/blogs/security/new-cloud-directory-api-makes-it-easier-to-query-data-along-multiple-dimensions/
https://aws.amazon.com/blogs/security/how-to-create-an-organizational-chart-with-separate-hierarchies-by-using-amazon-cloud-directory/
https://aws.amazon.com/blogs/security/how-to-create-an-organizational-chart-with-separate-hierarchies-by-using-amazon-cloud-directory/
https://aws.amazon.com/blogs/security/how-to-create-an-organizational-chart-with-separate-hierarchies-by-using-amazon-cloud-directory/
https://aws.amazon.com/blogs/aws/amazon-cloud-directory-a-cloud-native-directory-for-hierarchical-data/
https://aws.amazon.com/blogs/aws/amazon-cloud-directory-a-cloud-native-directory-for-hierarchical-data/
https://aws.amazon.com/blogs/aws/amazon-cloud-directory-a-cloud-native-directory-for-hierarchical-data/
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
http://docs.aws.amazon.com/clouddirectory/latest/APIReference/welcome.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/limits.html
https://aws.amazon.com/cloud-directory/
https://aws.amazon.com/cloud-directory/pricing/
https://aws.amazon.com/cloud-directory/pricing/

Amazon Cloud Directory Developer Guide

Document History

The following table describes the documentation changes since the last release of the Amazon
Cloud Directory Developer Guide.

• Latest documentation update: June 21, 2018

Change Description Date

New managed schema Added content for managed
schema option.

June 21, 2018

Migrated content to this
guide

Transferred all existing Cloud
Directory content from the
AWS Directory Service Admin
Guide to this new Amazon
Cloud Directory Developer
Guide to more directly map to
customer needs.

June 20, 2018

In-place schema upgrades Added content for applying
schema changes across your
Amazon Cloud Directory
directories with in-place
schema upgrades.

December 6, 2017

Facet-based indexing Added facet-based index
section.

August 9, 2017

Batches Updated information about
batches for Amazon Cloud
Directory.

July 26, 2017

Compliance Added information about
HIPAA and PCI compliance.

July 14, 2017

99

https://docs.aws.amazon.com/clouddirectory/latest/developerguide/schemas_managed.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/schemas_inplaceschemaupgrade.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/indexing_search_facet.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/transaction_support.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/compliance.html

Amazon Cloud Directory Developer Guide

Typed links Added new typed links
content for Amazon Cloud
Directory.

May 31, 2017

Amazon Cloud Directory
service launch

New directory type introduce
d.

January 26, 2017

100

https://docs.aws.amazon.com/clouddirectory/latest/developerguide/directory_objects_links.html#directory_objects_links_typedlink
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html

Amazon Cloud Directory Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

101

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Cloud Directory
	Table of Contents
	What Is Amazon Cloud Directory?
	What Cloud Directory Is Not

	Getting Started
	Create a Schema
	Create an Amazon Cloud Directory
	Using Cloud Directory Interface VPC Endpoints
	Availability
	Create a VPC for Cloud Directory
	Control Access to Your Cloud Directory VPC Endpoint

	Understanding Key Cloud Directory Concepts
	Schema
	Facets
	Managed Schemas
	Sample Schemas
	Custom Schemas

	Directory
	Objects
	Policies

	Directory Structure
	Root Node
	Node
	Leaf Node
	Node Link

	Schemas
	Schema Lifecycle
	Development State
	Published State
	Applied State

	Facets
	In-Place Schema Upgrade
	Schema Versioning
	Major Version
	Minor Version

	Using the Schema Upgrade API Operations

	Managed Schema
	Facet Styles
	Static Facets
	Dynamic Facets

	Sample Schemas
	Organizations
	Person
	Device

	Custom Schemas
	Attribute References
	API Example
	JSON Example:
	Attribute reference considerations
	Setting Attribute Reference Values
	Getting Attribute Reference Values
	Using Indexes with Attribute References
	Required Behavior for Attribute References

	Attribute Rules
	Format Specification
	JSON Schema Format
	Attribute JSON Subsection
	Attribute Definition Subsection
	Default Value Subsection
	Attribute Rules Subsection
	Attribute Reference Subsection

	Schema Document Examples
	Basic Schema Document
	Schema Document with Typed Links

	Directory Objects
	Links
	Child Links
	Attachment Links
	Index Links
	Typed Links
	Typed Link Identity
	Typed Link Rules
	Typed Link Listing
	Typed Link Schema
	Typed Link Interaction

	Range Filters
	Multiple range limitations
	Missing values

	Access Objects
	Populating Objects
	Updating Objects
	Deleting Objects
	Querying Objects
	Directory Traversal
	Policy Lookup
	Index Querying
	Parent Path Listing

	Consistency Levels
	Read Isolation Levels
	Write Requests
	RetryableConflictExceptions

	Indexing and Search
	Index Lifecycle
	Facet-Based Indexing
	Unique vs Nonunique Indexes

	How To Administer Cloud Directory
	Manage Your Directories
	Create Your Directory
	Delete Your Directory
	Disable Your Directory
	Enable Your Directory

	Manage Your Schema
	Create Your Schema
	Delete a Schema
	Download a Schema
	Publish a Schema
	Update Your Schema
	Upgrade Your Schema

	Security in Amazon Cloud Directory
	Identity and Access Management in Amazon Cloud Directory
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Cloud Directory Resources
	Cloud Directory Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, Resources, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for Cloud Directory
	Permissions Required to Use the AWS Directory Service Console
	AWS Managed (Predefined) Policies for Amazon Cloud Directory

	Amazon Cloud Directory API Permissions: Actions, Resources, and Conditions Reference

	Logging and Monitoring in Amazon Cloud Directory
	Compliance Validation for Amazon Cloud Directory
	Resilience in Amazon Cloud Directory
	Infrastructure Security in Amazon Cloud Directory

	Transaction Support
	BatchWrite
	Batch Reference Name

	BatchRead
	Limits on Batch operations
	Exception handling
	Batch write operation failures
	Batch read operation failures

	Amazon Cloud Directory Compliance
	Shared Responsibility

	Using the Cloud Directory APIs
	How Billing Works With Cloud Directory APIs

	Amazon Cloud Directory Limits
	Amazon Cloud Directory
	Limits on batch operations
	Limits that cannot be modified

	Cloud Directory Resources
	Document History
	AWS Glossary

